Lysophosphatidic Acid and Its Metabolism in Brain


PC12 Cell Cystic Fibrosis Transmembrane Conductance Regulator Phosphatidic Acid Lysophosphatidic Acid Arachidonic Acid Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Rasheed N. M., Chana R. S., Baines R. J., Willars G. B., and Brunskill N. J.-(2004). Ligand-independent activation of peroxisome proliferator-activated receptor-γ by insulin and C-peptide in kidney proximal tubular cells –– dependent on phosphatidylinositol 3-kinase activity. J.-Biol. Chem. 279:49747–49754.PubMedCrossRefGoogle Scholar
  2. Anliker B. and Chun J.-(2004). Cell surface receptors in lysophospholipid signaling. Semin. Cell Dev. Biol. 15:457–465.PubMedCrossRefGoogle Scholar
  3. Aoki J.-(2004). Mechanisms of lysophosphatidic acid production. Semin. Cell Dev. Biol. 15:477–489.PubMedCrossRefGoogle Scholar
  4. Baker R. R. and Chang H. Y. (2000). A metabolic path for the degradation of lysophosphatidic acid, an inhibitor of lysophosphatidylcholine lysophospholipase, in neuronal nuclei of cerebral cortex. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1483:58–68.CrossRefGoogle Scholar
  5. Bandoh K., Aoki J., Hosono H., Kobayashi S., Kobayashi T., Murakami-Murofushi K., Tsujimoto M., Arai H., and Inoue K. (1999). Molecular cloning and characterization of a novel human G-protein-coupled receptor, EDG7, for lysophosphatidic acid. J.-Biol. Chem. 274:27776–27785.PubMedCrossRefGoogle Scholar
  6. Bian D., Su S., Mahanivong C., Cheng R. K., Han Q., Pan Z. K., Sun P., and Huang S. (2004). Lysophosphatidic acid stimulates ovarian cancer cell migration via a Ras-MEK kinase 1 pathway. Cancer Res. 64:4209–4217.PubMedCrossRefGoogle Scholar
  7. Brindley D. N. (2004). Lipid phosphate phosphatases and related proteins: signaling functions in development, cell division, and cancer. J.-Cell. Biochem. 92:900–912.PubMedCrossRefGoogle Scholar
  8. Brindley D. N., English D., Pilquil C., Buri K., and Ling Z. C. (2002). Lipid phosphate phosphatases regulate signal transduction through glycerolipids and sphingolipids. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1582:33–44.CrossRefGoogle Scholar
  9. Cai W., Xu Y., Chen J.-Z., Huang S. R., Lu Z. Y., and Wang Z. K. (2005). Yangxueqingnao particles inhibit rat vascular smooth muscle cell proliferation induced by lysophosphatidic acid. J.-Zejiang Univ. Sci. B 6:892–896.CrossRefGoogle Scholar
  10. Carroll R. C., Wang X. F., Lanza F., Steiner B., and Kouns W. C. (1997). Blocking platelet aggregation inhibits thromboxane A2 formation by low dose agonists but does not inhibit phosphorylation and activation of cytosolic phospholipase A2. Thromb. Res. 88:109–125.PubMedCrossRefGoogle Scholar
  11. Chun J.-(1999). Lysophospholipid receptors: implications for neural signaling. Crit. Rev. Neurobiol. 13:151–168.PubMedGoogle Scholar
  12. Chun J.-and Rosen H. (2006). Lysophospholipid receptors as potential drug targets in tissue transplantation and autoimmune diseases. Curr. Pharm. Des. 12:161–171.PubMedCrossRefGoogle Scholar
  13. Contos J.-J. A., Ishii I., and Chun J.-(2000). Lysophosphatidic acid receptors. Mol. Pharmacol. 58:1188–1196.PubMedGoogle Scholar
  14. Das A. K. and Hajra A. K. (1989). Quantification, characterization and fatty acid composition of lysophosphatidic acid in different rat tissues. Lipids 24:329–333.PubMedCrossRefGoogle Scholar
  15. Durgam G. G., Virag T., Walker M. D., Tsukahara R., Yasuda S., Liliom K., van Meeteren L. A., Moolenaar W. H., Wilke N., Siess W., Tigyi G., and Miller D. D. (2005). Synthesis, structure–activity relationships, and biological evaluation of fatty alcohol phosphates as lysophosphatidic acid receptor ligands, activators of PPARγ, and inhibitors of autotaxin. J.-Med. Chem. 48:4919–4930.PubMedCrossRefGoogle Scholar
  16. Durgam G. G., Tsukahara R., Makarova N., Walker M. D., Fujiwara Y., Pigg K. R., Baker D. L., Sardar V. M., Parrill A. L., Tigyi G., and Miller D. D. (2006). Synthesis and pharmacological evaluation of second-generation phosphatidic acid derivatives as lysophosphatidic acid receptor ligands. Bioorg. Med. Chem. Lett. 16:633–640.PubMedCrossRefGoogle Scholar
  17. Eddleston M. and Mucke L. (1993). Molecular profile of reactive astrocytes –– implications for their role in neurologic disease. Neuroscience 54:15–36.PubMedCrossRefGoogle Scholar
  18. Facchini A., Borzi R. M., and Flamigni F. (2005). Induction of ornithine decarboxylase in T/C-28a2 chondrocytes by lysophosphatidic acid: signaling pathway and inhibition of cell proliferation. FEBS Lett. 579:2919–2925.PubMedCrossRefGoogle Scholar
  19. Fischer D. J., Nusser N., Virag T., Yokoyama K., Wang D. A., Baker D. L., Bautista D., Parrill A. L., and Tigyi G. (2001). Short-chain phosphatidates are subtype-selective antagonists of lysophosphatidic acid receptors. Mol. Pharmacol. 60:776–784.PubMedGoogle Scholar
  20. Fukushima N. (2004). LPA in neural cell development. J.-Cell. Biochem. 92:993–1003.PubMedCrossRefGoogle Scholar
  21. Fukushima N., Ishii I., Contos J.-J. A., Weiner J.-A., and Chun J.-(2001). Lysophospholipid receptors. Annu. Rev. Pharmacol. Toxicol. 41:507–534.PubMedCrossRefGoogle Scholar
  22. Gardell S. E., Dubin A. E., and Chun J.-(2006). Emerging medicinal roles for lysophospholipid signaling. Trends Mol. Med. 12:65–75.PubMedCrossRefGoogle Scholar
  23. Gueguen G., Gaige B., Grevy J.-M., Rogalle P., Bellan J., Wilson M., Klaebe A., Pont F., Simon M. F., and Chap H. (1999). Structure–activity analysis of the effects of lysophosphatidic acid on platelet aggregation. Biochemistry 38:8440–8450.PubMedCrossRefGoogle Scholar
  24. Harrison S. M., Reavill C., Brown G., Brown J.-T., Cluderay J.-E., Crook B., Davies C. H., Dawson L. A., Grau E., Heidbreder C., Hemmati P., Hervieu G., Howarth A., Hughes Z. A., Hunter A. J., Latcham J., Pickering S., Pugh P., Rogers D. C., Shilliam C. S., and Maycox P. R. (2003). LPA1 receptor-deficient mice have phenotypic changes observed in psychiatric disease. Mol. Cell Neurosci. 24:1170–1179.PubMedCrossRefGoogle Scholar
  25. Hasegawa Y., Erickson J.-R., Goddard G. J., Yu S., Liu S., Cheng K. W., Eder A., Bandoh K., Aoki J., Jarosz R., Schrier A. D., Lynch K. R., Mills G. B., and Fang X. (2003). Identification of a phosphothionate analogue of lysophosphatidic acid (LPA) as a selective agonist of the LPA3 receptor. J.-Biol. Chem. 278:11962–11969.PubMedCrossRefGoogle Scholar
  26. Hecht J. H., Weiner J. A., Post S. R., and Chun J. (1996). Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. J. Cell Biol. 135:1071–1083.PubMedCrossRefGoogle Scholar
  27. Heise C. E., Santos W. L., Schreihofer A. M., Heasley B. H., Mukhin Y. V., MacDonald T. L., and Lynch K. R. (2001). Activity of 2-substituted lysophosphatidic acid (LPA) analogs at LPA receptors: discovery of a LPA1/LPA3 receptor antagonist. Mol. Pharmacol. 60:1173–1180.PubMedGoogle Scholar
  28. Heringdorf D. M. Z., Himmel H. M., and Jakobs K. H. (2002). Sphingosylphosphorylcholine-biological functions and mechanisms of action. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1582:178–189.CrossRefGoogle Scholar
  29. Holtsberg F. W., Steiner M. R., Furukawa K., Keller J.-N., Mattson M. P., and Steiner S. M. (1997). Lysophosphatidic acid induces a sustained elevation of neuronal intracellular calcium. J.-Neurochem. 69:68–75.PubMedCrossRefGoogle Scholar
  30. Hooks S. B., Ragan S. P., Hopper D. W., Honemann C. W., Durieux M. E., MacDonald T. L., and Lynch K. R. (1998). Characterization of a receptor subtype-selective lysophosphatidic acid mimetic. Mol. Pharmacol. 53:188–194.PubMedGoogle Scholar
  31. Inoue M., Rashid M. H., Fujita R., Contos J.-J. A., Chun J., and Ueda H. (2004). Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling. Nat. Med. 10:712–718.PubMedCrossRefGoogle Scholar
  32. Ishii I., Contos J.-J. A., Fukushima N., and Chun J.-(2000). Functional comparisons of the lysophosphatidic acid receptors, LPA1/VZG-1/EDG-2, LPA2/EDG-4, and LPA3/EDG-7 in neuronal cell lines using a retrovirus expression system. Mol. Pharmacol. 58:895–902.PubMedGoogle Scholar
  33. Ishii I., Fukushima N., Ye X. Q., and Chun J.-(2004). Lysophospholipid receptors: signaling and biology. Annu. Rev. Biochem. 73:321–354.PubMedCrossRefGoogle Scholar
  34. Keller J.-N., Steiner M. R., Mattson M. P., and Steiner S. M. (1996). Lysophosphatidic acid decreases glutamate and glucose uptake by astrocytes. J.-Neurochem. 67:2300–2305.PubMedCrossRefGoogle Scholar
  35. Kingsbury M. A., Rehen S. K., Contos J.-J. A., Higgins C. M., and Chun J.-(2003). Non-proliferative effects of lysophosphatidic acid enhance cortical growth and folding. Nat. Neurosci. 6:1292–1299.PubMedCrossRefGoogle Scholar
  36. Kingsbury M. A., Rehen S. K., Ye X., and Chun J.-(2004). Genetics and cell biology of lysophosphatidic acid receptor-mediated signaling during cortical neurogenesis. J.-Cell. Biochem. 92:1004–1012.PubMedCrossRefGoogle Scholar
  37. Koschel K. and Tas P. W. L. (1993). Lysophosphatidic acid reverts the beta-adrenergic agonist-induced morphological response in C6 rat glioma cells. Exp. Cell Res. 206:162–166.PubMedCrossRefGoogle Scholar
  38. Kreps D. M., Whittle S. M., Hoffman J.-M., and Toews M. L. (1993). Lysophosphatidic acid mimics serum-induced sensitization of cyclic AMP accumulation. FASEB J. 7:1376–1380.PubMedGoogle Scholar
  39. Li C., Dandridge K. S., Di A., Marrs K. L., Harris E. L., Roy K., Jackson J.-S., Makarova N. V., Fujiwara Y., Farrar P. L., Nelson D. J., Tigyi G. J., and Naren A. P. (2005). Lysophosphatidic acid inhibits cholera toxin-induced secretory diarrhea through CFTR-dependent protein interactions. J.-Exp. Med. 202:975–986.PubMedCrossRefGoogle Scholar
  40. Liliom K., Bittman R., Swords B., and Tigyi G. (1996). N-palmitoyl-serine and N-palmitoyl-tyrosine phosphoric acids are selective competitive antagonists of the lysophosphatidic acid receptors. Mol. Pharmacol. 50:616–623.PubMedGoogle Scholar
  41. Liliom K., Fischer D. J., Virág T., Sun G., Miller D. D., Tseng J.-L., Desiderio D. M., Seidel M. C., Erickson J.-R., and Tigyi G. (1998a). Identification of a novel growth factor-like lipid, 1-O-cis-alk-1′-enyl-2-lyso-sn-glycero-3-phosphate (alkenyl-GP) that is present in commercial sphingolipid preparations. J.-Biol. Chem. 273:13461–13468.PubMedCrossRefGoogle Scholar
  42. Liliom K., Guan Z., Tseng J.-L., Desiderio D. M., Tigyi G., and Watsky M. A. (1998b). Growth factor-like phospholipids generated after corneal injury. Am. J.-Physiol. 274:C1065–C1074.PubMedGoogle Scholar
  43. Lynch K. R. and MacDonald T. L. (2001). Structure—activity relationships of lysophospholipid mediators. Prostaglandins Other Lipid Mediat. 64:33–45.PubMedCrossRefGoogle Scholar
  44. Lynch K. R. and MacDonald T. L. (2002). Structure–activity relationships of lysophosphatidic acid analogs. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1582:289–294.CrossRefGoogle Scholar
  45. McIntyre T. M., Pontsler A. V., Silva A. R., St Hilaire A., Xu Y., Hinshaw J.-C., Zimmerman G. A., Hama K., Aoki J., Arai H., and Prestwich G. D. (2003). Identification of an intracellular receptor for lysophosphatidic acid (LPA): LPA is a transcellular PPARγ agonist. Proc. Natl Acad. Sci. USA 100:131–136.PubMedCrossRefGoogle Scholar
  46. Mettu P. S., Deng P. F., Misra U. K., Gawdi G., Epstein D. L., and Rao P. V. (2004). Role of lysophospholipid growth factors in the modulation of aqueous humor outflow facility. Invest. Ophthalmol. Vis. Sci. 45:2263–2271.PubMedCrossRefGoogle Scholar
  47. Moolenaar W. H., van Meeteren L. A., and Giepmans B. N. (2004). The ins and outs of lysophosphatidic acid signaling. BioEssays 26:870–881.PubMedCrossRefGoogle Scholar
  48. Nishikawa T., Tomori Y., Yamashita S., and Shimizu S. (1988). Inhibition of synaptosomal (Na+ + K+)-ATPase activity by lysophosphatidic acid: its possible role in membrane depolarization. Jpn J.-Pharmacol. 47:143–150.PubMedCrossRefGoogle Scholar
  49. Nishikawa T., Tomori Y., Yamashita S., and Shimizu S. (1989). Inhibition of Na+,K+-ATPase activity by phospholipase A2 and several lysophospholipids: possible role of phospholipase A2 in noradrenaline release from cerebral cortical synaptosomes. J.-Pharm. Pharmacol. 41:450–458.PubMedGoogle Scholar
  50. Nishiuchi T., Hamada T., Kodama H., and Iba K. (1997). Wounding changes the spatial expression pattern of the Arabidopsis plastid omega-3 fatty acid desaturase gene (FAD7) through different signal transduction pathways. Plant Cell 9:1701–1712.PubMedCrossRefGoogle Scholar
  51. Pages C., Simon M. F., Valet P., and Saulnier-Blache J.-S. (2001). Lysophosphatidic acid synthesis and release. Prostaglandins Other Lipid Mediat. 64:1–10.PubMedCrossRefGoogle Scholar
  52. Palomaki V. A. and Laitinen J.-T. (2006). The basic secretagogue compound 48/80 activates G proteins indirectly via stimulation of phospholipase D-lysophosphatidic acid receptor axis and 5-HT1A receptors in rat brain sections. Br. J.-Pharmacol. 147:596–606.PubMedCrossRefGoogle Scholar
  53. Pébay A., Torrens Y., Toutant M., Cordier J., Glowinski J., and Tencé M. (1999). Pleiotropic effects of lysophosphatidic acid on striatal astrocytes. Glia 28:25–33.PubMedCrossRefGoogle Scholar
  54. Pulinilkunnil T., An D., Ghosh S., Qi D., Kewalramani G., Yuen G., Virk N., Abrahani A., and Rodrigues B. (2005). Lysophosphatidic acid-mediated augmentation of cardiomyocyte lipoprotein lipase involves actin cytoskeleton reorganization. Am. J.-Physiol. Heart Circ. Physiol. 288:H2802–H2810.PubMedCrossRefGoogle Scholar
  55. Ramakers G. J.-and Moolenaar W. H. (1998). Regulation of astrocyte morphology by RhoA and lysophosphatidic acid. Exp. Cell Res. 245:252–262.PubMedCrossRefGoogle Scholar
  56. Rao T. S., Lariosa-Willingham K. D., Lin F. F., Palfreyman E. L., Yu N., Chun J., and Webb M. (2003). Pharmacological characterization of lysophospholipid receptor signal transduction pathways in rat cerebrocortical astrocytes. Brain Res. 990:182–194.PubMedCrossRefGoogle Scholar
  57. Renback K., Inoue M., and Ueda H. (1999). Lysophosphatidic acid-induced, pertussis toxin-sensitive nociception through a substance P release from peripheral nerve endings in mice. Neurosci. Lett. 270:59–61.PubMedCrossRefGoogle Scholar
  58. Sardar V. M., Bautista D. L., Fischer D. J., Yokoyama K., Nusser N., Virag T., Wang D. A., Baker D. L., Tigyi G., and Parrill A. L. (2002). Molecular basis for lysophosphatidic acid receptor antagonist selectivity. Biochim. Biophys. Acta 1582:309–317.PubMedGoogle Scholar
  59. Sayas C. L., Moreno-Flores M. T., Avila J., and Wandosell F. (1999). The neurite retraction induced by lysophosphatidic acid increases Alzheimer’s disease-like Tau phosphorylation. J.-Biol. Chem. 274:37046–37052.PubMedCrossRefGoogle Scholar
  60. Sayas C. L., Avila J., and Wandosell F. (2002). Regulation of neuronal cytoskeleton by lysophosphatidic acid: role of GSK-3. Biochim. Biophys. Acta 1582:144–153.PubMedGoogle Scholar
  61. Schilling T., Stock C., Schwab A., and Eder C. (2004). Functional importance of Ca2+-activated K+ channels for lysophosphatidic acid-induced microglial migration. Eur. J.-Neurosci. 19:1469–1474.PubMedCrossRefGoogle Scholar
  62. Schulze C., Smales C., Rubin L. L., and Staddon J.-M. (1997). Lysophosphatidic acid increases tight junction permeability in cultured brain endothelial cells. J.-Neurochem. 68:991–1000.PubMedCrossRefGoogle Scholar
  63. Shiono S., Kawamoto K., Yoshida N., Kondo T., and Inagami T. (1993). Neurotransmitter release from lysophosphatidic acid stimulated PC12 cells: involvement of lysophosphatidic acid receptors. Biochem. Biophys. Res. Commun. 193:667–673.PubMedCrossRefGoogle Scholar
  64. Snitko Y., Yoon E. T., and Cho W. H. (1997). High specificity of human secretory class II phospholipase A2 for phosphatidic acid. Biochem. J.-321:737–741.PubMedGoogle Scholar
  65. Steiner M. R., Urso J.-R., Klein J., and Steiner S. M. (2002). Multiple astrocyte responses to lysophosphatidic acids. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1582:154–160.CrossRefGoogle Scholar
  66. Sugiura T., Tokumura A., Gregory L., Nouchi T., Weintraub S. T., and Hanahan D. J.-(1994). Biochemical characterization of the interaction of lipid phosphoric acids with human platelets: comparison with platelet activating factor. Arch. Biochem. Biophys. 311:358–368.PubMedCrossRefGoogle Scholar
  67. Sun G. Y., Lu F. L., Lin S. E., and Ko M. R. (1992). Decapitation ischemia-induced release of free fatty acids in mouse brain. Relationship with diacylglycerols and lysophospholipids. Mol. Chem. Neuropathol. 17:39–50.PubMedCrossRefGoogle Scholar
  68. Symowicz J., Adley B. P., Woo M. M., Auersperg N., Hudson L. G., and Stack M. S. (2005). Cyclooxygenase-2 functions as a downstream mediator of lysophosphatidic acid to promote aggressive behavior in ovarian carcinoma cells. Cancer Res. 65:2234–2242.PubMedCrossRefGoogle Scholar
  69. Takuwa Y., Takuwa N., and Sugimoto N. (2002). The Edg family G protein-coupled receptors for lysophospholipids: their signaling properties and biological activities. J.-Biochem. (Tokyo) 131:767–771.PubMedGoogle Scholar
  70. Thomson F. J.-and Clark M. A. (1994). Purification of a lysophosphatidic acid-hydrolysing lysophospholipase from rat brain. Biochem. J.-300:457–461.Google Scholar
  71. Thomson F. J.-and Clark M. A. (1995). Purification of a phosphatidic-acid-hydrolysing phospholipase A2 from rat brain. Biochem. J.-306:305–309.PubMedGoogle Scholar
  72. Tigyi G. and Miledi R. (1992). Lysophosphatidates bound to serum albumin activate membrane currents in Xenopus oocytes and neurite retraction in PC12 pheochromocytoma cells. J.-Biol. Chem. 267:21360–21367.PubMedGoogle Scholar
  73. Tigyi G., Dyer D. L., and Miledi R. (1994). Lysophosphatidic acid possesses dual action in cell proliferation. Proc. Natl Acad. Sci. USA 91:1908–1912.PubMedCrossRefGoogle Scholar
  74. Tigyi G., Hong L., Yakubu M., Parfenova H., Shibata M., and Leffler C. W. (1995). Lysophosphatidic acid alters cerebrovascular reactivity in piglets. Am. J.-Physiol. 268:H2048–H2055.PubMedGoogle Scholar
  75. Tigyi G., Fischer D. J., Seboek A., Marshall F., Dyer D. L., and Miledi R. (1996a). Lysophosphatidic acid-induced neurite retraction in PC12 cells: neurite-protective effects of cyclic AMP signaling. J.-Neurochem. 66:549–558.PubMedCrossRefGoogle Scholar
  76. Tigyi G., Fischer D. J., Seboek A., Yang C., Dyer D. L., and Miledi R. (1996b). Lysophosphatidic acid-induced neurite retraction in PC12 cells: control by phosphoinositide-Ca2+ signaling and Rho. J.-Neurochem. 66:537–548.PubMedCrossRefGoogle Scholar
  77. Tokumura A., Iimori M., Nishioka Y., Kitahara M., Sakashita M., and Tanaka S. (1994). Lysophosphatidic acids induce proliferation of cultured vascular smooth muscle cells from rat aorta. Am. J.-Physiol. 267:C204–C210.PubMedGoogle Scholar
  78. Tou J.-S. and Gill J.-S. (2005). Lysophosphatidic acid increases phosphatidic acid formation, phospholipase D activity and degranulation by human neutrophils. Cell Signal. 17:77–82.PubMedCrossRefGoogle Scholar
  79. Tsukahara T., Tsukahara R., Yasuda S., Makarova N., Valentine W. J., Allison P., Yuan H. B., Baker D. L., Li Z. G., Bittman R., Parrill A., and Tigyi G. (2006). Different residues mediate recognition of 1-O-oleyl-lysophosphatidic acid and rosiglitazone in the ligand binding domain of peroxisome proliferator-activated receptor γ. J.-Biol. Chem. 281: 3398–3407.PubMedCrossRefGoogle Scholar
  80. Umezu-Goto M., Tanyi J., Lahad J., Liu S. Y., Yu S. X., Lapushin R., Hasegawa Y., Lu Y. L., Trost R., Bevers T., Jonasch E., Aldape K., Liu J.-S., James R. D., Ferguson C. G., Xu Y., Prestwich G. D., and Mills G. B. (2004). Lysophosphatidic acid production and action: Validated targets in cancer? J.-Cell. Biochem. 92:1115–1140.PubMedCrossRefGoogle Scholar
  81. Vahidi W. H., Ong W. Y., Farooqui A. A., and Yeo J.-F. (2006). Effect of central nervous system free fatty acids and lysophospholipids on allodynia in a mouse model of orofacial pain. Exp Brain Res. (in press).Google Scholar
  82. Van Leeuwen F. N., Olivo C., Grivell S., Giepmans B. N., Collard J.-G., and Moolenaar W. H. (2003). Rac activation by lysophosphatidic acid LPA1 receptors through the guanine nucleotide exchange factor Tiam1. J.-Biol. Chem. 278:400–406.PubMedCrossRefGoogle Scholar
  83. Vasantha Rao P., Deng P. F., Kumar J., and Epstein D. L. (2001). Modulation of aqueous humor outflow facility by the Rho kinase-specific inhibitor Y-27632. Invest. Ophthalmol. Vis. Sci. 42:1029–1037.Google Scholar
  84. Virag T., Elrod D. B., Liliom K., Sardar V. M., Parrill A. L., Yokoyama K., Durgam G., Deng W., Miller D. D., and Tigyi G. (2003). Fatty alcohol phosphates are subtype-selective agonists and antagonists of lysophosphatidic acid receptors. Mol. Pharmacol. 63:1032–1042.PubMedCrossRefGoogle Scholar
  85. Weiner J. A., Hecht J. H., and Chun J. (1998). Lysophosphatidic acid receptor gene vzg-1/1pA1/edg-2 is expressed by mature oligodendrocytes during myelination in the postnatal murine brain. J. Comp. Neurol. 398:587–598.PubMedCrossRefGoogle Scholar
  86. Willard F. S., Berven L. A., and Crouch M. F. (2001). Lysophosphatidic acid activates the 70-kDa S6 kinase via the lipoxygenase pathway. Biochem. Biophys. Res. Commun. 287:607–613.PubMedCrossRefGoogle Scholar
  87. Xie Y. H., Gibbs T. C., and Meier K. E. (2002). Lysophosphatidic acid as an autocrine and paracrine mediator. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1582:270–281.CrossRefGoogle Scholar
  88. Ye X. Q., Fukushima N., Kingsbury M. A., and Chun J.-(2002). Lysophosphatidic acid in neural signaling. NeuroReport 13:2169–2175.PubMedCrossRefGoogle Scholar
  89. Yoo J.-O., Yi S. J., Choi H. J., Kim W. J., Kim Y. M., Han J.-A., and Ha K. S. (2005). Regulation of tissue transglutaminase by prolonged increase of intracellular Ca2+, but not by initial peak of transient Ca2+ increase. Biochem. Biophys. Res. Commun. 337:655–662.PubMedCrossRefGoogle Scholar
  90. Yoshida A. and Ueda H. (2001). Neurobiology of the Edg2 lysophosphatidic acid receptor. Jpn. J.-Pharmacol. 87:104–109.PubMedCrossRefGoogle Scholar
  91. Zhang C. X., Baker D. L., Yasuda S., Makarova N., Balazs L., Johnson L. R., Marathe G. K., McIntyre T. M., Xu Y., Prestwich G. D., Byun H. S., Bittman R., and Tigyi G. (2004). Lysophosphatidic acid induces neointima formation through PPARγ activation. J.-Exp. Med. 199:763–774.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations