Skip to main content

Elastic-Plastic Indentation Stress Fields

  • Chapter
Introduction to Contact Mechanics

Part of the book series: Mechanical Engineering Series ((MES))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.M. Marsh, “Plastic flow in glass,” Proc. R. Soc. London, Ser. A279, 1964, pp. 420-435.

    Article  Google Scholar 

  2. R. Hill, The Mathematical Theory of Plasticity, Clarendon Press, Oxford, 1950.

    MATH  Google Scholar 

  3. K.L. Johnson, “The correlation of indentation experiments,” J. Mech. Phys. Solids 18, 1970, pp. 115-126.

    Article  Google Scholar 

  4. S.S. Chiang, D.B. Marshall, and A.G. Evans, “The response of solids to elastic/plastic indentation. 1. Stresses and residual stresses,” J. Appl. Phys. 53 1, 1982, pp. 298-311.

    Article  Google Scholar 

  5. S.S. Chiang, D.B. Marshall, and A.G. Evans, “The response of solids to elastic/plastic indentation. 2. Fracture initiation,” J. Appl. Phys. 53 1, 1982, pp. 312-317.

    Article  Google Scholar 

  6. E.H. Yoffe, “Elastic stress fields caused by indenting brittle materials,” Philos. Mag. A, 46, 1982, pp. 617-628.

    Article  Google Scholar 

  7. R.F. Cook and G.M. Pharr, “Direct observation and analysis of indentation cracking in glasses and ceramics,” J. Am. Ceram. Soc. 73 4, 1990, pp. 787-817.

    Article  Google Scholar 

  8. S. Palmqvist, “A method to determine the toughness of brittle materials, especially hard materials,” Jernkontorets Ann. 141, 1957, pp. 303-307.

    Google Scholar 

  9. F.C. Roesler, “Brittle fractures near equilbrium,” Proc. R. Soc. London, Ser. B69 1956, pp. 981-992.

    Google Scholar 

  10. B.R. Lawn, A.G. Evans, and D.B. Marshall, “Elastic/plastic indentation damage in ceramics: the median/radial crack system,” J. Am. Ceram. Soc. 63, 1980, pp. 574-581.

    Article  Google Scholar 

  11. G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall, “A critical evaluation of indentation techniques for measuring fracture toughness: I Direct crack measure-ments,” J. Am. Ceram. Soc. 64 9, 1981, pp. 533-538.

    Article  Google Scholar 

  12. M.T. Laugier, “Palmqvist indentation toughness in WC-Co composites,” J. Mater. Sci. Lett. 6, 1987, pp. 897-900.

    Article  Google Scholar 

  13. M.T. Laugier, “Palmqvist toughness in WC-Co composites viewed as a ductile/brittle transition,” J. Mater. Sci. Lett. 6, 1987, pp. 768-770.

    Article  Google Scholar 

  14. M.T. Laugier, “New formula for indentation toughness in ceramics,” J. Mater. Sci. Lett. 6, 1987, pp. 355-356.

    Article  Google Scholar 

  15. F. Ouchterlony, “Stress intensity factors for the expansion loaded star crack,” Eng. Frac. Mechs. 8, 1976, pp. 447-448.

    Article  Google Scholar 

  16. R. Dukino and M.V. Swain, “Comparative measurement of indentation fracture toughness with Berkovich and Vickers indenters,” J. Am. Ceram. Soc. 75 12, 1992, pp. 3299-3304.

    Article  Google Scholar 

  17. C. Hardy, C.N. Baronet, and G.V. Tordion, “The elastic-plastic indentation of a half- space by a rigid sphere,” Int. J. Numer. Methods Eng. 3, 1971, pp. 451-462.

    Article  Google Scholar 

  18. P.S. Follansbee and G.B. Sinclair, “Quasi-static normal indentation of an elasto-plastic half-space by a rigid sphere-I,” Int. J. Solids Struct. 20, 1981, pp. 81-91.

    Article  Google Scholar 

  19. R. Hill, B. Storakers and A.B. Zdunek, “A theoretical study of the Brinell hardness test,” Proc. R. Soc. London, Ser. A423, 1989, pp. 301-330.

    Article  Google Scholar 

  20. K. Komvopoulos, “Finite element analysis of a layered elastic solid in normal contact with a rigid surface,” J. Tribology, Trans. ASME, 111, 1988, pp. 477-485.

    Article  Google Scholar 

  21. K. Komvopoulos, “Elastic-plastic finite element analysis of indented layered media,” J. Tribology, Trans. ASME, 111, 1989, pp. 430-439.

    Article  Google Scholar 

  22. G. Caré and A.C. Fischer-Cripps, “Elastic-plastic indentation stress fields using the finite element method,” J. Mater. Sci. 32, 1997, pp. 5653-5659.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2007). Elastic-Plastic Indentation Stress Fields. In: Introduction to Contact Mechanics. Mechanical Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68188-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68188-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-68187-0

  • Online ISBN: 978-0-387-68188-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics