Skip to main content

The Electrical Conductivity of Living Tissue: A Parameter in the Bioelectrical Inverse Problem

  • Chapter
Modeling and Imaging of Bioelectrical Activity

Part of the book series: Bioelectric Engineering ((BEEG))

Abstract

Electrically active cells within the human body generate currents in the tissues surrounding these cells. These currents are called volume currents. The volume currents in turn give rise to potential differences between electrodes attached to the body. When these electrodes are attached to the torso, electrical potential differences generated by the heart are recorded. The recording of these electrical potential differences as a function of time is called an electrocardiogram (ECG). ECG measurements can be used to compute the generators within the heart. This is called the solution of the ECG inverse problem. This solution may be of interest for diagnostic purposes. For instance, it can be used to localize an extra conducting pathway between atria and ventricles. This pathway can then subsequently be removed by radio-frequent ablation through a catheter. When the active cells are situated within the brain and the electrodes are attached to the scalp, the recording of the potential difference measured between two electrodes as a function of time is called an electroencephalogram (EEG). The EEG inverse problem can, for example, be used to localize an epileptic focus as part of the presurgical evaluation. The frequencies involved in electrocardiograms and electroencephalograms are in the range of 1-1000Hz. Therefore, the Maxwell equations can be used in a quasi-static approximation, implicating that capacitive and inductive effects and wave phenomena are ignored as argued by (1967).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Archie, G.E., 1942, The electrical resistivity log as an aid in determining some reservoir characteristics, Trans. Am. Institut. Min. Metal. Eng., 146: 55–62.

    Google Scholar 

  • Aseyev, 1998, Electrolytes. Interparticle interactions. Theory, calculation methods and experimental data, Begell House inc., New York.

    Google Scholar 

  • Baumann, S.B., Wozny, D.R., Kelly, S.K., and Meno, F.M., 1997, The electrical conductivity of human cerebrospinal fluid at body temperature, IEEE T. Bio-Med. Eng., 44: 220–223.

    Article  Google Scholar 

  • Baynham, C.T., Knisley, S.B., 1999, Effective resistance of rabbit ventricles, Ann. of Biomed. Eng., 27: 96–102.

    Article  Google Scholar 

  • Boned, C., and Peyrelasse, J., 1983, Etude de la permittivite complexe d’ellipsoïdes disperses dans un milieu continu. Analyses theorique et numerique, Colloid Polym. Sci., 261:600–612.

    Article  Google Scholar 

  • Boyle, M. H., 1985, The electrical properties of heterogeneous mixtures containing an oriented spheroidal dispersed phase, Colloid Polym. Sci., 263:51–57.

    Article  Google Scholar 

  • Brace, R.A., 1998, Fluid distribution in the fetus and neonate, in: Fetal and neonatal Physiology. (R. A. Polin, and W.W. Fox, eds.), Saunders Comp., Philadelphia, pp. 1703–1713.

    Google Scholar 

  • Burger, H. C., and Dongen, R. van, 1961, Specific electric resistance of body tissues, Phys. Med. Biol., 5: 431–437.

    Article  Google Scholar 

  • Burger, H. C., and Milaan, J. B. van, 1943, Measurement of the specific resistance of the human body to direct current, Act. Med. Scand., 114:585–607.

    Google Scholar 

  • Burik, M. J. van, 1999, Physical aspects of EEG, PhD thesis, University of Twente, the Netherlands

    Google Scholar 

  • Chapman, R.A., and Frye, C.H., 1978, An analysis of the cable properties of frog ventricular myocardium, J. Physiol., 283:263–283.

    Google Scholar 

  • Clerc, L., 1976, Directional differences of impulse spread in trabecular muscle from mammalian heart, Ibid 255:335–346.

    Google Scholar 

  • Cohen, D., and Cuffin, B.N., 1983, Demonstration of useful differences between magnetoencephalogram and electroencephalogram, Electroen. clin. Neuro., 56:38–51.

    Article  Google Scholar 

  • Cole, K. S., Li, C., and Bak, A. F., 1969, Electrical analogues for tissues, Exp. Neurol., 24:459–473.

    Article  Google Scholar 

  • Costarino, A.T., and Brans, Y. W., 1998, Fetal and neonatal body fluid composition with reference to growth and development, in Fetal and neonatal Physiology, (R. A. Polin, and W. W. Fox, eds.), Saunders Comp., Philadelphia, pp. 1713–1721.

    Google Scholar 

  • De Luca, F., Cametti, C., Zimatore, G., Maraviglia, B., and Pachi, A., 1996, Use of low-frequency electrical impedance measurements to determine phospholipid content in amniotic fluid, Phys. Med. Biol., 41:1863–1869.

    Article  Google Scholar 

  • Epstein, B. R., and Foster, K. R., 1983, Anisotropy in the dielectric properties of skeletal muscle, Med. Biol. Eng. Comput., 21:51–55.

    Article  Google Scholar 

  • Eyüboĝlu, B. M., Pilkington, T. C., and Wolf, P. D., 1994, Estimation of tissue resistivities from multiple-electrode measurements, Phys. Med. Biol. 39:1–17.

    Article  Google Scholar 

  • Foster, K. R., and Schwan, H. P., 1989, Dielectric properties of issues and biological materials: a critical review, Crit. Rev. Biomed. Eng., 17:25–104.

    Google Scholar 

  • Foster, K. R., and Schwan, H. P., 1986, Dielectric permittivity and electrical conductivity of biological materials, in: Handbook of Biological Effects of Electromagnetic Fields, (C. Polk, and E. Postow, eds.), CRC Press, Inc., Boca Raton, pp. 27.

    Google Scholar 

  • Fricke, H., 1953, The Maxwell-Wagner dispersion in a suspension of ellipsoids, J. Phys. Chem., 57:934–937.

    Article  Google Scholar 

  • Gabriel, S., Lau, R. W., and Gabriel, C., 1996a, The dielectric properties of tissue: II. Measurements in the frequency range 10Hz to 20GHz, Phys Med Biol., 41:2251–2269.

    Article  Google Scholar 

  • Gabriel, S., Lau, R. W., and Gabriel, C., 1996b, The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues, Phys. Med. Biol., 41:2271–2293.

    Article  Google Scholar 

  • Geddes, L. A., and Baker, L. E., 1967, The specific resistance of biological material—A compendium of data for the biomedical engineer and physiologist, Med. Biol. Eng., 5:271–293.

    Article  Google Scholar 

  • Geddes, L. A., and Sadler, C., 1973, The specific resistance of blood at body temperature, Med. Biol. Eng., 11:336–339.

    Article  Google Scholar 

  • Gersing, E., 1998, Monitoring temperature induced changes in tissue during hyperthermia by impedance methods, Proc. of the X.ICEBI, Universitat Politecnica de Cataluya.

    Google Scholar 

  • Gielen, F., 1983, Electrical conductivity and histological structure of skeletal muscle. PhD Thesis, University of Twente, the Netherlands.

    Google Scholar 

  • Gielen, F. L. H., Wallinga-de Jonge, W., and Boon, K. L., 1984, Electrical conductivity of skeletal tissue: experimental results from different muscles in vivo, Med. Biol. Eng. Comput., 22:569–577.

    Article  Google Scholar 

  • Gonçalves, S., Munck, J. C. de, Heethaar, R. M., Lopes da Silva F. H., and Dijk, B. W. van, 2000, The application of electrical impedance tomography to reduce systematic errors in the EEG inverse problem—a simulation study, Physiol. Meas., 21:379–393.

    Article  Google Scholar 

  • Grandqvist, C. G., and Hunderi, O., 1978, Conductivity of inhomogeneous materials: effective medium theory with dipole-dipole interaction, Phys. Rev. B, 18:1554–1561.

    Article  Google Scholar 

  • Hanai, T., 1960, Theory of the dielectric dispersion due to the interfacial polarization and its application to emulsions, Kolloid-Z., 171: 23–31.

    Article  Google Scholar 

  • Harreveld, A. van, and Ochs, S., 1956, Cerebral impedance charges after circulatory arrest, Am. J. Physiol., 187:203–207.

    Google Scholar 

  • Hart, F. X., Berner N. J., and McMillen, R. L., 1999, Modelling the anistropic electrical properties of skeletal muscle, Phys. Med Biol., 44:413–421.

    Article  Google Scholar 

  • Hashin, Z., and Shtrikman S., 1962, A variational approach to the theory of the effective magnetic permeability of multiphase materials, J. Appl. Phys., 33:3125–3131.

    Article  MATH  Google Scholar 

  • Havstad, J. W., 1967, Electrical impedance of cerebral cortex: an experimental and theoretical investigation, PhD Thesis, Stanford University.

    Google Scholar 

  • Hoekema, R., Huiskamp, G. J. M., Wieneke, G. H., Leijten, F. S. S., van Veelen, C. W. M., van Rijen, P. C., and van Huffelen, A. C., 2001, Measurement of the conductivity of the skull, tempoarily removed during epilepsy surgery, Biomed Tech., 46:103–105.

    Article  Google Scholar 

  • Homma, S., Musha, T., Nakajima, Y., Okamoto, Y., Blom, S., Flink, R., Hagbach, K. E., and Moström, U., 1994, Location of electric current sources in the human brain estimated by the dipole tracing method of the scalp-skull-brain (SSB) head model, Electroen. Clin. Neuro., 91:374–382.

    Article  Google Scholar 

  • Kobayashi, N., and Yonemura, K., 1967, The extracellular space in red and white muscles of the rat, Jap. J. Physiol., 17:698–707.

    Google Scholar 

  • Kotnik, T., Bobanović, F., and Miklavĉiĉ, D., 1997, Sensitivity of transmembrane voltage induced by applied electric fields-a theoretical analysis, Bioelectroch. Bioener., 43:285–291.

    Article  Google Scholar 

  • Law, S. K., 1993, Thickness and resistivity variations over the upper surface of the human skull, Brain Topogr., 6:99–109.

    Article  Google Scholar 

  • Ludt, H., and Hermann, H. D., 1973, In vitro measurement of tissue impedance over a wide frequency range, Biophys. J., 10:337–345.

    Google Scholar 

  • Maxwell, J. C., 1891, A treatise on electricity and magnetism, volume 1, Arts. 311–314, Dover Publ. New York.

    Google Scholar 

  • Mc Rae, D. A., and Esrick, M. A., 1993, Changes in electrical impedance of skeletal muscle measured during hyperthermia, Int. J. Hyperthermia, 9:247–261.

    Article  Google Scholar 

  • Nicholson, C., and Rice, M. E., 1986, The migration of substances in the neural microenvironment, Ann. New York Academy of Sciences, 481:55–71.

    Article  Google Scholar 

  • Nicholson, P. W., 1965, Specific impedance of cerebral white matter, Exp. Neurol., 13:386–401.

    Article  Google Scholar 

  • Oostendorp, T. F., Delbeke, J., and Stegeman, D. F., 2000, The conductivity of the human skull; Results of in vivo and in vitro measurements, IEEE T. Bio-Med. Eng., 47:1487–1492.

    Article  Google Scholar 

  • Peters, M. J., Hendriks, M., and Stinstra, J. G., 2001, The passive DC conductivity of human tissue described by cells in solution, Bioelectroch., 53:155–160.

    Article  Google Scholar 

  • Pehtig, R., and Kell, D. B., 1987, The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology, Phys. Med. Biol., 32:933–970.

    Article  Google Scholar 

  • Pfützner H., 1984, Dielectric analysis of blood by means of a raster-electrode technique, Med. Biol. Eng. Comput., 22:142–146.

    Article  Google Scholar 

  • Plonsey, R., and Barr, R.C., 1986, Effect of microscopic and macroscopic discontinuities on the response of cardiac tissue to defibrilating (stimulating) current, Med. Biol. Eng. Comput., 24:130–136.

    Article  Google Scholar 

  • Plonsey, R., and Heppner, D.B., 1967, Considerations of quasi-stationarity in electrophysiological systems, Bulletin of mathematical Biophysics, 29:657–664.

    Article  Google Scholar 

  • Raicu, V., Saibara, T., and Irimajiri, A., 1998a, Dielectric properties of rat liver in vivo: a non-invasive approach using an open-ended coaxial probe at audio/radio frequencies, Bioelectroch. Bioener., 47: 325–332.

    Article  Google Scholar 

  • Raicu, V., Saibara, T., Enzan H., and Irimajiri, A., 1998b, Dielectric properties of rat liver in vivo: analysis by modeling hepatocytes in the tissue architecture, Bioelectroch. Bioener., 47:333–342.

    Article  Google Scholar 

  • Robillard, P. N., and Poussart Y., 1977, Specific-impedance measurements of brain tissues, Med. Biol. Eng. Comput., 15:438–445.

    Article  Google Scholar 

  • Rosell, J., Colominas, J., Riu, P., Pallas-Areny, R., and Webster, J. G., 1988, Skin impedance from 1 Hz to 1 MHz, IEEE T. Bio-Med. Eng., 35:649–651.

    Article  Google Scholar 

  • Rush, S., 1967, A principle for solving a class of anisotropic current flow problems and applications to electrocardiography, IEEE T. Bio-Med. Eng., BME-14:18–22.

    Article  Google Scholar 

  • Rush, S., Abildskov, J.A., and Mc Fee, R., 1963, Resistivity of body tissues at low frequencies, Circ. Res., XII:40–50.

    Google Scholar 

  • Rush, S., Mehtar, M., and Baldwin, A. F., 1984, Normalisation of body impedance data: a theoretical study, Med. Biol. Eng. Comput., 22:285–286.

    Article  Google Scholar 

  • Schwan, H. P., 1985, Dielectric properties of cells and tissues, in: Interactions between Electromagnetic Fields and Cells, (A Chiabrera, C. Nicolini, and H. P. Schwan, eds.) NATO ASI series, vol. 97, Plenum Press, New York, pp. 75–103.

    Google Scholar 

  • Schwan, H. P., and Foster, K. R., 1980, RF-Field interactions with biological systems: Electrical properties and biophysical mechanisms, Proc. of the IEEE, 68:104–113.

    Article  Google Scholar 

  • Schwan, H. P., and Takashima, S., 1993, Electrical conduction and dielectric behaviour in biological systems, Encyclopedia of Applied Physics, 5:177–199.

    Google Scholar 

  • Sekine, K., 2000, Application of boundary element method to calculation of the complex permittivity of suspensions of cells in shape of D∞h symmetry, Electroch. 52:1–7.

    Google Scholar 

  • Semrov, D., Karba, R., and Valencic, V., 1997, DC Electrical stimulation for chronic wound healing enhancement. Part 2. Parameter determination by numerical modelling, Bioelectroch. Bioener., 43:271–277.

    Article  Google Scholar 

  • Sillars, R. W., 1937, The properties of a dielectric containing semi-conducting particles of various shapes, J. Ins. Electrical Eng., 80:378–394.

    Google Scholar 

  • Stanley, P. C., Pilkington, T. C., and Morrow, M. N., 1986, The effects of thoracic inhomogeneities on the relationship between epicardial and torso potentials, IEEE T. Bio-Med. Eng., BME-33:273–284.

    Article  Google Scholar 

  • Stanley, P. C., Pilkington, T. C., Morrow, M. N., and Ideker, R. E., 1991, An assessment of variable thickness and fiber orientation of the skeletal muscle layer on electrocardiographic calculations, IEEE T. Bio-Med. Eng., 38:1069–1076.

    Article  Google Scholar 

  • Stinstra, J. G., 2001, Reliability of fetal magnetocardiography, PhD thesis, University of Twente, the Netherlands.

    Google Scholar 

  • Stuchly, M. A., and Stuchly, S. S., 1980, Dielectric properties of biological substances-Tabulated, J. Microwave Power, 15:19–26.

    Google Scholar 

  • Takashima, S., 1989, Electrical properties of biopolymers and membranes, IOP Publishing Ltd, Bristol.

    Google Scholar 

  • Trautman, E. D., and Newbower, R. S., 1983, A practical analysis of the electrical conductivity of blood, IEEE T. Bio-Med. Eng., BME-30:141–153.

    Article  Google Scholar 

  • Ülgen, Y., and Sezdi, M., 1998, Electrical parameters of human blood, Proceedings 20th Ann. Int. Conference, IEEE/EMBS, Hongkong, 2983–2986.

    Google Scholar 

  • Veelen, C. van, Debets, R., Huffelen, A. van, Emde Boas, W. van, Binnie, C., Storm van Leeuwen, W., Velis, D. N., and Dieren, A. van, 1990, Combined use of subdural and intracerebral electrodes in preoperative evaluation of epilepsy, Neurosurgery, 26:93–101.

    Article  Google Scholar 

  • Yamamoto, T., and Yamamoto, Y., 1976, Electrical properties of epidermal stratum corneum, Med. Biol. Eng., 3:151–158.

    Article  Google Scholar 

  • Zheng, E., Shao, S., and Webster, J. G., 1984, Impedance of skeletal muscle from 1 Hz to 1 MHz, IEEET. Bio-Med. Eng., BME-31:477–481.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Peters, M.J., Stinstra, J.G., Leveles, I. (2004). The Electrical Conductivity of Living Tissue: A Parameter in the Bioelectrical Inverse Problem. In: He, B. (eds) Modeling and Imaging of Bioelectrical Activity. Bioelectric Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-49963-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-49963-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48112-3

  • Online ISBN: 978-0-387-49963-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics