Skip to main content

Energy Losses in MEMS and Equivalent Viscous Damping

  • Chapter
Dynamics of Microelectromechanical Systems

Part of the book series: Microsystems ((MICT,volume 17))

  • 1458 Accesses

Energy losses change the behavior of mechanical microsystems and limit their performance. The response of a single degree-of-freedom (DOF) mechanical system, for instance, is conditioned by a damping term (force in translatory motion and torque in rotary motion), which can be formulated as a viscous damping agent whose magnitude is proportional to velocity. The damping coefficient is the proportionality constant and various forms of energy losses can be expressed as viscous damping ones, either naturally or by equivalence so that a unitary formulation is obtained. For oscillatory micro/nanoelectro mechanical systems (MEMS/NEMS), losses can be quantified by means of the quality factor (Q-factor), which is the ratio of the energy stored to the energy lost during one cycle of vibration, and the damping coefficient can be expressed in terms of the Q-factor. Energy losses in MEMS/NEMS are the result of the interaction between external and internal mechanisms. Fluid- structure interaction (manifested as squeeze- or slide-film damping), anchor (connection to substrate) losses, thermoelastic damping (TED), surface/volume losses and phonon-mediated damping are the most common energy loss mechanisms discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.T. Thomson, Theory of Vibrations with Applications, Third Edition, Prentice Hall, Englewood Cliffs, 1988.

    Google Scholar 

  2. J.J. Blech, On isothermal squeeze films, Journal of Lubrication Technology, 105, 1983, pp. 615-620.

    Article  Google Scholar 

  3. T. Veijola, T. Tinttunen, H. Nieminen, V. Ermolov, T. Ryhanen, Gas damping model for a RF MEM switch and its dynamic characteristics, IEEE MTT-S International Microwave Symposium Digest, 2, 2002, pp. 1213-1216.

    Google Scholar 

  4. L. Zhang, D. Cho, H. Shiraishi, W. Trimmer, Squeeze film damping in microelectro-mechanical systems, ASME Micromechanical Systems, Dynamic Systems Measurements and Control, 40, 1992, pp. 149-160.

    Google Scholar 

  5. R.G. Christian, The theory of oscillating-vane vacuum gauges, Vacuum, 16, 1966, pp. 149-160.

    Google Scholar 

  6. Zs. Kadar, W. Kindt, A. Bossche, J. Mollinger, Quality factor of torsional resonators in the low-pressure region, Sensors and Actuators A, 53, 1996, pp. 299-303.

    Article  Google Scholar 

  7. M. Bao, H. Yang, H. Yin, Y. Sun, Energy transfer model for squeeze-film damping in low vacuum, Journal of Micromechanics and Microengineering, 12, 2002, pp. 341-346.

    Article  Google Scholar 

  8. S. Hutcherson, W. Ye, On the squeeze-film damping of microresonators in the free-molecular regime, Journal of Micromechanics and Microengineering, 14, 2004, pp. 1726-1733.

    Article  Google Scholar 

  9. P.J. Polikarpov, S.F. Borisov, A. Kleyn, J.-P. Taran, Normal momentum transfer study by a dynamic technique, Journal of Applied Mechanics and Technical Physics, 44, 2003, pp. 298-303.

    Article  Google Scholar 

  10. R. B. Darling, C. Hivick, J. Xu, Compact analytical models for squeeze film damping with arbitrary venting conditions, Transducers ’97 International Conference on Solid State Sensors and Actuators, 2, 1997, pp. 1113-1116.

    Article  Google Scholar 

  11. W. Dotzel, T. Gessner, R. Hahn, C. Kaufmann, K. Kehr, S. Kurth, J. Mehner, Silicon mirrors and micromirror arrays for spatial laser beam modulation, Transducers ’97 International Conference on Solid State Sensors and Actuators, 1, 1997, pp. 81-84.

    Article  Google Scholar 

  12. F. Pan, J. Kubby, E. Peeters, A.T. Tran, Squeeze film damping effect on the dynamic response of a MEMS torsion mirror, Journal of Micromechanics and Microengineering, 8, 1998, pp. 200-208.

    Article  Google Scholar 

  13. M. Bao, Y. Sun, Y. Huang, Squeeze-film air damping of a torsion mirror at a finite tilting angle, Journal of Micromechanics and Microengineering, 16 (11), 2006, pp. 2330-2335.

    Article  Google Scholar 

  14. T. Veijola, A. Pursula, P. Raback, Extending the valability of squeezed-film damper models with elongation of surface dimensions, Journal of Micromechanics and Microengineering, 15 (9), 2005, pp. 1624-1636.

    Article  Google Scholar 

  15. N. Lobontiu, E. Garcia, Mechanics of Microelectromechanical Systems, Kluwer Academic Press, New York, 2004.

    Google Scholar 

  16. M. Bao, H. Yang, Y. Sun, Y. Wang, Squeeze-film air damping of thick hole plate, Sensors and Actuators A, 108, 2003, pp. 212-217.

    Article  Google Scholar 

  17. M. Bao, H. Yang, Y. Sun, P.J. French, Modified Reynolds’ equation and analytical analysis of squeeze-film air damping of perforated structures, Journal of Micromechanics and Microengineering, 13, 2003, pp. 795-800.

    Article  Google Scholar 

  18. S.S. Mohite, H. Kesari, V.R. Sonti, R. Pratap, Analytical solutions for the stiffness and damping coefficients of squeeze films in MEMS devices with perforated back plates, Journal of Micromechanics and Microengineering, 15, 2005, pp. 2083-2092.

    Article  Google Scholar 

  19. L.D. Landau, E.M. Lifshitz, Fluid Mechanics, Pergamon, London, 1959.

    Google Scholar 

  20. T. Veijola, M. Turowski, Compact damping for laterally moving microstructures with gas rarefaction effects, Journal of Microelectromechanical Systems, 10 (2), 2001, pp. 263-273.

    Article  Google Scholar 

  21. P.K. Kundu, Fluid Mechanics, Academic Press, San Diego, 1990.

    MATH  Google Scholar 

  22. A. Burgdorfer, The influence of the mean free path on the performance of hydrodynamic gas lubricated bearings, Journal of Basic Engineering, 81, 1959, pp. 94-99.

    Google Scholar 

  23. A. Beskok, G.E. Karniadakis, Simulation of heat and momentum transfer in complex microgeometries, Journal of Thermophysics and Heat Transfer, 8 (4), 1994, pp. 647-655.

    Article  Google Scholar 

  24. A. Beskok, G.E. Karniadakis, W. Trimmer, Rarefaction and compressibility effects in gas microflows, Journal of Fluids Engineering, 118, 1996, pp. 448-456.

    Article  Google Scholar 

  25. P. Bahukudumbi, J.H. Park, A. Beskok, A unified engineering model for steady and quasi-steady shear-driven gas microflows, Microscale Thermophysical Engineering, 7, 2003, pp. 291-315.

    Article  Google Scholar 

  26. J.H. Park, P. Bahukudumbi, A. Beskok, Rarefaction effects on shear driven oscillatory gas flows: a direct simulation Monte Carlo study in the entire Knudsen regime, Physics of Fluids, 16 (2), 2004, pp. 317-330.

    Article  Google Scholar 

  27. M.N. Kogan, Rarefied Gas Dynamics, Plenum, New York, 1969.

    Google Scholar 

  28. C. Cercignani, C.D. Pagani, Variational approach to boundary-value problems in kinetic theory, The Physics of Fluids, 9, 1966, pp. 1167-1173.

    Article  Google Scholar 

  29. . T.W. Roszhart, The effect of thermoelastic internal friction on the Q of micromachined silicon resonators, Technical Digest on Solid-State Sensor and Actuator Workshop, 1990, pp. 13-16.

    Google Scholar 

  30. C. Zener, Elasticity and Anelasticity of Metals, University of Chicago Press, Chicago, 1948.

    Google Scholar 

  31. R. Lifshitz, M.L. Roukes, Thermoelastic damping in micro and nanomechanical systems, Physical Review B, 61 (8), 2000, pp. 5600-5609.

    Article  Google Scholar 

  32. D.A. Czaplewski, J.P. Sullivan, T.A. Friedmann, D.W. Carr, B.E. Keeler, J.R. Wendt, Mechanical dissipation in tetrahedral amorphous carbon, Journal of Applied Physics, 97, 2005, pp. 023517, 1-023517, 10.

    Article  Google Scholar 

  33. V. B. Braginski, V.P. Mitrofanov, V.I. Panov, Systems with Small Dissipation, University of Chicago Press, Chicago, 1985.

    Google Scholar 

  34. L. Burakowsky, D.L. Preston, An analytical model of the Gruneisen parameter at all densities, Journal of Physical Chemistry and Solids, 65, 2004, pp. 1581-1595.

    Article  Google Scholar 

  35. R.E. Mihailovich, N.C. MacDonald, Dissipation measurements of vacuum operated single-crystal silicon microresonators, Sensors and Actuators A, 50, 1995, pp. 199-207.

    Article  Google Scholar 

  36. Y.-H Park, K.C. Park, High-fidelity modeling of MEMS resonators - Part I: Anchor loss mechanisms through substrate, Journal of Microelectromechanical Systems, 13 (2), 2004, pp. 238-247.

    Article  Google Scholar 

  37. H. Osaka, K. Itao, S. Kuroda, Damping characteristics of beam-shaped micro-oscillators, Sensors and Actuators A, 49, 1995, pp. 87-95.

    Article  Google Scholar 

  38. Z. Hao, A. Erbil, F. Ayazi, An analytical model for support loss in micromachined beam resonators with in-plane flexural vibrations, Sensors and Actuators A, 109, 2003, pp. 156-164.

    Article  Google Scholar 

  39. D. Photiadis, J.A. Judge, Attachment losses of high Q oscillators, Applied Physics Letters, 85 (3), 2004, pp. 482-484.

    Article  Google Scholar 

  40. K.Y. Yasumura, T.D. Stowe, E.M. Chow. T. Pfafman, T.W. Kenny, B.C. Stipe, D. Rugar, Quality factors in micron- and submicron-thick cantilevers, Journal of Microelectro-mechanical Systems, 9 (1), 2000, pp. 117-125.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2007). Energy Losses in MEMS and Equivalent Viscous Damping. In: Dynamics of Microelectromechanical Systems. Microsystems, vol 17. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68195-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68195-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-36800-9

  • Online ISBN: 978-0-387-68195-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics