Skip to main content

Variability of Surface Temperature and Albedo

  • Chapter
  • First Online:
Polar Oceans from Space

Part of the book series: Atmospheric and Oceanographic Sciences Library ((ATSL,volume 41))

Abstract

Results from the analysis of the spatial and temporal variability of surface temperature, including that of liquid water at high latitudes, are presented using mainly NOAA/AVHRR data from 1981 to 2008. The average surface temperature of the region north of the Arctic Circle is shown to be increasing at 0.7°C/decade while that south of the Antarctic circle has been increasing much more moderately at 0.1°C/decade. The trend in the Arctic represents about three times the global trend over the same period and is consistent with the expected effect of ice-albedo feedback. The trend of the Antarctic temperature is less than that inferred using global in situ and meteorological station data since 1981. Data from the same set of AVHRR sensors were used to study the spatial and temporal variability of narrow band albedo in the polar regions and results show the patterns of change that are consistent with warming and the changing snow and sea ice cover.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalati W (2006) Recent changes in high-latitude glaciers, ice caps and ice sheets. Weather 61(4):95-101

    Article  Google Scholar 

  • Ackley SF (1981) Sea-ice atmosphere interactions in the Weddell Sea using drifting buoys. In: Sea Level, Ice, and Climatic Change (Proc. Canberra Symp., December 1979), IAHS 131:177-191

    Google Scholar 

  • Allison I, Brandt RE, Warren SG (1993) East Antarctic sea ice: albedo, thickness distribution and snow cover. J Geophys Res 98(C7):12417-12429

    Google Scholar 

  • Armstrong RL, Brodzik MJ (2001) Recent Northern Hemisphere snow extent: A comparison of data derived from visible and microwave satellite sensors. Geophys Res Lett 28(19):3673-3676

    Article  Google Scholar 

  • Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J Geophys Res 111, D12106, doi:10.1029/2005JD006548

    Article  Google Scholar 

  • Colony R, Thorndike A (1985) Sea ice motion as a drunkard’s walk. J Geophys Res 90:965-974

    Article  Google Scholar 

  • Comiso JC (2000) Variability and trends in Antarctic surface temperatures from in situ and satellite infrared measurements. J Climate 13:1674-1696

    Article  Google Scholar 

  • Comiso JC (2002) A rapidly declining Arctic perennial ice cover, Geophys Res Lett 29(20):1956, doi:10.1029/2002GL015650

    Article  Google Scholar 

  • Comiso JC (2003) Warming trends in the Arctic. J Clim 16(21):3498-3510

    Article  Google Scholar 

  • Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophy Res Lett 35:L01703, doi:10.1029/2007GL031972

    Article  Google Scholar 

  • Curry JA, Webster PJ (1999) Thermodynamics of atmospheres and oceans. Academic, San Diego, CA

    Google Scholar 

  • Doran PT, Priscu JC, Lyons WB, Walsh JE, Fountain AG, McKnight DM, Moorhead DL, Virginia, RA, Wall DH, Clow GD, Fritsen CH, McKay CP, Parsons AN (2002) Antarctic climate cooling and terrestrial ecosystem response, Nature doi:10.1038/nature710

    Google Scholar 

  • Drucker R, Marin S, Moritz R (2003) Observations of ice thickness and Frazil ice in the St,. Lawrence Island Polyya from satellite imagery, upward looking sonar and salinity/temperature moorings. J Geophys Res 108, doi:10.1029/2001JC9001213

    Google Scholar 

  • Frei, A, Robinson DA, Hughes MG (1999) North American Snow Extent: 1900-1994. Int. J. Climatol. 19:1517-1534

    Article  Google Scholar 

  • Grenfell TC, Maykut GA (1977) The optical properties of ice and snow in the Arctic Basin. J Glaciol 18:445-463

    Google Scholar 

  • Grenfell TC, Light B, Sturm M (2002) Spatial distribution and radiative effects of soot in the snow and sea ice during the SHEBA experiment. J Geophyus Res 107(C10):8032, 1029/2000JC000414

    Google Scholar 

  • Hakkinen S, Mellor GL (1990) One hundred years of Arctic ice cover variations as simulated by one-dimensional, ice-ocean model. J Geophys Res 15:15959-15969

    Article  Google Scholar 

  • Hibler III WD (1979) A dynamic-thermodynamic sea ice model. J Phys Oceanogr 9(4):815-846

    Article  Google Scholar 

  • Holland MM, Bitz CM (2003) Polar amplification of climate change in the coupled model intercomparison project. Clim Dyn 21:221-232

    Google Scholar 

  • Kilpatrick KA, Podesta GP, Evans R (2001) Overview of NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database. J Geophys Res 106(C5):9179-9197

    Google Scholar 

  • Kwok R, Comiso JC, Martin S, Drucker R (2007) Ross Sea Polynyas: Response of ice concentration retrievals to large areas of thin ice. J Geophys Res 112, C12012,doi:10.1029/2006JC003967

    Article  Google Scholar 

  • Martin S, Drucker R, Kwok R, Holt B (2005) Improvements in the estimates of ice thickness and production in the Chukchi Sea polynyas derived from AMSR-E. J Geophys. Res Lett 31, L005505, doi:10.1029/2004GL0022013

    Article  Google Scholar 

  • Martin, S., R.S. Drucker and R. Kwok, 2007. The areas and ice production of the western and central Ross Sea polynyas, 1992-2002, and their relation to the B-15 and C-19 iceberg events of 2000 and 2002, J. Marine Systems, 68:201-214

    Article  Google Scholar 

  • Parkinson CL, Comiso JC, Zwally HJ, Cavalieri DJ, Gloersen P, Campbell WJ (1987) Arctic Sea Ice 1973-1976 from Satellite Passive Microwave Observations, NASA Spec. Publ. 489, Washington DC

    Google Scholar 

  • Perovich DK, Tucker III WB, Ligett KA (2002a) Aerial observations of the evolution of ice surface conditions during summer, J Geophys Res 107(C10):8048, doi:10.1029/2000JC000449

    Google Scholar 

  • Perovich DK, Grenfell TC, Light B, Hobbs PV (2002b) Seasonal evolution of the albedo of multiyear Arctic sea ice. J Geophys Res 107(C10):8044, doi:10.1029/2000/JC000438

    Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis of climate. J Clim 15:1609-1625

    Article  Google Scholar 

  • Schweiger AJ, Lindsay RW (2008) Relationships between Arctic sea ice and clouds during autumn. J Clim 21:4799-4810

    Article  Google Scholar 

  • Shibata A, MUrakami H, Comiso JC (2010) Sea surface temperature in Arctic Ocean from 2002 to 2009 observed by AMSR-E. Japan J. Remote Sensing (In Press)

    Google Scholar 

  • Stroeve JC, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34:L09501, doi:10.1029/2007/GL029703

    Article  Google Scholar 

  • Wadhams P (2000) Ice in the ocean. Gordon and Breach Science Publishers, London, UK

    Google Scholar 

  • Warren SG (1982) Optical properties of snow. Rev Geophys Space Phys 20:67-82

    Article  Google Scholar 

  • Warren SG, Clarke AD (1990) Soot in the Atmosphere and snow surface in Antarctica. J Geophys Res 95(D2):1811-1816

    Google Scholar 

  • Warren SG, Wiscombe WJ (1980) Model for the spectral albedo of snow. J Atmosheric Sciences 37:2734-2745

    Article  Google Scholar 

  • White WB, Peterson RG (1996) An Antarctic circumpolar wave in surface pressure, wind, temperature and sea ice extent. Nature 380:699-702

    Article  Google Scholar 

  • Zwally HJ, Comiso JC, Parkinson CL, Campbell WJ, Carsey FD, and Gloersen P (1983) Antarctic sea ice 1973-1976 from satellite passive microwave observations. NASA Spec Publ 459, Greenbelt, MD

    Google Scholar 

  • Zwally HJ, Comiso JC, Gordon AL (1985) Antarctic offshore leads and polynyas and oceanographic effects, in Oceanology of the Antarctic Continental Shelf, ed. by S. Jacobs, Antarctic Research Volume 43:203-226

    Google Scholar 

  • Zwally HJ, Comiso JC, Parkinson CL, Cavalieri DJ, Gloersen P (2002a) Variability of the Antarctic sea ice cover. J Geophys Res 107(C5):1029-1047

    Google Scholar 

  • Zwally HJ, Abdalati W, Herring T, Larson K, Saba J, Steffen K (2002b) Surface melt-induced acceleration of Greenland ice-sheet flow. Science 297:218-222

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josefino Comiso .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 United States Government as represented by the Administrator of the National Aeronautics and Space Administration.

About this chapter

Cite this chapter

Comiso, J. (2010). Variability of Surface Temperature and Albedo. In: Polar Oceans from Space. Atmospheric and Oceanographic Sciences Library, vol 41. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68300-3_6

Download citation

Publish with us

Policies and ethics