Skip to main content

Tip Functionalization: Applications to Chemical Force Spectroscopy

  • Chapter
Handbook of Molecular Force Spectroscopy

Adhesion events in chemistry, biology, and material science occur through intermolecular interactions between distinct chemical functionalities. Chemical force spectroscopy has recently emerged as a powerful and versatile tool for the quantitative characterization of these molecular forces. Based on atomic force microscopy (AFM), chemical force spectroscopy relies on the modification of probe tips as a means of introducing chemical specificity into force measurements. In practice, a chemically modified tip is brought into contact with a substrate of specific functionality and as the tip is withdrawn, the interaction force between the functionalized tip and substrate is measured.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dammer, U.; Hegner, M.; Anselmetti, D.; Wagner, P.; Dreier, M.; Huber, W.; Guntherodt, H. J., Specific antigen/antibody interactions measured by force microscopy. Biophysical Journal 1996, 70, (5), 2437–2441.

    Article  ADS  Google Scholar 

  2. Hinterdorfer, P.; Baumgartner, W.; Gruber, H. J.; Schilcher, K.; Schindler, H., Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America 1996, 93, (8), 3477–3481.

    Article  ADS  Google Scholar 

  3. Allen, S.; Chen, X. Y.; Davies, J.; Davies, M. C.; Dawkes, A. C.; Edwards, J. C.; Roberts, C. J.; Sefton, J.; Tendler, S. J. B.; Williams, P. M., Detection of antigen-antibody binding events with the atomic force microscope. Biochemistry 1997, 36, (24), 7457–7463.

    Article  Google Scholar 

  4. Ratto, T. V.; Langry, K. C.; Rudd, R. E.; Balhorn, R. L.; Allen, M. J.; McElfresh, M. W., Force spectroscopy of the double-tethered concanavalin-A mannose bond. Biophysical Journal 2004, 86, (4), 2430–2437.

    Article  ADS  Google Scholar 

  5. Dettmann, W.; Grandbois, M.; Andre, S.; Benoit, M.; Wehle, A. K.; Kaltner, H.; Gabius, H. J.; Gaub, H. E., Differences in zero-force and force-driven kinetics of ligand dissociation from beta-galactoside-specific proteins (plant and animal lectins, immunoglobulin G) monitored by plasmon resonance and dynamic single molecule force microscopy. Archives of Biochemistry and Biophysics 2000, 383, (2), 157–170.

    Article  Google Scholar 

  6. Fritz, J.; Katopodis, A. G.; Kolbinger, F.; Anselmetti, D., Force-mediated kinetics of single P-selectin ligand complexes observed by atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America 1998, 95, (21), 12283–12288.

    Article  ADS  Google Scholar 

  7. Ratto, T. V.; Rudd, R. E.; Langry, K. C.; Balhorn, R. L.; McElfresh, M. W., Nonlinearly additive forces in multivalent ligand binding to a single protein revealed with force spectroscopy. Langmuir 2006, 22, (4), 1749–1757.

    Article  Google Scholar 

  8. Gourianova, S.; Willenbacher, N.; Kutschera, M., Chemical force microscopy study of adhesive properties of polypropylene films: Influence of surface polarity and medium. Langmuir 2005, 21, (12), 5429–5438.

    Article  Google Scholar 

  9. Tormoen, G. W.; Drelich, J.; Beach, E. R., Analysis of atomic force microscope pull-off forces for gold surfaces portraying nanoscale roughness and specific chemical functionality. Journal of Adhesion Science and Technology 2004, 18, (1), 1–17.

    Article  Google Scholar 

  10. Sheng, X. X.; Ward, M. D.; Wesson, J. A., Adhesion between molecules and calcium oxalate crystals: Critical interactions in kidney stone formation. Journal of the American Chemical Society 2003, 125, (10), 2854–2855.

    Article  Google Scholar 

  11. Noy, A.; Vezenov, D. V.; Kayyem, J. F.; Meade, T. J.; Lieber, C. M., Stretching and breaking duplex DNA by chemical force microscopy. Chemistry & Biology 1997, 4, (7), 519–527.

    Article  Google Scholar 

  12. Knapp, H. F.; Stemmer, A., Preparation, comparison and performance of hydrophobic AFM tips. Surface and Interface Analysis 1999, 27, (5–6), 324–331.

    Article  Google Scholar 

  13. Piramowicz, M. D.; Czuba, P.; Targosz, M.; Burda, K.; Szymonski, M., Dynamic force measurements of avidin-biotin and streptavdin-biotin interactions using AFM. Acta Biochimica Polonica 2006, 53, (1), 93–100.

    Google Scholar 

  14. Desmeules, P.; Grandbois, M.; Bondarenko, V. A.; Yamazaki, A.; Salesse, C., Measurement of membrane binding between recoverin, a calcium-myristoyl switch protein, and lipid bilayers by AFM-based force spectroscopy. Biophysical Journal 2002, 82, (6), 3343–3350.

    Article  Google Scholar 

  15. Langry, K. C.; Ratto, T. V.; Rudd, R. E.; McElfresh, M. W., The AFM measured force required to rupture the dithiolate linkage of thioctic acid to gold is less than the rupture force of a simple gold-alkyl thiolate bond. Langmuir 2005, 21, (26), 12064–12067.

    Article  Google Scholar 

  16. Klein, D. C. G.; Stroh, C. M.; Jensenius, H.; van Es, M.; Kamruzzahan, A. S. M.; Stamouli, A.; Gruber, H. J.; Oosterkamp, T. H.; Hinterdorfer, P., Covalent immobilization of single proteins on mica for molecular recognition force microscopy. Chemphyschem 2003, 4, (12), 1367–1371.

    Article  Google Scholar 

  17. Kienberger, F., Kada, G., Gruber, H.J., Pastushenko, V.,Riener, C., Trieb, M., Knaus,H-G., Schindler, H., Hinterdorfer, P., Recognition Force Spectroscopy Studies of the NTA-His6 Bond. Single Molecule 2000, 1, (1), 59–65.

    Article  ADS  Google Scholar 

  18. Bonanni, B.; Kamruzzahan, A. S. M.; Bizzarri, A. R.; Rankl, C.; Gruber, H.  J.; Hinterdorfer, P.; Cannistraro, S., Single molecule recognition between Cytochrome C 551 gold-immobilized Azurin by force spectroscopy. Biophysical Journal 2005, 89, (4), 2783–2791.

    Article  ADS  Google Scholar 

  19. Kienberger, F.; Kada, G.; Mueller, H.; Hinterdorfer, P., Single molecule studies of antibody-antigen interaction strength versus intra-molecular antigen stability. Journal of Molecular Biology 2005, 347, (3), 597–606.

    Article  Google Scholar 

  20. Hinterdorfer, P.; Gruber, H. J.; Kienberger, F.; Kada, G.; Riener, C.; Borken, C.; Schindler, H., Surface attachment of ligands and receptors for molecular recognition force microscopy. Colloids and Surfaces B-Biointerfaces 2002, 23, (2–3), 115–123.

    Article  Google Scholar 

  21. Harada, Y.; Kuroda, M.; Ishida, A., Specific and quantized antigen-antibody interaction measured by atomic force microscopy. Langmuir 2000, 16, (2), 708–715.

    Article  Google Scholar 

  22. Touhami, A.; Hoffmann, B.; Vasella, A.; Denis, F. A.; Dufrene, Y. F., Probing specific lectin-carbohydrate interactions using atomic force microscopy imaging and force measurements. Langmuir 2003, 19, (5), 1745–1751.

    Article  Google Scholar 

  23. Bustanji, Y.; Arciola, C. R.; Conti, M.; Mandello, E.; Montanaro, L.; Samori, B., Dynamics of the interaction between a fibronectin molecule and a living bacterium under mechanical force. Proceedings of the National Academy of Sciences of the United States of America 2003, 100, (23), 13292–13297.

    Article  ADS  Google Scholar 

  24. Lee, G. U.; Chrisey, L. A.; Colton, R. J., Direct Measurement of the Forces between Complementary Strands of DNA. Science 1994, 266, (5186), 771–773.

    Article  ADS  Google Scholar 

  25. Hugel, T.; Holland, N. B.; Cattani, A.; Moroder, L.; Seitz, M.; Gaub, H. E., Single-molecule optomechanical cycle. Science 2002, 296, (5570), 1103–1106.

    Article  ADS  Google Scholar 

  26. Hegner, M.; Wagner, P.; Semenza, G., Immobilizing DNA on Gold Via Thiol Modification for Atomic-Force Microscopy Imaging in Buffer Solutions. Febs Letters 1993, 336, (3), 452–456.

    Article  Google Scholar 

  27. Conti, M.; Bustanji, Y.; Falini, G.; Ferruti, P.; Stefoni, S.; Samori, B., The desorption process of macromolecules adsorbed on interfaces: The force spectroscopy approach. Chemphyschem 2001, 2, (10), 610–613.

    Article  Google Scholar 

  28. Wal, M. V.; Kamper, S.; Headley, J.; Sinniah, K., Effects of contact force and salt concentration on the unbinding of a DNA duplex by force spectroscopy. Langmuir 2006, 22, (3), 882–886.

    Article  Google Scholar 

  29. Vezenov, D. V.; Noy, A.; Rozsnyai, L. F.; Lieber, C. M., Force titrations and ionization state sensitive imaging of functional groups in aqueous solutions by chemical force microscopy. Journal of the American Chemical Society 1997, 119, (8), 2006–2015.

    Article  Google Scholar 

  30. Thomas, R. C.; Tangyunyong, P.; Houston, J. E.; Michalske, T. A.; Crooks, R. M., Chemically-Sensitive Interfacial Force Microscopy - Contact Potential Measurements of Self-Assembling Monolayer Films. Journal of Physical Chemistry 1994, 98, (17), 4493–4494.

    Article  Google Scholar 

  31. Barrat, A.; Silberzan, P.; Bourdieu, L.; Chatenay, D., How Are the Wetting Properties of Silanated Surfaces Affected by Their Structure - an Atomic-Force Microscopy Study. Europhysics Letters 1992, 20, (7), 633–638.

    Article  ADS  Google Scholar 

  32. Friedsam, C.; Becares, A. D.; Jonas, U.; Gaub, H. F.; Seitz, M., Polymer functionalized AFM tips for long-term measurements in single-molecule force spectroscopy. Chemphyschem 2004, 5, (3), 388–393.

    Article  Google Scholar 

  33. Hinterdorfer, P.; Dufrene, Y. F., Detection and localization of single molecular recognition events using atomic force microscopy. Nature Methods 2006, 3, (5), 347–355.

    Article  Google Scholar 

  34. Lo, Y. S.; Huefner, N. D.; Chan, W. S.; Dryden, P.; Hagenhoff, B.; Beebe, T. P., Organic and inorganic contamination on commercial AFM cantilevers. Langmuir 1999, 15, (19), 6522–6526.

    Article  Google Scholar 

  35. Ossenkamp, G. C.; Kemmitt, T.; Johnston, J. H., Toward functionalized surfaces through surface esterification of silica. Langmuir 2002, 18, (15), 5749–5754.

    Article  Google Scholar 

  36. Riener, C. K.; Stroh, C. M.; Ebner, A.; Klampfl, C.; Gall, A. A.; Romanin, C.; Lyubchenko, Y. L.; Hinterdorfer, P.; Gruber, H. J., Simple test system for single molecule recognition force microscopy. Analytica Chimica Acta 2003, 479, (1), 59–75.

    Article  Google Scholar 

  37. Green, J. B. D.; Lee, G. U., Atomic force microscopy with patterned cantilevers and tip arrays: Force measurements with chemical arrays. Langmuir 2000, 16, (8), 4009–4015.

    Article  Google Scholar 

  38. Awada, H.; Castelein, G.; Brogly, M., Use of chemically modified AFM tips as a powerful tool for the determination of surface energy of functionalised surfaces. Journal De Physique Iv 2005, 124, 129–134.

    Article  ADS  Google Scholar 

  39. Hu, D. H.; Micic, M.; Klymyshyn, N.; Suh, Y. D.; Lu, H. P., Correlated topographic and spectroscopic imaging beyond diffraction limit by atomic force microscopy metallic tip-enhanced near-field fluorescence lifetime microscopy. Review of Scientific Instruments 2003, 74, (7), 3347–3355.

    Article  ADS  Google Scholar 

  40. Micic, M.; Chen, A.; Leblanc, R. M.; Moy, V. T., Scanning electron microscopy studies of protein-functionalized atomic force microscopy cantilever tips. Scanning 1999, 21, (6), 394–397.

    Article  Google Scholar 

  41. Vezenov, D. V.; Zhuk, A. V.; Whitesides, G. M.; Lieber, C. M., Chemical force spectroscopy in heterogeneous systems: Intermolecular interactions involving epoxy polymer, mixed monolayers, and polar solvents. Journal of the American Chemical Society 2002, 124, (35), 10578–10588.

    Article  Google Scholar 

  42. Mahapatro, M.; Gibson, C.; Abell, C.; Rayment, T., Chiral discrimination of basic and hydrophobic molecules by chemical force spectroscopy. Ultramicroscopy 2003, 97, (1–4), 297–301.

    Article  Google Scholar 

  43. Brant, J. A.; Johnson, K. M.; Childress, A. E., Characterizing NF and RO membrane surface heterogeneity using chemical force microscopy. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2006, 280, (1–3), 45–57.

    Article  Google Scholar 

  44. Strunz, T.; Oroszlan, K.; Schafer, R.; Guntherodt, H. J., Dynamic force spectroscopy of single DNA molecules. Proceedings of the National Academy of Sciences of the United States of America 1999, 96, (20), 11277–11282.

    Article  ADS  Google Scholar 

  45. Sulchek, T.; Friddle, R. W.; Noy, A., Strength of multiple parallel biological bonds. Biophysical Journal 2006, 90, (12), 4686–4691.

    Article  ADS  Google Scholar 

  46. Raible, M.; Evstigneev, M.; Bartels, F. W.; Eckel, R.; Nguyen-Duong, M.; Merkel, R.; Ros, R.; Anselmetti, D.; Reimann, P., Theoretical analysis of single-molecule force spectroscopy experiments: Heterogeneity of chemical bonds. Biophysical Journal 2006, 90, (11), 3851–3864.

    Article  ADS  Google Scholar 

  47. Ellis, J. S.; Allen, S.; Chim, Y. T. A.; Roberts, C. J.; Tendler, S. J. B.; Davies, M. C., Molecular-scale studies on biopolymers using atomic force microscopy. Polymer Therapeutics Ii: Polymers as Drugs, Conjugates and Gene Delivery Systems 2006, 193, 123–172.

    Google Scholar 

  48. Zhang, W.; Barbagallo, R.; Madden, C.; Roberts, C. J.; Woolford, A.; Allen, S., Progressing single biomolecule force spectroscopy measurements for the screening of DNA binding agents. Nanotechnology 2005, 16, (10), 2325–2333.

    Article  ADS  Google Scholar 

  49. Rief, M.; Clausen-Schaumann, H.; Gaub, H. E., Sequence-dependent mechanics of single DNA molecules. Nature Structural Biology 1999, 6, (4), 346–349.

    Article  Google Scholar 

  50. Krautbauer, R.; Pope, L. H.; Schrader, T. E.; Allen, S.; Gaub, H. E., Discriminating small molecule DNA binding modes by single molecule force spectroscopy. Febs Letters 2002, 510, (3), 154–158.

    Article  Google Scholar 

  51. Fujihira, M.; Tani, Y.; Furugori, M.; Akiba, U.; Okabe, Y., Chemical force microscopy of self-assembled monolayers on sputtered gold films patterned by phase separation. Ultramicroscopy 2001, 86, (1–2), 63–73.

    Article  Google Scholar 

  52. Ling, L. S.; Butt, H. J.; Berger, R., Rupture force between the third strand and the double strand within a triplex DNA. Journal of the American Chemical Society 2004, 126, (43), 13992–13997.

    Article  Google Scholar 

  53. Hards, A.; Zhou, C. Q.; Seitz, M.; Brauchle, C.; Zumbusch, A., Simultaneous AFM manipulation and fluorescence imaging of single DNA strands. Chemphyschem 2005, 6, (3), 534–540.

    Article  Google Scholar 

  54. Morii, T.; Mizuno, R.; Haruta, H.; Okada, T., An AFM study of the elasticity of DNA molecules. Thin Solid Films 2004, 464–65, 456–458.

    Google Scholar 

  55. Herman, S.; Loccufier, J.; Schacht, E., End-Group Modification of Alpha-Hydro-Omega-Methoxy-Poly(Oxyethylene).3. Facile Methods for the Introduction of a Thiol-Selective Reactive End-Group. Macromolecular Chemistry and Physics 1994, 195, (1), 203–209.

    Article  Google Scholar 

  56. Goodson, R. J.; Katre, N. V., Site-Directed Pegylation of Recombinant Interleukin-2 at Its Glycosylation Site. Bio-Technology 1990, 8, (4), 343–346.

    Google Scholar 

  57. Lavigne, J. J.; Anslyn, E. V., Sensing a paradigm shift in the field of molecular recognition: From selective to differential receptors. Angewandte Chemie-International Edition 2001, 40, (17), 3119–3130.

    Article  Google Scholar 

  58. McDonnell, J. M., Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition. Current Opinion in Chemical Biology 2001, 5, (5), 572–577.

    Article  MathSciNet  Google Scholar 

  59. Chang, K. C.; Hammer, D. A., The forward rate of binding of surface-tethered reactants: Effect of relative motion between two surfaces. Biophysical Journal 1999, 76, (3), 1280–1292.

    Article  ADS  Google Scholar 

  60. Riper, J. W.; Swerlick, R. A.; Zhu, C., Determining force dependence of two-dimensional receptor-ligand binding affinity by centrifugation. Biophysical Journal 1998, 74, (1), 492–513.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Blanchette, C.D., Loui, A., Ratto, T.V. (2008). Tip Functionalization: Applications to Chemical Force Spectroscopy. In: Noy, A. (eds) Handbook of Molecular Force Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-49989-5_7

Download citation

Publish with us

Policies and ethics