Case Studies in the Electrochemical Treatment of Wastewater Containing Organic Pollutants Using BDD

  • Anna Maria Polcaro
  • M. Mascia
  • S. Palmas
  • A. Vacca
Chapter

Abstract

A critical review is presented in this chapter on the possible applications of boron-doped diamond (BDD) as anode material to perform oxidation of organic compounds in aqueous solution. The oxidation of model substances is studied as well as that of the main classes of pollutants, such as phenols, dyes, pesticides and drugs, surfactants, which make some problems of degradation with the traditional wastewater treatments. The presented results indicate that organic compounds refractory to other oxidation techniques are successfully oxidized at BDD, even if the reaction mechanism is differently dependent on the organic compound and the electrolyte composition. Economic considerations reveal that electrochemical oxidations at BDD are less expensive than other advanced oxidation processes, indicating that in the near future this technology can become a competitive treatment for the removal of refractory compounds from wastewater.

References

  1. Alfaro, M.A.Q., Ferro, S., Martinez-Huitle, C.A. and Vong, Y.M.(2006) Boron doped diamond electrode for the wastewater treatment. J. Braz. Chem. Soc. 17, 227–236CrossRefGoogle Scholar
  2. Al Momani, F., Sans, C. and Esplugas, S. (2004) A comparative study of the advanced oxidation of 2,4-dichlorophenol. J. Hazard. Mater. 107, 123–129CrossRefGoogle Scholar
  3. Aris, A. and Sharratt, P.N. (2004) Fenton oxidation of Reactive Black 5: Effect of mixing intensity and reagent addition strategy. Environ. Technol. 25, 601–612CrossRefGoogle Scholar
  4. Bechtold, T., Turcanu, A. and Schrott, W. (2006) Electrochemical decolourisation of dispersed indigo on boron-doped diamond anodes. Diam. Relat. Mater. 15, 1513–1519CrossRefGoogle Scholar
  5. Beltran, F.J., Rivas, F.J. and Gimeno, O. (2005) Comparison between photocatalytic ozonation and other oxidation processes for the removal of phenols from water. J. Chem. Technol. Biotechnol. 80, 973–984CrossRefGoogle Scholar
  6. Bergmann, H., Iourtchouk, T., Schops, K. and Bouzek, K. (2002) New UV irradiation and direct electrolysis – Promising methods for water disinfection. Chem. Eng. J. 85, 111–117CrossRefGoogle Scholar
  7. Bock, C., Smith, A. and MacDougall, B. (2002) Anodic oxidation of oxalic acid using WOx based anodes. Electrochim. Acta 48, 57–67CrossRefGoogle Scholar
  8. Boye, B., Brillas, E., Marselli, B., Michaud, P.A., Comninellis, Ch., Farnia, G. and Sandona, G. (2006) Electrochemical incineration of chloromethylphenoxy herbicides in acid medium by anodic oxidation with boron-doped diamond electrode. Electrochim. Acta 51, 2872–2880CrossRefGoogle Scholar
  9. Brillas, E., Calpe, J.C. and Cabot, P.L. (2003) Degradation of the herbicide 2,4-dichlorophenoxyacetic acid by ozonation catalyzed with Fe2+ and UVA light. Appl. Catal. B: Environ. 46, 381–391.CrossRefGoogle Scholar
  10. Brillas, E., Boye, B., Sires, I., Garrido, J. A., Rodriguez, R.M., Arias, C., Cabot, P. and Comninellis, Ch. (2004) Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode. Electrochim. Acta 49, 4487–4496CrossRefGoogle Scholar
  11. Brillas, E., Sires, I., Arias, C., Cabot, P.L., Centellas, F., Rodriguez, R.M. and Garrido, J.A. (2005) Mineralization of paracetamol in aqueous medium by anodic oxidation with a boron-doped diamond electrode. Chemosphere 58, 399–406CrossRefGoogle Scholar
  12. Brown, D. (1987) Effects of colorants in the aquatic environment. Chemosphere, 12, 397–404CrossRefGoogle Scholar
  13. Cañizares, P., Díaz, M., Domínguez, J.A., García-Gómez, J. and Rodrigo, M.A. (2002) Electrochemical oxidation of aqueous phenol wastes on synthetic diamond thin-film electrodes. Ind. Eng. Chem. Res. 41, 4187–4194CrossRefGoogle Scholar
  14. Cañizares, P., García-Gómez, J., Saez, C. and Rodrigo, M.A. (2004a) Electrochemical oxidation of several chlorophenols on diamond electrodes. Part II. Influence of waste characteristic and operating conditions. J. Appl. Electrochem. 34, 87–94Google Scholar
  15. Cañizares, P., Garcia-Gomez, J., Lobato, J. and Rodrigo, M.A. (2004b) Modeling of wastewater electro-oxidation processes. Part I. General description and application to inactive electrodes. Ind. Eng. Chem. Res. 43, 1915–1922Google Scholar
  16. Cañizares, P., Saez, C., Lobato, J. and Rodrigo, M.A. (2004c) Electrochemical treatment of 4-nitrophenol-containing aqueous wastes using boron-doped diamond anodes. Ind. Eng. Chem. Res. 43, 1944–1951CrossRefGoogle Scholar
  17. Cañizares, P., Saez, C., Lobato, J. and Rodrigo, M.A. (2004d) Electrochemical treatment of 2,4-dinitrophenol aqueous wastes using boron-doped diamond anodes. Electrochim. Acta 49, 4641–4650CrossRefGoogle Scholar
  18. Cañizares, P., Díaz, M., Domínguez, J.A., Lobato, J. and Rodrigo, M.A. (2005a) Electrochemical treatment of diluted cyanide aqueous wastes. J. Chem. Technol. Biotechnol. 80, 565–573CrossRefGoogle Scholar
  19. Cañizares, P., Lobato, J., Paz, R., Rodrigo, M.A. and Saez, C. (2005b) Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes. Water Res. 39, 2687–2703CrossRefGoogle Scholar
  20. Cañizares, P., Gadri, A., Lobato, J., Nasr, B., Paz, R., Rodrigo, M.A. and Saez, C. (2006a) Electrochemical oxidation of azoic dyes with conductive-diamond anodes. Ind. Eng. Chem. Res. 45, 3468–3473CrossRefGoogle Scholar
  21. Cañizares, P., Saez, C., Lobato, J. and Rodrigo, M.A. (2006b) Detoxification of synthetic industrial wastewaters using electrochemical oxidation with boron-doped diamond anodes. J. Chem. Technol. Biotechnol. 81, 352–358CrossRefGoogle Scholar
  22. Cañizares, P., Martinez, L., Paz, R., Saez, C., Lobato, J. and Rodrigo, M.A. (2006c) Treatment of Fenton-refractory olive oil mill wastes by electrochemical oxidation with boron-doped diamond anodes. J. Chem. Technol. Biotechnol. 81, 1331–1337CrossRefGoogle Scholar
  23. Carey, J.J., Christ, C.S. and Lowery, S.N., US Patent 5 399 247, 1995.Google Scholar
  24. Cavalli, L., Gellera, A. and Landone, A. (1993) LAS removal and biodegradation in a wastewater treatment plant. Environ. Toxicol. Chem. 12, 1777–1788CrossRefGoogle Scholar
  25. Chu, W. and Ching, M. H. (2003) Modeling the ozonation of 2,4-dichlorophoxyacetic acid through a kinetic approach. Water. Res. 37, 39–46CrossRefGoogle Scholar
  26. Comninellis, Ch. and Pulgarin, C. (1991) Anodic oxidation of phenol for waste water treatment. J. Appl. Electrochem. 21,Google Scholar
  27. Comninellis, Ch. and Pulgarin, C. (1993) Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes. J. Appl. Electrochem. 23, 108–112CrossRefGoogle Scholar
  28. Faouzi, M., Cañizares, P., Gadri, A., Lobato, J., Nasr, B., Paz, R., Rodrigo, M.A. and Saez, C. (2006) Advanced oxidation processes for the treatment of wastes polluted with azoic dyes. Electrochim. Acta 52, 325–331CrossRefGoogle Scholar
  29. Fernandes, A., Morão, A., Magrinho, M., Lopes, A. and Gonçalves, I. (2004) Electrochemical degradation of C. I. Acid Orange 7. Dyes Pigm. 61, 287–296CrossRefGoogle Scholar
  30. Fino, D., Jara, C., Saracco, G., Specchia, V. and Spinelli, P. (2005) Deactivation and regeneration of Pt anodes for the electro-oxidation of phenol. J. Appl. Electrochem. 35, 405–411CrossRefGoogle Scholar
  31. Flox, C., Cabot, P.L., Centellas, F., Garrido, J.A., Rodriguez, R.M., Arias, C. and Brillas, E. (2006a) Electrochemical combustion of herbicide mecoprop in aqueous medium using a flow reactor with a boron-doped diamond anode. Chemosphere 64, 892–902CrossRefGoogle Scholar
  32. Flox, C., Ammar, S., Arias, C., Brillas, E., Vargas-Zavala, A.V. and Abdelhedi, R., (2006b) Electro-Fenton and photoelectro-Fenton degradation of indigo carmine in acidic aqueous medium. Appl. Catal. B: Environ. 67, 93–104CrossRefGoogle Scholar
  33. Gandini, D., Mahe, E., Michaud, P.A., Haenni, W., Perret, A. and Comninellis, Ch. (2000) Oxidation of carboxylic acids at boron-doped diamond electrodes for wastewater treatment. J. Appl. Electrochem. 30, 1345–1350CrossRefGoogle Scholar
  34. Gora, A., Toepfer, B., Puddu, V. and Li Puma, G. (2006) Photocatalytic oxidation of herbicides in single-component and multicomponent systems: Reaction kinetics analysis. Appl. Catal. B: Environ. 65, 1–10CrossRefGoogle Scholar
  35. Hastie, J., Bejan, D., Teutli-Leon, M. and Bunce, N.J. (2006) Electrochemical methods for degradation of Orange II (sodium 4- (2-hydroxy-l-naphthylazo) benzenesulfonate). Ind. Eng. Chem. Res. 45, 4898–4904CrossRefGoogle Scholar
  36. Hermann, R., Gerke, J. and Ziechmann, W. (1997) Photodegradation of the surfactants Na-dodecylbenzenesulfonate and dodecylpyridinium-chloride as affected by humic substances. Water Air Soil Pollut. 98, 43–55Google Scholar
  37. Horányi, G.(1974) On the adsorption of organic compounds on platinized platinum electrodes. J. Electroanal. Chem. 51, 163–178CrossRefGoogle Scholar
  38. Iniesta, J., Michaud, P.A., Panizza, M., Cerisola, G., Aldaz, A. and Comninellis, Ch. (2001) Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochim. Acta 46, 3573–3578CrossRefGoogle Scholar
  39. Ivandini, T.A., Naono, Y., Nakajima, A. and Einaga, Y. (2005) Gold-nanoparticle-dispersed boron-doped diamond electrodes for electrochemical oxidation of oxalic acid. Chem. Lett. 34, 1086–1087CrossRefGoogle Scholar
  40. Ivandini, T.A., Rao, T.N., Fujishima, A. and Einaga, Y. (2006) Electrochemical oxidation of oxalic acid at highly boron-doped diamond electrodes. Anal. Chem. 78, 3467–3471CrossRefGoogle Scholar
  41. Josephy, P. D. (1996) Molecular Toxicology, Oxford University Press, New York, NYGoogle Scholar
  42. Kraft, A., Stadelmann, M. and Blaschke, M. (2003) Anodic oxidation with doped diamond electrodes: A new advanced oxidation process. J. Hazard. Mater. 103, 247–261CrossRefGoogle Scholar
  43. Kusic, H., Koprivanac, N. and Bozic, A.L. (2006) Minimization of organic pollutant content in aqueous solution by means of AOPs: UV- and ozone-based technologies. Chem. Eng. J. 123, 127–137CrossRefGoogle Scholar
  44. Kusvuran, E., Gulnaz, O., Irmak, S., Atanur, O. M., Ibrahim Y. H. and Erbatur, O. (2004) Comparison of several advanced oxidation processes for the decolorization of Reactive Red 120 azo dye in aqueous solution. J. Hazard. Mater. 109, 85–93CrossRefGoogle Scholar
  45. Kusvuran, E., Irmak, S., Ibrahim Y.H., Samil, A. and Erbatur, O. (2005) Comparison of the treatment methods for decolorization and mineralization of Reactive Black 5 azo dye. J. Hazard. Mater. 119, 109–116.CrossRefGoogle Scholar
  46. Lissens, G., Pieters, J., Verhaege, M., Pinoy, L. and Verstraete, W. (2003) Electrochemical degradation of surfactants by intermediates of water discharge at carbon-based electrodes. Electrochim. Acta 48, 1655–1663CrossRefGoogle Scholar
  47. Louhichi, B., Bensalash, N. and Gadri, A. (2006) Electrochemical oxidation of benzoic acid derivatives on boron doped diamond: Voltammetric study and galvanostatic electrolyses, Chem. Eng. Technol. 29, 944–950CrossRefGoogle Scholar
  48. Martinez-Huitle, C.A., Ferro, S. and De Battisti, A. (2004) Electrochemical incineration of oxalic acid: Role of electrode material. Electrochim. Acta, 49, 4027–4034CrossRefGoogle Scholar
  49. Martinez-Huitle C.A., Ferro, S. and De Battisti, A. (2005) Electrochemical incineration of oxalic acid: Reactivity and engineering parameters. J. Appl. Electrochem. 35, 1087–1093CrossRefGoogle Scholar
  50. Meng, X.G., Zhu, J., Yan, J., Xie, J.Q., Kou, X.M., Kuang, X.F., Yu, L.F. and Zeng, X.C. (2006) Studies on the oxidation of phenols catalyzed by a copper(II)-Schiff base complex in aqueous solution under mild conditions. J. Chem. Technol. Biotechnol. 81, 2–7CrossRefGoogle Scholar
  51. Modestov, A.D. and Lev, O. (1998) Photocatalytic oxidation of 2,4-dichlorophenoxyacetic acid with titania photocatalyst. Comparison of supported and suspended TiO2. J. Photochem. Photobiol. A: Chem. 112, 261–270Google Scholar
  52. Modler, R.F., Gubler, R. and Inoguchi Y. (2004) Detergent Alcohols, Chemical Economics Handbook Marketing Research Report, SRI International, Menlo Park, CAGoogle Scholar
  53. Mollah, M.Y., Pathak, S.R., Patil, P.K., Vayuvegula, M., Agrawal, T.S., Gomes, J.A.G., Kesmez, M. and Cocke, D.L. (2004) Treatment of Orange II azo-dye by electrocoagulation (EC) technique in a continuous flow cell using sacrificial iron electrodes. J. Hazard. Mater. 109, 165–171CrossRefGoogle Scholar
  54. Morao, A., Lopes, A., Pessoa de Amorim, M.T. and Goncalves, I.C. (2004) Degradation of mixtures of phenols using boron doped diamond electrodes for wastewater treatment. Electrochim. Acta 49, 1587–1595Google Scholar
  55. Nasr, B., Abdellatif, G., Cañizares, P., Saez, C., Lobato, J. and Rodrigo, M.A. (2005) Electrochemical oxidation of hydroquinone, resorcinol, and catechol on boron-doped diamond anodes. Environ. Sci. Technol. 39, 7234–7239CrossRefGoogle Scholar
  56. Panizza, M. and Cerisola, G. (2004) Influence of anode material on the electrochemical oxidation of 2-naphthol. Part 2. Bulk electrolysis experiments. Electrochim. Acta 49, 3221–3226Google Scholar
  57. Panizza, M., Delucchi M., and Cerisola, G. (2005) Electrochemical degradation of anionic surfactants, J. Appl. Electrochem. 35, 357–361CrossRefGoogle Scholar
  58. Panizza, M., Zolezzi, M. and Nicolella, C. (2006) Biological and electrochemical oxidation of naphthalenesulfonates. J. Chem. Technol. Biotechnol. 81, 225–232CrossRefGoogle Scholar
  59. Park, T.J., Lee, K.H., Jung, E.J. and Kim, C.W. (1999) Removal of refractory organics and color in pigment wastewater with Fenton oxidation. Water Sci. Technol. 39, 189–192Google Scholar
  60. Perret A., Haenni, W., Skinner, N., Tang, X.M., Gandini, D., Comninellis, Ch., Correa B. and Foti G. (1999) Electrochemical behaviour of synthetic diamond thin film electrodes. Diam. Relat. Mater. 8, 820–823CrossRefGoogle Scholar
  61. Pignatello, J.J. (1992) Dark and photoassisted iron (3+)-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environ. Sci. Technol. 26, 944–951CrossRefGoogle Scholar
  62. Polcaro, A.M., Mascia, M, Palmas, S. and Vacca, A. (2002) Electrochemical oxidation of phenolic and other organic compounds at boron doped diamond electrodes for wastewater treatment: Effect of mass transfer. Ann. Chim. 93, 967–976Google Scholar
  63. Polcaro, A.M., Vacca, A., Palmas, S. and Mascia, M. (2003) Electrochemical treatment of wastewater containing phenolic compounds: Oxidation at boron-doped diamond electrodes. J. Appl. Electrochem. 33, 885–892CrossRefGoogle Scholar
  64. Polcaro, A.M., Mascia, M., Palmas, S. and Vacca, A. (2004) Electrochemical degradation of diuron and dichloroaniline at BDD electrode. Electrochim. Acta, 49, 649–656CrossRefGoogle Scholar
  65. Polcaro, A.M., Vacca, A., Mascia, M. and Palmas, S. (2005) Oxidation at boron doped diamond electrodes: An effective method to mineralise triazines. Electrochim. Acta 50, 1841–1847CrossRefGoogle Scholar
  66. Posada, D., Betancourt, P., Liendo, F. and Brito, J.L. (2006) Catalytic wet air oxidation of aqueous solutions of substituted phenols. Catal. Lett. 106, 81–88CrossRefGoogle Scholar
  67. Rajeshwar, K. and Ibanez, J. (1997) Fundamentals and Applications in Pollution Abatement, Academic, New York, NYGoogle Scholar
  68. Rao, T.N., Terashima, C., Sarada, B.V., Tryk, D.A. and Fujishima, A. (2002) Electrochemical oxidation of chlorophenols at a boron-doped diamond electrode and their determination by high-performance liquid chromatography with amperometric detection. Anal. Chem. 74, 895–902CrossRefGoogle Scholar
  69. Rice, R.G. (1997) Applications of ozone for industrial wastewater treatment. A review. Ozone Sci. Eng. 18, 477–515Google Scholar
  70. Rodrigo, M.A., Michaud, P.A., Duo, I., Panizza, M., Cerisola, G. and Comninellis, Ch. (2001) Oxidation of 4-chlorophenol at boron-doped diamond electrode for wastewater treatment. J. Electrochem. Soc. 148, D60–D64CrossRefGoogle Scholar
  71. Saracco, G., Solarino, L., Aigotti, R., Specchia, V. and Maja, M. (2000) Electrochemical oxidation of organic pollutants at low electrolyte concentrations. Electrochim. Acta, 46, 373–380CrossRefGoogle Scholar
  72. Saracco, G., Solarino, L., Specchia, V. and Maja, M. (2001) Electrolytic abatement of biorefratory organics by combining bulk and electrode oxidation processes. Chem. Eng. Sci. 56, 1571–1578CrossRefGoogle Scholar
  73. Sargisyan, S.A. and Vasil’ev, Yu. B. (1982) Kinetics and mechanism of the electrooxidation of oxalic acid at a platinum electrode. Sov. Electrochem. 18, 848–853Google Scholar
  74. Sires, I., Cabot, P.L., Centellas, F., Garrido, J.A., Rodriguez, R.M., Arias, C. and Brillas, E. (2006a) Electrochemical degradation of clofibric acid in water by anodi.c oxidation. Comparative study with platinum and boron-doped diamond electrodes. Electrochim. Acta 52, 75–85Google Scholar
  75. Sires, I., Garrido, J.A., Rodriguez, R.M., Cabot, P.L., Centellas, F., Arias, C. and Brillas, E., (2006b) Electrochemical degradation of paracetamol from water by catalytic action of Fe2+, Cu2+, and UVA light on electrogenerated hydrogen peroxide. J. Electrochem. Soc.153, D1–D9CrossRefGoogle Scholar
  76. Sires, I., Arias, C., Cabot, P.L., Centellas, F., Garrido, J. A., Rodriguez, R.M. and Brillas, E., (2007) Degradation of clofibric acid in acidic aqueous medium by electro-Fenton and photoelectro-Fenton. Chemosphere 66, 1660–1669CrossRefGoogle Scholar
  77. Skoumal, M., Cabot, P.L., Centellas, F., Arias, C., Rodriguez, R.M., Garrido, J.A. and Brillas, E., (2006) Mineralization of paracetamol by ozonation catalyzed with Fe2+, Cu2+ and UVA light. Appl. Catal. B: Environ. 66, 228–240CrossRefGoogle Scholar
  78. Suarez-Ojeda, M.E., Stuber, F., Fortuny, A., Fabregat, A., Carrera, J. and Font, J. (2005) Catalytic wet air oxidation of substituted phenols using activated carbon as catalyst. Appl. Catal. B: Environ. 58, 105–114CrossRefGoogle Scholar
  79. Sun, Y. and Pignatello, J.J. (1993) Photochemical reactions involved in the total mineralization of 2,4-D by iron(3+)/hydrogen peroxide/UV. Environ. Sci. Technol. 27, 304–310CrossRefGoogle Scholar
  80. Toepfer, B., Gora, A. and Li Puma, G. (2006) Photocatalytic oxidation of multicomponent solutions of herbicides: Reaction kinetics analysis with explicit photon absorption effects. Appl. Catal. B: Environ. 68, 171–180CrossRefGoogle Scholar
  81. Torres, R.A., Torres, W., Peringer, P. and Pulgarin, C. (2003) Electrochemical degradation of p-substituted phenols of industrial interest on Pt electrodes. Attempt of a structure-reactivity relationship assessment. Chemosphere 50, 97–104Google Scholar
  82. Trillas, M., Peral, J. and Domènech, X. (1995) Redox photodegradation of 2,4-dichloro-phenoxyacetic acid over TiO2. Appl. Catal. B: Environ. 5, 377–387CrossRefGoogle Scholar
  83. Yermakova, A., Mikenin, P.E. and Anikeev, V.I. (2006) Phenol oxidation in supercritical water in a well-stirred continuous reactor. Theor. Found. Chem. Eng. 40, 168–174CrossRefGoogle Scholar
  84. Yu, F.Y., Li, C.W. and Kang, S.F. (2005) Color, dye and doc removal, and acid generation during Fenton oxidation of dyes. Environ. Technol. 26, 537–544CrossRefGoogle Scholar
  85. Zhi, J.F., Wang, H.B., Rao, T.N., Fujishima, A. and Nakashima, T. (2003) Electrochemical incineration of organic pollutants on boron-doped diamond electrode. Evidence for direct electrochemical oxidation pathway. J. Phys. Chem. B 107, 13389–13395Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Anna Maria Polcaro
    • 1
  • M. Mascia
  • S. Palmas
  • A. Vacca
  1. 1.Dip. Ingegneria Chimica e mat.University of CagliariCagliariItaly

Personalised recommendations