Skip to main content

Roles of Phospholipases A2 in Brain

  • Chapter
Glycerophospholipids in the Brain
  • 426 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu-Raya S., Bloch-Shilderman E., Shohami E., Trembovler V., Shai Y., Weidenfeld J., Yedgar S., Gutman Y., and Lazarovici P. (1998). Pardaxin, a new pharmacological tool to stimulate the arachidonic acid cascade in PC12 cells. J.-Pharmacol. Exp. Ther. 287:889–896.

    PubMed  CAS  Google Scholar 

  • Adams J.-M. and Cory S. (1998). The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326.

    PubMed  CAS  Google Scholar 

  • Akbar M. and Kim H. Y. (2002). Protective effects of docosahexaenoic acid in staurosporine-induced apoptosis: involvement of phosphatidylinositol-3 kinase pathway. J.-Neurochem. 82:655–665.

    PubMed  CAS  Google Scholar 

  • Antony P., Freysz L., Horrocks L. A., and Farooqui A. A. (2003). Ca2+-independent phospholipases A2 and production of arachidonic acid in nuclei of LA-N-1 cell cultures: a-specific receptor activation mediated with retinoic acid. Mol. Brain Res. 115:187–195.

    PubMed  CAS  Google Scholar 

  • Atsumi G., Tajima M., Hadano A., Nakatani Y., Murakami M., and Kudo I. (1998). Fas-induced arachidonic acid release is mediated by Ca2+-independent phospholipase A2 but not cytosolic phospholipase A2 which undergoes proteolytic inactivation. J.-Biol. Chem. 273:13870–13877.

    PubMed  CAS  Google Scholar 

  • Atsumi G., Murakami M., Kojima K., Hadano A., Tajima M., and Kudo I. (2000). Distinct roles of two intracellular phospholipase A2s in fatty acid release in the cell death pathway. Proteolytic fragment of type IVA cytosolic phospholipase A2α inhibits stimulus-induced arachidonate release, whereas that of type VI Ca2+-independent phospholipase A2 augments spontaneous fatty acid release. J.-Biol. Chem. 275:18248–18258.

    PubMed  CAS  Google Scholar 

  • Baudry M. and Lynch G. (2001). Remembrance of arguments past: how well is the glutamate receptor hypothesis of LTP holding up after 20 years? Neurobiol. Learn. Mem. 76:284–297.

    PubMed  CAS  Google Scholar 

  • Bazan N. G. (2003). Synaptic lipid signaling: significance of polyunsaturated fatty acids and platelet-activating factor. J.-Lipid Res. 44:2221–2233.

    PubMed  CAS  Google Scholar 

  • Bazan N. G. (2005a). Neuroprotectin D1 (NPD1): A DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol. 15:159–166.

    Article  PubMed  CAS  Google Scholar 

  • Bazan N. G. (2005b). Synaptic signaling by lipids in the life and death of neurons. Mol. Neurobiol. 31:219–230.

    PubMed  CAS  Google Scholar 

  • Bernard J., Lahsaini A., and Massicotte G. (1994). Potassium-induced long-term potentiation in area CA1 of the hippocampus involves phospholipase activation. Hippocampus 4:447–453.

    PubMed  CAS  Google Scholar 

  • Bliss T. V. P. and Collingridge G. L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39.

    PubMed  CAS  Google Scholar 

  • Bloch-Shilderman E., Abu-Raya S., Trembovler V., Boschwitz H., Gruzman A., Linial M., and Lazarovici P. (2002). Pardaxin stimulation of phospholipases A2 and their involvement in exocytosis in PC-12 cells. J.-Pharmacol. Exp. Ther. 301:953–962.

    PubMed  CAS  Google Scholar 

  • Bonventre J.-V., Huang Z. H., Taheri M. R., O’Leary E., Li E., Moskowitz M. A., and Sapirstein A. (1997). Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2. Nature 390:622–625.

    PubMed  CAS  Google Scholar 

  • Bramham C. R., Alkon D. L., and Lester D. S. (1994). Arachidonic acid and diacylglycerol act synergistically through protein kinase C to persistently enhance synaptic transmission in the hippocampus. Neuroscience 60:737–743.

    PubMed  CAS  Google Scholar 

  • Brown W. J., Chambers K., and Doody A. (2003). Phospholipase A2 (PLA2) enzymes in-membrane trafficking: Mediators of membrane shape and function. Traffic 4:214–221.

    PubMed  CAS  Google Scholar 

  • Brustovetsky T., Antonsson B., Jemmerson R., Dubinsky J.-M., and Brustovetsky N. (2005). Activation of calcium-independent phospholipase A2 (iPLA2) in brain mitochondria and release of apoptogenic factors by BAX and truncated BID. J.-Neurochem. 94:980–994.

    PubMed  CAS  Google Scholar 

  • Burger K. N. and Verkleij A. J.-(1990). Membrane fusion. Experientia 46:631–644.

    PubMed  CAS  Google Scholar 

  • Burgoyne R. D. and Morgan A. (1995). Ca2+ and secretory-vesicle dynamics. Trends Neurosci. 18:191–196.

    PubMed  CAS  Google Scholar 

  • Calderon F. and Kim H. Y. (2004). Docosahexaenoic acid promotes neurite growth in hippocampal neurons. J.-Neurochem. 90:979–988.

    PubMed  CAS  Google Scholar 

  • Camandola S., Poli G., and Mattson M. P. (2000). The lipid peroxidation product 4-hydroxy-2,3-nonenal increases AP-1-binding activity through caspase activation in neurons. J.-Neurochem. 74:159–168.

    PubMed  CAS  Google Scholar 

  • Chambers K., Judson B., and Brown W. J.-(2005). A unique lysophospholipid acyltransferase (LPAT) antagonist, CI-976, affects secretory and endocytic membrane trafficking pathways. J.-Cell Sci. 118:3061–3071.

    PubMed  CAS  Google Scholar 

  • Chen C. and Tonegawa S. (1997). Molecular genetic analysis of synaptic plasticity, activity-dependent neural development, learning, and memory in the mammalian brain. Annu. Rev. Neurosci. 20:157–184.

    PubMed  CAS  Google Scholar 

  • Choukroun G. J., Marshansky V., Gustafson C. E., McKee M., Hajjar R. J., Rosenzweig A., Brown D., and Bonventre J.-V. (2000). Cytosolic phospholipase A2 regulates Golgi structure and modulates intracellular trafficking of membrane proteins. J.-Clin. Invest. 106:983–993.

    PubMed  CAS  Google Scholar 

  • Chung H. J., Steinberg J.-P., Huganir R. L., and Linden D. J.-(2003). Requirement of AMPA receptor GluR2 phosphorylation for cerebellar long-term depression. Science 300:1751–1755.

    PubMed  CAS  Google Scholar 

  • Clements M. P., Bliss T. V. P., and Lynch M. A. (1991). Increase in arachidonic acid concentration in a postsynaptic membrane fraction following the induction of long-term potentiation in the dentate gyrus. Neuroscience 45:379–389.

    PubMed  CAS  Google Scholar 

  • Correale J.-and Villa A. (2004). The neuroprotective role of inflammation in nervous system injuries. J.-Neurol. 251:1304–1316.

    PubMed  Google Scholar 

  • de Figueiredo P., Drecktrah D., Katzenellenbogen J.-A., Strang M., and Brown W.-J.-(1998). Evidence that phospholipase A2 activity is required for Golgi complex and trans Golgi network membrane tubulation. Proc. Natl Acad. Sci. USA 95:8642–8647.

    PubMed  Google Scholar 

  • de Figueiredo P., Polizotto R. S., Drecktrah D., and Brown W. J.-(1999). Membrane tubule-mediated reassembly and maintenance of the Golgi complex is disrupted by phospholipase A2 antagonists. Mol. Biol. Cell 10:1763–1782.

    PubMed  Google Scholar 

  • Doherty P., Ashton S. V., Moore S. E., and Walsh F. S. (1991). Morphoregulatory activities of NCAM and N-cadherin can be accounted for by G protein-dependent activation of L- and N-type neuronal Ca2+ channels. Cell 67:21–33.

    PubMed  CAS  Google Scholar 

  • Drecktrah D. and Brown W. J.-(1999). Phospholipase A2 antagonists inhibit nocodazole-induced Golgi ministack formation: evidence of an ER intermediate and constitutive cycling. Mol. Biol. Cell 10:4021–4032.

    PubMed  CAS  Google Scholar 

  • Drecktrah D., Chambers K., Racoosin E. L., Cluett E. B., Gucwa A., Jackson B., and Brown W. J.(2003). Inhibition of a Golgi complex lysophospholipid acyltransferase induces membrane tubule formation and retrograde trafficking. Mol. Biol. Cell 14:3459–3469.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (1991). Excitatory amino acid receptors, neural membrane phospholipid metabolism and neurological disorders. Brain Res. Rev. 16:171–191.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (1994). Excitotoxicity and neurological disorders: involvement of membrane phospholipids. Int. Rev. Neurobiol. 36:267–323.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2001). Plasmalogens: Workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7:232–245.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2004). Plasmalogens, platelet activating factor, and other ether lipids. In: Nicolaou A. and Kokotos G. (eds.), Bioactive Lipids. Oily Press, Bridgwater, England, pp.-107–134.

    Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2006). Phospholipase A2-generated lipid mediators in brain: the good, the bad, and the ugly. Neuroscientist 12:245.

    PubMed  CAS  Google Scholar 

  • Farooqui, A. A., Anderson, D. K., and Horrocks, L. A. (1994). Potentiation of diacylglycerol and monoacylglycerol lipase activities by glutamate and its analogs. J.-Neurochem. 62:S74B.

    Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2000a). Deacylation and reacylation of neural membrane glycerophospholipids. J.-Mol. Neurosci. 14:123–135.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2000b). Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem. Phys. Lipids 106:1–29.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., Horrocks L. A., and Farooqui T. (2000c). Brain cytosolic phospholipase A2: localization, role, and involvement in neurological diseases. Neuroscientist 6:169–180.

    CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., Lu X. R., and Horrocks L. A. (2002). Cytosolic phospholipase A2 inhibitors as therapeutic agents for neural cell injury. Curr. Med. Chem. –– Anti-Inflammatory Anti-Allergy Agents 1:193–204.

    CAS  Google Scholar 

  • Farooqui A. A., Antony P., Ong W. Y., Horrocks L. A., and Freysz L. (2004a). Retinoic acid-mediated phospholipase A2 signaling in the nucleus. Brain Res. Rev. 45:179–195.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., and Horrocks L. A. (2004b). Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem. Res. 29:1961–1977.

    PubMed  CAS  Google Scholar 

  • Fujita S., Ikegaya Y., Nishiyama N., and Matsuki N. (2000). Ca2+-independent phospholipase A2 inhibitor impairs spatial memory of mice. Jpn. J.-Pharmacol. 83:277–278.

    PubMed  CAS  Google Scholar 

  • Fujita S., Ikegaya Y., Nishikawa M., Nishiyama N., and Matsuki N. (2001). Docosahexaenoic acid improves long-term potentiation attenuated by phospholipase A2 inhibitor in rat hippocampal slices. Br. J.-Pharmacol. 132:1417–1422.

    PubMed  CAS  Google Scholar 

  • Furnkranz A. and Leitinger N. (2004). Regulation of inflammatory responses by oxidized phospholipids structure–function relationships. Curr. Pharm. Des. 10:915–921.

    PubMed  CAS  Google Scholar 

  • Geddis M. S. and Rehder V. (2003). Initial stages of neural regeneration in Helisoma trivolvis are dependent upon PLA2 activity. J.-Neurobiol. 54:555–565.

    PubMed  CAS  Google Scholar 

  • Ghijsen W. E., Leenders A. G., and Lopes da Silva F. H. (2003). Regulation of vesicle traffic and neurotransmitter release in isolated nerve terminals. Neurochem. Res. 28:1443–1452.

    PubMed  CAS  Google Scholar 

  • Gilroy D. W., Newson J., Sawmynaden P. A., Willoughby D. A., and Croxtall J.-D. (2004). A novel role for phospholipase A2 isoforms in the checkpoint control of acute inflammation. FASEB J.-18:489–498.

    PubMed  CAS  Google Scholar 

  • Grass D. S. (1999). Transgenics in in-vivo models of inflammation. In: Morgan D. W. and Marshall L. A. (eds.), In Vivo Models of Inflammation. Birkhauser Verlag, Berlin, pp.-291–305.

    Google Scholar 

  • Grewal S., Ponnambalam S., and Walker J.-H. (2003). Association of cPLA2-α and COX-1 with the Golgi apparatus of A549 human lung epithelial cells. J.-Cell Sci. 116:2303–2310.

    PubMed  CAS  Google Scholar 

  • Grewal S., Herbert S. P., Ponnambalam S., and Walker J.-H. (2005). Cytosolic phospholipase A2-α and cyclooxygenase-2 localize to intracellular membranes of EA.hy.926-endothelial cells that are distinct from the endoplasmic reticulum and the Golgi apparatus. FEBS J.-272:1278–1290.

    PubMed  CAS  Google Scholar 

  • Hayakawa M., Ishida N., Takeuchi K., Shibamoto S., Hori T., Oku N., Ito F., and Tsujimoto M. (1993). Arachidonic acid-selective cytosolic phospholipase A2 is crucial in the cytotoxic action of tumor necrosis factor. J.-Biochem. 268:11290–11295.

    CAS  Google Scholar 

  • Hayakawa M., Jayadev S., Tsujimoto M., Hannun Y. A., and Ito F. (1996). Role of ceramide in stimulation of the transcription of cytosolic phospholipase A2 and cyclooxygenase 2. Biochem. Biophys. Res. Commun. 220:681–686.

    PubMed  CAS  Google Scholar 

  • Herbert S. P., Ponnambalam S., and Walker J.-H. (2005). Cytosolic phospholipase A2-α mediates endothelial cell proliferation and is inactivated by association with the Golgi apparatus. Mol. Biol. Cell 16:3800–3809.

    PubMed  CAS  Google Scholar 

  • Higuchi Y. and Yoshimoto T. (2002). Arachidonic acid converts the glutathione depletion-induced apoptosis to necrosis by promoting lipid peroxidation and reducing caspase-3 activity in rat glioma cells. Arch. Biochem. Biophys. 400:133–140.

    PubMed  CAS  Google Scholar 

  • Hong S., Gronert K., Devchand P. R., Moussignac R. L., and Serhan C. N. (2003). Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells –– Autacoids in anti-inflammation. J.-Biol. Chem. 278:14677–14687.

    PubMed  CAS  Google Scholar 

  • Hornfelt M., Ekström P. A. R., and Edström A. (1999). Involvement of axonal phospholipase A2 activity in the outgrowth of adult mouse sensory axons in-vitro. Neuroscience 91:1539–1547.

    PubMed  CAS  Google Scholar 

  • Hulo S., Alberi S., Laux T., Muller D., and Caroni P. (2002). A point mutant of GAP-43 induces enhanced short-term and long-term hippocampal plasticity. Eur. J.-Neurosci. 15:1976–1982.

    PubMed  CAS  Google Scholar 

  • Ikemoto A., Kobayashi T., Emoto K., Umeda M., Watanabe S., and Okuyama H. (1999). Effects of docosahexaenoic and arachidonic acids on the synthesis and distribution of aminophospholipids during neuronal differentiation of PC12 cells. Arch. Biochem. Biophys. 364:67–74.

    PubMed  CAS  Google Scholar 

  • Ikeno Y., Konno N., Cheon S. H., Bolchi A., Ottonello S., Kitamoto K., and Arioka M. (2005). Secretory phospholipases A2 induce neurite outgrowth in PC12 cells through lysophosphatidylcholine generation and activation of G2A receptor. J.-Biol. Chem. 280:28044–28052.

    PubMed  CAS  Google Scholar 

  • Inagaki M., Tsuri T., Jyoyama H., Ono T., Yamada K., Kobayashi M., Hori Y., Arimura A., Yasui K., Ohno K., Kakudo S., Koizumi K., Suzuki R., Kawai S., Kato M., and Matsumoto S. (2000). Novel antiarthritic agents with 1,2-isothiazolidine-1,1-dioxide (γ-sultam) skeleton: cytokine suppressive dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase. J.-Med. Chem. 43:2040–2048.

    PubMed  CAS  Google Scholar 

  • Izquierdo I. and Medina J.-H. (1995). Correlation between the pharmacology of long-term potentiation and the pharmacology of memory. Neurobiol. Learn. Mem. 63:19–32.

    PubMed  CAS  Google Scholar 

  • Jamora C. (1999). 100 years of Golgi complexities. Trends Cell Biol. 9:37–38.

    PubMed  CAS  Google Scholar 

  • Kater S. B. and Mills L. R. (1991). Regulation of growth cone behavior by calcium. J.-Neurosci. 11:891–899.

    PubMed  CAS  Google Scholar 

  • Katsuki H. and Okuda S. (1995). Arachidonic acid as a neurotoxic and neurotrophic substance. Prog. Neurobiol. 46:607–636.

    PubMed  CAS  Google Scholar 

  • Kim H. Y., Akbar M., Lau A., and Edsall L. (2000). Inhibition of neuronal apoptosis by docosahexaenoic acid (22:6n-3). Role of phosphatidylserine in antiapoptotic effect. J.-Biol. Chem. 275:35215–35223.

    PubMed  CAS  Google Scholar 

  • Kita Y., Kimura K. D., Kobayashi M., Ihara S., Kaibuchi K., Kuroda S., Ui M., Iba H., Konishi H., Kikkawa U., Nagata S., and Fukui Y. (1998). Microinjection of activated phosphatidylinositol-3 kinase induces process outgrowth in rat PC12 cells through the Rac-JNK signal transduction pathway. J.-Cell Sci. 111(Pt 7):907–915.

    PubMed  CAS  Google Scholar 

  • Kobayashi M., Nagata S., Kita Y., Nakatsu N., Ihara S., Kaibuchi K., Kuroda S., Ui M., Iba H., Konishi H., Kikkawa U., Saitoh I., and Fukui Y. (1997). Expression of a constitutively active phosphatidylinositol 3-kinase induces process formation in rat-PC12 cells. Use of Cre/loxP recombination system. J.-Biol. Chem. 272:16089–16092.

    PubMed  CAS  Google Scholar 

  • Kuroiwa N., Nakamura M., Tagaya M., and Takatsuki A. (2001). Arachidonyltrifluoromethyl ketone, a phospholipase A2 antagonist, induces dispersal of both Golgi stack- and trans Golgi network-resident proteins throughout the cytoplasm. Biochem. Biophys. Res. Commun. 281:582–588.

    PubMed  CAS  Google Scholar 

  • Latorre E., Collado M. P., Fernández I., Aragonés M. D., and Catalán R. E. (2003). Signaling events mediating activation of brain ethanolamine plasmalogen hydrolysis by ceramide. Eur. J.-Biochem. 270:36–46.

    PubMed  CAS  Google Scholar 

  • Lauber K., Bohn E., Krober S. M., Xiao Y. J., Blumenthal S. G., Lindemann R. K., Marini P., Wiedig C., Zobywalski A., Baksh S., Xu Y., Autenrieth I. B., Schulze-Osthoff K., Belka C., Stuhler G., and Wesselborg S. (2003). Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113:717–730.

    PubMed  CAS  Google Scholar 

  • Lazarewicz J.-W., Wroblewski J.-T., and Costa E. (1990). N-methyl-D-aspartate-sensitive glutamate receptors induce calcium-mediated arachidonic acid release in primary cultures of cerebellar granule cells. J.-Neurochem. 55:1875–1881.

    PubMed  CAS  Google Scholar 

  • Ledeen R. W. and Wu G. S. (2004). Nuclear lipids: key signaling effectors in the nervous system and other tissues. J.-Lipid Res. 45:1–8.

    PubMed  CAS  Google Scholar 

  • Leist M. and Nicotera P. (1998). Apoptosis, excitotoxicity, and neuropathology. Exp. Cell Res. 239:183–201.

    PubMed  CAS  Google Scholar 

  • Lengqvist J., Mata de Urquiza A., Bergman A. C., Willson T. M., Sjövall J., Perlmann T., and Griffiths W. J.-(2004). Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor α ligand-binding domain. Mol. Cell. Proteomics 3:692–703.

    PubMed  CAS  Google Scholar 

  • Li L. and Chin L. S. (2003). The molecular machinery of synaptic vesicle exocytosis. Cell Mol. Life Sci. 60:942–960.

    PubMed  CAS  Google Scholar 

  • Linden D. J.-and Routtenberg A. (1989). The role of protein kinase C in long-term potentiation: a testable model. Brain Res. Rev. 14:279–296.

    PubMed  CAS  Google Scholar 

  • MacEwan D. J.-(1996). Elevated cPLA2 levels as a mechanism by which the p70 TNF and p75 NGF receptors enhance apoptosis. FEBS Lett. 379:77–81.

    PubMed  CAS  Google Scholar 

  • Majno G. and Joris I. (1995). Apoptosis, oncosis, and necrosis: an overview of cell death. Am. J.-Pathol. 146:3–15.

    PubMed  CAS  Google Scholar 

  • Manguikian A. D. and Barbour S. E. (2004). Cell cycle dependence of group VIA calcium-independent phospholipase A2 activity. J.-Biol. Chem. 279:52881–52892.

    PubMed  CAS  Google Scholar 

  • Marcheselli V. L., Hong S., Lukiw W. J., Tian X. H., Gronert K., Musto A., Hardy M., Gimenez J.-M., Chiang N., Serhan C. N., and Bazan N. G. (2003). Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J.-Biol. Chem. 278:43807–43817.

    PubMed  CAS  Google Scholar 

  • Mark R. J., Lovell M. A., Markesbery W. R., Uchida K., and Mattson M. P. (1997). A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid β-peptide. J.-Neurochem. 68:255–264.

    Article  PubMed  CAS  Google Scholar 

  • Massicotte G. (2000). Modification of glutamate receptors by phospholipase A2: its role in adaptive neural plasticity. Cell Mol. Life Sci. 57:1542–1550.

    PubMed  CAS  Google Scholar 

  • Masuda S., Murakami M., Takanezawa Y., Aoki J., Arai H., Ishikawa Y., Ishii T., Arioka M., and Kudo I. (2005). Neuronal expression and neuritogenic action of group X secreted phospholipase A2. J.-Biol. Chem. 280:23203–23214.

    PubMed  CAS  Google Scholar 

  • Matsuzawa A., Murakami M., Atsumi G., Imai K., Prados P., Inoue K., and Kudo I. (1996). Release of secretory phospholipase A2 from rat neuronal cells and its possible function in the regulation of catecholamine secretion. Biochem. J.-318:701–709.

    PubMed  CAS  Google Scholar 

  • Mayorga L. S., Colombo M. I., Lennartz M., Brown E. J., Rahman K. H., Weiss R., Lennon P. J., and Stahl P. D. (1993). Inhibition of endosome fusion by phospholipase A2 (PLA2) inhibitors points to a role for PLA2 in endocytosis. Proc. Natl Acad. Sci. USA 90:10255–10259.

    PubMed  CAS  Google Scholar 

  • McLean L. R., Hagaman K. A., and Davidson W. S. (1993). Role of lipid structure in the activation of phospholipase A2 by peroxidized phospholipids. Lipids 28:505–509.

    PubMed  CAS  Google Scholar 

  • Ménard C., Patenaude C., and Massicotte G. (2005a). Phosphorylation of AMPA receptor subunits is differentially regulated by phospholipase A2 inhibitors. Neurosci. Lett. 389:51–56.

    PubMed  Google Scholar 

  • Ménard C., Valastro B., Martel M. A., Chartier T., Marineau A., Baudry M., and Massicotte G. (2005b). AMPA receptor phosphorylation is selectively regulated by constitutive phospholipase A2 and 5-lipoxygenase activities. Hippocampus 15:370–380.

    PubMed  Google Scholar 

  • Moskowitz N., Schook W., and Puszkin S. (1982). Interaction of brain synaptic vesicles induced by endogenous Ca2+-dependent phospholipase A2. Science 216:305–307.

    PubMed  CAS  Google Scholar 

  • Mukherjee P. K., Marcheselli V. L., Serhan C. N., and Bazan N. G. (2004). Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc. Natl Acad. Sci. USA 101:8491–8496.

    PubMed  CAS  Google Scholar 

  • Murakami K. and Routtenberg A. (2003). The role of fatty acids in synaptic growth and plasticity. In: Peet M., Glen L., and Horrobin D. F. (eds.), Phospholipid Spectrum Disorders in Psychiatry and Neurology. Marius Press, Carnforth, Lancashire, pp.-77–92.

    Google Scholar 

  • Ng M. N. P., Kitos T. E., and Cornell R. B. (2004). Contribution of lipid second messengers to the regulation of phosphatidylcholine synthesis during cell cycle re-entry. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1686:85–99.

    Article  CAS  Google Scholar 

  • Nishio H., Takeuchi T., Hata F., and Yagasaki O. (1996). Ca2+-independent fusion of synaptic vesicles with phospholipase A2-treated presynaptic membranes in-vitro. Biochem. J.-318:981–987.

    PubMed  CAS  Google Scholar 

  • Nomura T., Nishizaki T., Enomoto T., and Itoh H. (2001). A long-lasting facilitation of hippocampal neurotransmission via a phospholipase A2 signaling pathway. Life Sci. 68:2885–2891.

    PubMed  CAS  Google Scholar 

  • Obermeier H., Hrboticky N., and Sellmayer A. (1995). Differential effects of polyunsaturated fatty acids on cell growth and differentiation of premonocytic U937 cells. Biochim. Biophys. Acta 1266:179–185.

    PubMed  Google Scholar 

  • Oka S. and Arita H. (1991). Inflammatory factors stimulate expression of group II phospholipase A2 in rat cultured astrocytes. Two distinct pathways of the gene expression. J.-Biol. Chem. 266:9956–9960.

    PubMed  CAS  Google Scholar 

  • Okada D., Yamagishi S., and Sugiyama H. (1989). Differential effects of phospholipase inhibitors in long-term potentiation in the rat hippocampal mossy fiber synapses and Schaffer/commissural synapses. Neurosci. Lett. 100:141–146.

    PubMed  CAS  Google Scholar 

  • O’Regan M. H., Perkins L. M., and Phillis J.-W. (1995a). Arachidonic acid and lysophosphatidylcholine modulate excitatory transmitter amino acid release from the rat cerebral cortex. Neurosci. Lett. 193:85–88.

    PubMed  Google Scholar 

  • O’Regan M. H., Smith-Barbour M., Perkins L. M., and Phillis J.-W. (1995b). A possible role for phospholipases in the release of neurotransmitter amino acids from ischemic rat cerebral cortex. Neurosci. Lett. 185:191–194.

    PubMed  Google Scholar 

  • O’Regan M. H., Alix S., and Woodbury D. J.(1996). Phospholipase A2-evoked destabilization of planar lipid membranes. Neurosci. Lett. 202:201–203.

    PubMed  Google Scholar 

  • Pettus B. J., Bielawski J., Porcelli A. M., Reames D. L., Johnson K. R., Morrow J., Chalfant C. E., Obeid L. M., and Hannun Y. A. (2003). The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-α. FASEB J.-17:1411–1421.

    PubMed  CAS  Google Scholar 

  • Pettus B. J., Bielawska A., Subramanian P., Wijesinghe D. S., Maceyka M., Leslie C. C., Evans J.-H., Freiberg J., Roddy P., Hannun Y. A., and Chalfant C. E. (2004). Ceramide 1-phosphate is a direct activator of cytosolic phospholipase A2. J.-Biol. Chem. 279:11320–11326.

    PubMed  CAS  Google Scholar 

  • Pettus B. J., Kitatani K., Chalfant C. E., Taha T. A., Kawamori T., Bielawski J., Obeid L. M., and Hannun Y. A. (2005). The coordination of prostaglandin E2 production by sphingosine-1-phosphate and ceramide-1-phosphate. Mol. Pharmacol. 68:330–335.

    PubMed  CAS  Google Scholar 

  • Pirianov G., Danielsson C., Carlberg C., James S. Y., and Colston K. W. (1999). Potentiation by vitamin D analogs of TNFα and ceramide-induced apoptosis in MCF-7 cells is associated with activation of cytosolic phospholipase A2. Cell Death Differ. 6:890–901.

    PubMed  CAS  Google Scholar 

  • Pittman R. N., Messer A., and Mills J.-C. (1998). Asynchronous death as a characteristic feature of apoptosis. In: Koliatsos V. E. and Ratan R. (eds.), Cell Death and Diseases of the Nervous System. Humana Press, Inc., Totowa, NJ, pp.-29–43.

    Google Scholar 

  • Polizotto R. S., de Figueiredo P., and Brown W. J.(1999). Stimulation of Golgi membrane tubulation and retrograde trafficking to the ER by phospholipase A2 activating protein (PLAP) peptide. J.-Cell Biochem. 74:670–683.

    PubMed  CAS  Google Scholar 

  • Reynolds L. J., Hughes L. L., Louis A. I., Kramer R. M., and Dennis E. A. (1993). Metal ion and salt effects on the phospholipase A2, lysophospholipase, and transacylase activities of human cytosolic phospholipase A2. Biochim. Biophys. Acta 1167:272–280.

    PubMed  CAS  Google Scholar 

  • Robinson B. S., Hii C. S. T., Poulos A., and Ferrante A. (1997). Activation of neutral sphingomyelinase in human neutrophils by polyunsaturated fatty acids. Immunology 91:274–280.

    PubMed  CAS  Google Scholar 

  • Rohrbough J.-and Broadie K. (2005). Lipid regulation of the synaptic vesicle cycle. Nature Rev. Neurosci. 6:139–150.

    CAS  Google Scholar 

  • Roshak A. K., Capper E. A., Stevenson C., Eichman C., and Marshall L. A. (2000). Human calcium-independent phospholipase A2 mediates lymphocyte proliferation. J.-Biol. Chem. 275:35692–35698.

    PubMed  CAS  Google Scholar 

  • Sapirstein A., Saito H., Texel S. J., Samad T. A., O’Leary E., and Bonventre J.-V. (2005). Cytosolic phospholipase A2α regulates induction of brain cyclooxygenase-2 in a mouse-model of inflammation. Am. J.-Physiol. Regul. Integr. Comp. Physiol. 288:R1774–R1782.

    PubMed  CAS  Google Scholar 

  • Sastry P. S. and Rao K. S. (2000). Apoptosis and the nervous system. J.-Neurochem. 74:1–20.

    PubMed  CAS  Google Scholar 

  • Sato T., Kageura T., Hashizume T., Hayama M., Kitatani K., and Akiba S. (1999). Stimulation by ceramide of phospholipase A2 activation through a mechanism related to the phospholipase C-initiated signaling pathway in rabbit platelets. J.-Biochem. (Tokyo) 125:96–102.

    PubMed  CAS  Google Scholar 

  • Schaeffer E. L. and Gattaz W. F. (2005). Inhibition of calcium-independent phospholipase A2 activity in rat hippocampus impairs acquisition of short- and long-term memory. Psychopharmacology (Berl.) 381:392–400.

    Google Scholar 

  • Schaeffer E. L., Bassi F. J., and Gattaz W. F. (2005). Inhibition of phospholipase A2 activity reduces membrane fluidity in rat hippocampus. J.-Neural Transm. 112:641–647.

    PubMed  CAS  Google Scholar 

  • Schmidt A., Wolde M., Thiele C., Fest W., Kratzin H., Podtelejnikov A. V., Witke W., Huttner W. B., and Söling H. D. (1999). Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 401:133–141.

    PubMed  CAS  Google Scholar 

  • Seidenman K. J., Steinberg J.-P., Huganir R., and Malinow R. (2003). Glutamate receptor subunit 2 Serine 880 phosphorylation modulates synaptic transmission and mediates plasticity in CA1 pyramidal cells. J.-Neurosci. 23:9220–9228.

    PubMed  CAS  Google Scholar 

  • Serhan C. N. (2002). Endogenous chemical mediators in anti-inflammation and pro-resolution. Curr. Med. Chem. –– Anti-Inflammatory Anti-Allergy Agents 1:177–192.

    CAS  Google Scholar 

  • Serhan C. N. (2005a). Novel eicosanoid and docosanoid mediators: resolvins, docosatrienes, and neuroprotectins. Curr. Opin. Clin. Nutr. Metab. Care 8:115–121.

    Article  PubMed  CAS  Google Scholar 

  • Serhan C. N. (2005b). Novel ω-3-derived local mediators in anti-inflammation and resolution. Pharmacol. Ther. 105:7–21.

    PubMed  CAS  Google Scholar 

  • Serhan C. N., Arita M., Hong S., and Gotlinger K. (2004a). Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers. Lipids 39:1125–1132.

    PubMed  CAS  Google Scholar 

  • Serhan C. N., Gotlinger K., Hong S., and Arita M. (2004b). Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their aspirin-triggered endogenous epimers: an overview of their protective roles in catabasis. Prostaglandins Other Lipid Mediat. 73:155–172.

    PubMed  CAS  Google Scholar 

  • Shirai Y., Balsinde J., and Dennis E. A. (2005). Localization and functional interrelationships among cytosolic Group IV, secreted Group V, and Ca2+-independent group VI phospholipase A2s in P388D1 macrophages using GFP/RFP constructs. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1735:119–129.

    Article  CAS  Google Scholar 

  • Slomiany A., Grzelinska E., Kasinathan C., Yamaki K., Palecz D., and Slomiany B. L. (1992). Function of intracellular phospholipase A2 in vectorial transport of apoproteins from ER to Golgi. Int. J.-Biochem. 24:1397–1406.

    PubMed  CAS  Google Scholar 

  • Slomiany A., Nowak P., Piotrowski E., and Slomiany B. L. (1998). Effect of ethanol on intracellular vesicular transport from Golgi to the apical cell membrane: role of phosphatidylinositol 3-kinase and phospholipase A2 in Golgi transport vesicles association and fusion with the apical membrane. Alcohol Clin. Exp. Res. 22:167–175.

    PubMed  CAS  Google Scholar 

  • Smalheiser N. R., Dissanayake S., and Kapil A. (1996). Rapid regulation of neurite outgrowth and retraction by phospholipase A2-derived arachidonic acid and its metabolites. Brain Res. 721:39–48.

    PubMed  CAS  Google Scholar 

  • Song I. and Huganir R. L. (2002). Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci. 25:578–588.

    PubMed  CAS  Google Scholar 

  • St-Gelais F., Ménard C., Congar P., Trudeau L. E., and Massicotte G. (2004). Postsynaptic injection of calcium-independent phospholipase A2 inhibitors selectively increases AMPA receptor-mediated synaptic transmission. Hippocampus 14:319–325.

    PubMed  CAS  Google Scholar 

  • Strokin M., Sergeeva M., and Reiser G. (2003). Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2. Br. J.-Pharmacol. 139:1014–1022.

    PubMed  CAS  Google Scholar 

  • Subramanian P., Stahelin R. V., Szulc Z., Bielawska A., Cho W., and Chalfant C. E. (2005). Ceramide 1-phosphate acts as a positive allosteric activator of group IVA cytosolic phospholipase A2α and enhances the interaction of the enzyme with phosphatidylcholine. J.-Biol. Chem. 280:17601–17607.

    PubMed  CAS  Google Scholar 

  • Suburo A. and Cei de Job C. (1986). The biphasic effect of phospholipase A2 inhibitors on axon elongation. Int. J.-Dev. Neurosci. 4:363–367.

    PubMed  CAS  Google Scholar 

  • Sun G. Y. and MacQuarrie R. A. (1989). Deacylation-reacylation of arachidonoyl groups in cerebral phospholipids. Ann. NY Acad. Sci. 559:37–55.

    PubMed  CAS  Google Scholar 

  • Tagaya M., Henomatsu N., Yoshimori T., Yamamoto A., Tashiro Y., and Fukui T. (1993). Correlation between phospholipase A2 activity and intra-Golgi protein transport reconstituted in a cell-free system. FEBS Lett. 324:201–204.

    PubMed  CAS  Google Scholar 

  • Tamagno E., Robino G., Obbili A., Bardini P., Aragno M., Parola M., and Danni O. (2003). H2O2 and 4-hydroxynonenal mediate amyloid beta-induced neuronal apoptosis by activating JNKs and p38MAPK. Exp. Neurol. 180:144–155.

    PubMed  CAS  Google Scholar 

  • Ueda H. and Fujita R. (2004). Cell death mode switch from necrosis to apoptosis in brain. Biol. Pharm. Bull. 27:950–955.

    PubMed  CAS  Google Scholar 

  • Vanags D. M., Larsson P., Feltenmark S., Jakobsson P. J., Orrenius S., Claesson H. E., and Aguilar-Santelises M. (1997). Inhibitors of arachidonic acid metabolism reduce DNA and nuclear fragmentation induced by TNF plus cycloheximide in U937 cells. Cell Death Diff. 4:479–486.

    CAS  Google Scholar 

  • van Rossum G. S. A. T., Bijvelt J.-J. M., van den Bosch H., Verkleij A. J., and Boonstra J.-(2002). Cytosolic phospholipase A2 and lipoxygenase are involved in cell cycle progression in neuroblastoma cells. Cell. Mol. Life Sci. 59:181–188.

    PubMed  Google Scholar 

  • Webb N. R. (2005). Secretory phospholipase A2 enzymes in atherogenesis. Curr. Opin. Lipidol. 16:341–344.

    PubMed  CAS  Google Scholar 

  • Weber G. F. (1999). Final common pathways in neurodegenerative diseases: regulatory role of the glutathione cycle. Neurosci. Biobehav. Rev. 23:1079–1086.

    PubMed  CAS  Google Scholar 

  • Wei S., Ong W. Y., Thwin M. M., Fong C. W., Farooqui A. A., Gopalakrishnakone P., and Hong W. J.-(2003). Differential activities of secretory phospholipase A2 (sPLA2) in rat brain and effects of sPLA2 on neurotransmitter release. Neuroscience 121:891–898.

    PubMed  CAS  Google Scholar 

  • Williams J.-H., Errington M. L., Lynch M. A., and Bliss T. V. P. (1989). Arachidonic acid induces a long-term activity dependent enhancement of synaptic transmission in the hippocampus. Nature 341:739–742.

    PubMed  CAS  Google Scholar 

  • Wissing D., Mouritzen H., Egeblad M., Poirier G. G., and Jäättelä M. (1997). Involvement of caspase-dependent activation of cytosolic phospholipase A2 in tumor necrosis factor-induced apoptosis. Proc. Natl Acad. Sci. USA 94:5073–5077.

    PubMed  CAS  Google Scholar 

  • Wolf M. J., Izumi Y., Zorumski C. F., and Gross R. W. (1995). Long-term potentiation requires activation of calcium-independent phospholipase A2. FEBS Lett. 377:358–362.

    PubMed  CAS  Google Scholar 

  • Wullner U., Seyfried J., Groscurth P., Beinroth S., Winter S., Gleichmann M., Heneka M., Loschmann P., Schulz J.-B., Weller M., and Klockgether T. (1999). Glutathione depletion and neuronal cell death: the role of reactive oxygen intermediates and mitochondrial function. Brain Res. 826:53–62.

    PubMed  CAS  Google Scholar 

  • Yagami T., Ueda K., Asakura K., Hata S., Kuroda T., Sakaeda T., Takasu N., Tanaka K., Gemba T., and Hori Y. (2002a). Human group IIA secretory phospholipase A2 induces neuronal cell death via apoptosis. Mol. Pharmacol. 61:114–126.

    PubMed  CAS  Google Scholar 

  • Yagami T., Ueda K., Asakura K., Hayasaki-Kajiwara Y., Nakazato H., Sakaeda T., Hata S., Kuroda T., Takasu N., and Hori Y. (2002b). Group IB secretory phospholipase A2 induces neuronal cell death via apoptosis. J.-Neurochem. 81:449–461.

    PubMed  CAS  Google Scholar 

  • Yagami T., Ueda K., Asakura K., Sakaeda T., Hata S., Kuroda T., Sakaguchi G., Itoh N., Hashimoto Y., and Hori Y. (2003). Porcine pancreatic group IB secretory phospholipase A2 potentiates Ca2+ influx through L-type voltage-sensitive Ca2+ channels. Brain Res. 960:71–80.

    PubMed  CAS  Google Scholar 

  • Yagami T., Ueda K., Hata S., Kuroda T., Itoh N., Sakaguchi G., Okamura N., Sakaeda T., and Fujimoto M. (2005). S-2474, a novel nonsteroidal anti-inflammatory drug, rescues cortical neurons from human group IIA secretory phospholipase A2-induced apoptosis. Neuropharmacology 49:174–184.

    PubMed  CAS  Google Scholar 

  • Yeo J.-F., Ong W. Y., Ling S. F., and Farooqui A. A. (2004). Intracerebroventricular injection of phospholipases A2 inhibitors modulates allodynia after facial carrageenan injection in mice. Pain 112:148–155.

    PubMed  CAS  Google Scholar 

  • Zaleska M. M. and Wilson D. F. (1989). Lipid hydroperoxides inhibit reacylation of phospholipids in neuronal membranes. J.-Neurochem. 52:255–260.

    PubMed  CAS  Google Scholar 

  • Zhang J., Hannun Y. A., and Obeid L. M. (1999). A novel assay for apoptotic body formation and membrane release during apoptosis. Cell Death Differ. 6:596–598.

    PubMed  CAS  Google Scholar 

  • Zhao S., Du X. Y., Chai M. Q., Chen J.-S., Zhou Y. C., and Song J.-G. (2002). Secretory phospholipase A2 induces apoptosis via a mechanism involving ceramide generation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1581:75–88.

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2007). Roles of Phospholipases A2 in Brain. In: Glycerophospholipids in the Brain. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49931-4_4

Download citation

Publish with us

Policies and ethics