Skip to main content

Other Applications

  • Chapter
  • 2026 Accesses

Part of the book series: Developments in Mathematics ((DEVM,volume 40))

Abstract

In [122] and [123] it is proven that there are infinitely many positive integers n such that 2n + 1 and 3n + 1 are both perfect squares. The proof relies on the theory of general Pell’s equations.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   39.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ando, S.: A note on the polygonal numbers. Fibonacci Q. 19(2), 180–183 (1981)

    MATH  Google Scholar 

  2. Andreescu, T.: Problem 38. Math. Horizons, 33 (1996)

    Google Scholar 

  3. Andreescu, T., Andrica, D.: 360 Problems for Mathematical Contests. GIL Publishing House, Zalǎu (2003)

    Google Scholar 

  4. Andreescu, T., Andrica, D.: Ecuaţia lui Pell. Aplicaţii (Romanian). Caiete metodico-ştiinţifice, Matematică, Universitatea din Timişoara 15 (1984)

    Google Scholar 

  5. Andreescu, T., Andrica, D.: Ecuaţia lui Pell şi aplicaţii (Romanian). în “Teme şi probleme pentru pregătirea olimpiadelor de matematică” (T. Albu, col.), pp. 33–42. Piatra Neamţ (1984)

    Google Scholar 

  6. Andreescu, T., Gelca, R.: Mathematical Olympiad Challenges. Birkhäuser, Boston (2000)

    Book  MATH  Google Scholar 

  7. Andrica, D., Călugăreanu, G.: A nil-clean 2 × 2 matrix over the integers which is not clean. J. Algebra Appl. 13(6), 9 (2014)

    Article  Google Scholar 

  8. Barry, A.D.: L’équation Diophantine x(x + 1) = ky(y + 1). Enseign. Math. (2) 25(1–2), 23–31 (1979)

    Google Scholar 

  9. Bloom, D.M.: Solution to problem 10238. Am. Math. Mon. 102, 275–276 (1995)

    Article  Google Scholar 

  10. Boju, V., Funar, L.: The Math Problems Notebook, Birkhauser, Boston, Basel, Berlin (2007)

    MATH  Google Scholar 

  11. Camillo, V.P., Khurana, D.: A characterization of unit-regular rings. Comm. Algebra 29(5), 2293–2295 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Diesl, A.J.: Classes of strongly clean rings. PhD Thesis, Univ. of California, Berkeley (2006)

    Google Scholar 

  13. Diesl, A.J.: Nil clean rings. J. Algebra 383, 197–211 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Eggan, L.C., Eggan, P.C., Selfridge, J.L.: Polygonal products of polygonal numbers and the Pell equation. Fibonacci Q. 20(1), 24–28 (1982)

    MATH  MathSciNet  Google Scholar 

  15. Golomb, S.W.: Powerful numbers. Am.Math. Mon. 77(8), 848–852 (1970)

    Google Scholar 

  16. Hansen, R.T.: Arithmetic of pentagonal numbers. Fibonacci Q. 8(1), 83–87 (1970)

    MATH  Google Scholar 

  17. Kenji, K.: On the Diophantine equation x(x + 1) = y(y + 1)z 2. Proc. Japan Acad. Ser. A Math. Sc. 72(4), 91 (1996)

    Google Scholar 

  18. Khurana, D., Lam, T.Y.: Clean matrices and unit-regular matrices. J. Algebra 280, 683–698 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Krausz, T.: A note on equal values of polygonal numbers. Publ. Math. Debrecen 54(3–4), 321–325 (1999)

    MATH  MathSciNet  Google Scholar 

  20. Luthar, R.S.: Problem E2606. Am. Math. Mon. 83(8), 566 (1976)

    MathSciNet  Google Scholar 

  21. Luthar, R.S.: Solution to problem E2606. Am. Math. Mon. 84, 823–824 (1977)

    Article  MathSciNet  Google Scholar 

  22. Megan, M.: Bazele analizei matematice (Romanian), vols I–III. Editura Eurobit, Timişoara (1995–1997)

    Google Scholar 

  23. Megan, M.: Analiză Matematică (Romanian), vol. II. Editura Mirton, Timişoara (2000)

    Google Scholar 

  24. Mihailov, I.I.: On the equation x(x + 1) = y(y + 1)z 2. Gaz. Mat. Ser. A 78, 28–30 (1973)

    Google Scholar 

  25. Mollin, R.A.: Quadratics. CRS, Boca Raton (1996)

    MATH  Google Scholar 

  26. Mordell, L.J.: Diophantine equations. Academic, London (1969)

    MATH  Google Scholar 

  27. O’Donnell, W.J.: Two Theorems Concerning Hexagonal Numbers. Fibonacci Q. 17(1), 77–79 (1979)

    MATH  MathSciNet  Google Scholar 

  28. O’Donnell, W.J.: A theorem concerning octogonal numbers. J. Recreational Math. 12(4), 271–272 (1979/1980)

    Google Scholar 

  29. Panaitopol, L.: Câteva proprietăţi ale numerelor triunghiulare (Romanian). G.M.-A. 3, 213–216 (2000)

    Google Scholar 

  30. Sierpinski, W.: Ce ştim şi ce nu ştim despre numerele prime (Romanian). Editura Ştiinţifică, Bucureşti (1966)

    Google Scholar 

  31. Sierpinski, W.: Une théorème sur les nombres triangulairs. Elem. Math. 23, 31–32 (1968)

    MATH  MathSciNet  Google Scholar 

  32. Titchmarsh, E.C.: The Theory of Riemann Zeta Function. Clarendon, Oxford (1951)

    MATH  Google Scholar 

  33. Utz, W.R.: Problem E3138. Am. Math. Mon. 96(10), 928–932 (1989).

    Article  MathSciNet  Google Scholar 

  34. Walker, D.T.: Consecutive integer pairs of powerful numbers and related Diophantine equations. Fibonacci Q. 14, 111–116 (1976)

    MATH  Google Scholar 

  35. Wenchang, C.: Regular polygonal numbers and generalized Pell equations. Int. Math. Forum 2(16), 781–802 (2007)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Andreescu, T., Andrica, D. (2015). Other Applications. In: Quadratic Diophantine Equations. Developments in Mathematics, vol 40. Springer, New York, NY. https://doi.org/10.1007/978-0-387-54109-9_7

Download citation

Publish with us

Policies and ethics