Skip to main content

Theoretical Approach to Polarization Effects in Semiconductors

  • Chapter
Polarization Effects in Semiconductors
  • 2856 Accesses

As a rule, investigations of physical effects in solids are motivated by the need of understanding at a fundamental level, which facilitates their effective application in the fabrication of devices. The problem of electrical polarization of piezoelectric, ferroelectric, and pyroelectric solids is no exception. In the last 15 years we have witnessed very intensive investigations of the theory of spontaneous polarization, as well as of the dielectric response of crystals to external perturbations. Our current understanding stems from the development of electronic structure calculations based on first principles, and subsequently from evolution of appropriate theoretical approaches allowing for both a proper definition of polarization and accurate calculations. From the experimental side, much of the impetus came from experimental work devoted to, e.g., GaN-like group-III nitrides, in which internal electric fields of both pyro- and piezoelectric origin are large, determining the properties of quantum structures and devices [1]. Spectacular progress in this area has led to innovative devices described in several chapters of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a review see, for example, S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, J. Appl. Phys. 86,1 1999.

    Article  Google Scholar 

  2. R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993); D. Vanderbilt and R. D. King-Smith, ibid. 48, 4442 (1993).

    Google Scholar 

  3. R. Resta, Rev. Mod. Phys. 66, 899 1994.

    Article  Google Scholar 

  4. R. M. Martin, Phys. Rev. B5, 1607 1972.

    Google Scholar 

  5. J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, New York 1967.

    Google Scholar 

  6. For an excellent review see S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Gianozzi, Rev. Mod. Phys. 73, 515 2001.

    Article  Google Scholar 

  7. R. M. Dreizler and E. K. U. Gross, Density Functional Theory (Springer, Berlin, 1990).

    MATH  Google Scholar 

  8. See, for example, J. Bernholc, “Computational materials science: the era of applied quantum mechanics,” Physics Today, 52, September, p. 30 1999.

    Article  Google Scholar 

  9. E. L. Briggs, D. J. Sullivan, and J. Bernholc, Phys. Rev. B 54, 14362 1996.

    Article  Google Scholar 

  10. R. M. Martin, Phys. Rev. B9, 1998 1974.

    Article  Google Scholar 

  11. D. Vanderbilt, J. Phys. Chem. Solids, 61, 147 2000.

    Article  Google Scholar 

  12. S. M. Nakhmanson, V. Meunier, J. Bernholc, M. Buongiorno Nardelli, Phys. Rev. B 67, 235406 2003.

    Article  Google Scholar 

  13. N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 1997.

    Article  Google Scholar 

  14. F. Gygi, J.-L. Fattebert, and E. Schwegler, Computer Physics Comm., 155, 1 2003.

    Article  Google Scholar 

  15. A. Baldereschi, S. Baroni, and R. Resta, Phys. Rev. Lett. 61, 734 1988.

    Article  Google Scholar 

  16. M. Posternak, A. Baldereschi, A. Catellani, and R. Resta, Phys. Rev. Lett. 64, 1777 1990.

    Article  Google Scholar 

  17. F. Bernardini and V. Fiorentini, Phys. Rev. B 57, R9427 1997.

    Article  Google Scholar 

  18. A. Al-Yacoub and L. Bellaiche, Appl. Phys. Lett. 79, 2166 2001.

    Article  Google Scholar 

  19. F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 56, R10024 1997.

    Article  Google Scholar 

  20. K. Shimada, T. Sota, K. Suzuki, and H. Okumura, Jpn. J. Appl. Phys. Part 2, 37, L1421 1998.

    Article  Google Scholar 

  21. F. Bernardini and V. Fiorentini, Phys. Rev. B 64, 85207 (2001); ibid. 65, 129903 (2002).

    Google Scholar 

  22. M. Buongiorno Nardelli, K. Rapcewicz, and J. Bernholc, Phys. Rev. B 55, R7323 (1997); Appl. Phys. Lett. 71, 31315 (1997).

    Google Scholar 

  23. D. B. Laks et al., Phys. Rev. Lett. 66, 648 (1991); C. G. Van De Walle et al., Phys. Rev. B 47, 9425 (1993).

    Google Scholar 

  24. S. B. Zhang and John E. Northrup, Phys. Rev. Lett. 67, 2339 1991.

    Article  Google Scholar 

  25. P. Bogusławski, E. Briggs, and J. Bernholc, Phys. Rev. B, Rapid Commun. 51, 17255 1995.

    Google Scholar 

  26. S. M. Hu et al., Phys. Rev. Lett. 67, 1450 1991.

    Article  Google Scholar 

  27. N. Moriya, et al., Phys. Rev. Lett. 75, 1981 1995.

    Article  Google Scholar 

  28. T. T. Fang et al., Appl. Phys. Lett. 68, 7911995.

    Article  Google Scholar 

  29. S. Kobayashi et al., J. Appl. Phys. 86, 5480 1999.

    Article  Google Scholar 

  30. Be in InP/InGaAs: W. Haussler, J. W. Walter, and J. Muller, Mat. Res. Symp. Proc. vol. 147, 333 (1989); Be and Zn in AlGaAs/GaAs: T. Humer-Hager et al., J. Appl. Phys. 66, 181 (1989); Zn in InGaAsP/InP: R. Weber et al., J. Electrochem. Soc. 138, 2812 (1991).

    Google Scholar 

  31. A. Gaymann, M. Maier, and K. Kohler, J. Appl. Phys. 86, 4312 1999.

    Article  Google Scholar 

  32. K. Kohler et al., J. Appl. Phys. 97, 104914 2005.

    Article  Google Scholar 

  33. P. Boguslawski, N. Gonzalez Szwacki, and J. Bernholc, Phys. Rev. Lett. 96, 185501 2006.

    Article  Google Scholar 

  34. R. D. Chang, P. S. Choi, and D. L. Kwong, Appl. Phys. Lett. 72, 1709 1998.

    Article  Google Scholar 

  35. A. F. Wright et al., J. Appl. Phys. 94, 2311 (2003); S. Limpijumnong and C. Van de Walle, Phys. Rev. B 68, 235203 (2003).

    Google Scholar 

  36. O. Ambacher et al., J. Appl. Phys. 87, 334 2000.

    Article  Google Scholar 

  37. B. S. Kang et al., Appl. Phys. Lett. 84, 4635 2004.

    Article  Google Scholar 

  38. This value is very close to 1.7 eV obtained for H in GaN by S. M. Myers et al., J. Appl. Phys. 88,4676 (2000).

    Google Scholar 

  39. P. Boguslawski and J. Bernholc, Phys. Rev. B 56, 9496 1997.

    Article  Google Scholar 

  40. P. Boguslawski and J. Bernholc, Phys. Rev. B 59, 1567 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Boguslawski, P., Bernholc, J. (2008). Theoretical Approach to Polarization Effects in Semiconductors. In: Wood, C., Jena, D. (eds) Polarization Effects in Semiconductors. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68319-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68319-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-36831-3

  • Online ISBN: 978-0-387-68319-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics