Ether Lipids in Brain



Arachidonic Acid Docosahexaenoic Acid Cholesterol Efflux Ether Lipid Dihydroxyacetone Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert C. J., Crowley J.-R., Hsu F. F., Thukkani A. K., and Ford D. A. (2002). Reactive brominating species produced by myeloperoxidase target the vinyl ether bond of plasmalogens – Disparate utilization of sodium halides in the production of alpha-halo fatty aldehydes. J.-Biol. Chem. 277:4694–4703.PubMedCrossRefGoogle Scholar
  2. Albert C. J., Thukkani A. K., Heuertz R. M., Slungaard A., Hazen S. L., and Ford D. A. (2003). Eosinophil peroxidase-derived reactive brominating species target the vinyl ether bond of plasmalogens generating a novel chemoattractant, alpha-bromo fatty aldehyde. J.-Biol. Chem. 278:8942–8950.PubMedCrossRefGoogle Scholar
  3. Albi E., Cataldi S., Magni M. V., and Sartori C. (2004). Plasmalogens in rat liver chromatin: new molecules involved in cell proliferation. J.-Cell. Physiol. 201:439–446.PubMedCrossRefGoogle Scholar
  4. Antony P., Freysz L., Horrocks L. A., and Farooqui A. A. (2001). Effect of retinoic acid on the Ca2+-independent phospholipase A2 in nuclei of LA-N-1 neuroblastoma cells. Neurochem. Res. 26:83–88.PubMedCrossRefGoogle Scholar
  5. Antony P., Freysz L., Horrocks L. A., and Farooqui A. A. (2003). Ca2+-independent phospholipases A2 and production of arachidonic acid in nuclei of LA-N-1 cell cultures: a specific receptor activation mediated with retinoic acid. Mol. Brain Res. 115:187–195.PubMedCrossRefGoogle Scholar
  6. Arai H. (2002). Platelet-activating factor acetylhydrolase. Prostaglandins Other Lipid Mediat. 68–69:83–94.PubMedCrossRefGoogle Scholar
  7. Arthur G. and Bittman R. (1998). The inhibition of cell signaling pathways by antitumor ether lipids. Biochim. Biophys. Acta Lipids Lipid Metab. 1390:85–102.CrossRefGoogle Scholar
  8. Bazan N. G. (2003). Synaptic lipid signaling: significance of polyunsaturated fatty acids and platelet-activating factor. J.-Lipid Res. 44:2221–2233.PubMedCrossRefGoogle Scholar
  9. Bazan N. G., Fletcher B. S., Herschman H. R., and Mukherjee P. K. (1994). Platelet-activating factor and retinoic acid synergistically activate the inducible prostaglandin synthase gene. Proc. Natl Acad. Sci. USA 91:5252–5256.PubMedCrossRefGoogle Scholar
  10. Bazan N. G., Packard M. G., Teather L., and Allan G. (1997). Bioactive lipids in excitatory neurotransmission and neuronal plasticity. Neurochem. Int. 30:225–231.PubMedCrossRefGoogle Scholar
  11. Berggren M. I., Gallegos A., Dressler L. A., Modest E. J., and Powis G. (1993). Inhibition of the signalling enzyme phosphatidylinositol-3-kinase by antitumor ether lipid analogues. Cancer Res. 53:4297–4302.PubMedGoogle Scholar
  12. Berkovic D. (1998). Cytotoxic etherphospholipid analogues. Gen. Pharmacol. 31:511–517.PubMedCrossRefGoogle Scholar
  13. Berkovic D., Luders S., Goeckenjan M., Hiddemann W., and Fleer E. A. (1997). Differential regulation of phospholipase A2 in human leukemia cells by the etherphospholipid analogue hexadecylphosphocholine. Biochem. Pharmacol. 53:1725–1733.PubMedCrossRefGoogle Scholar
  14. Berry K. A. Z. and Murphy R. C. (2005). Free radical oxidation of plasmalogen glycerophosphocholine containing esterified docosahexaenoic acid: structure determination by mass spectrometry. Antioxidants Redox Signal. 7:157–169.CrossRefGoogle Scholar
  15. Bichenkov E. and Ellingson J.-S. (1999). Temporal and quantitative expression of the myelin-associated lipids, ethanolamine plasmalogen, galactocerebroside, and sulfatide, in the differentiating CG-4 glial cell line. Neurochem. Res. 24:1549–1556.PubMedCrossRefGoogle Scholar
  16. Bick R. J., Youker K. A., Pownall H. J., Van Winkle W. B., and Entman M. L. (1991). Unsaturated aminophospholipids are preferentially retained by the fast skeletal muscle CaATPase during detergent solubilization. Evidence for a specific association between aminophospholipids and the calcium pump protein. Arch. Biochem. Biophys. 286:346–352.PubMedCrossRefGoogle Scholar
  17. Blank M. L., Smith Z. L., Fitzgerald V., and Snyder F. (1995). The CoA-independent transacylase in PAF biosynthesis: tissue distribution and molecular species selectivity. Biochim. Biophys. Acta Lipids Lipid Metab. 1254:295–301.CrossRefGoogle Scholar
  18. Blok W. L., Rabinovitch M., Zilberfarb V., Netea M. G., Buurman W. A., and Van der Meer J.-W. M. (2002). The influence of dietary fish-oil supplementation on cutaneous Leishmania amazonensis infection in mice. Cytokine 19:213–217.PubMedCrossRefGoogle Scholar
  19. Breckenridge W. C., Morgan I. G., Zanetta J.-P., and Vincendon G. (1973). Adult rat brain synaptic vesicles. II. Lipid composition. Biochim. Biophys. Acta 320:681–686.PubMedGoogle Scholar
  20. Brites P., Waterham H. R., and Wanders R. J.-A. (2004). Functions and biosynthesis of plasmalogens in health and disease. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1636:219–231.CrossRefGoogle Scholar
  21. Brodie C. (1995). Platelet activating factor induces nerve growth factor production by rat astrocytes. Neurosci. Lett. 186:5–8.PubMedCrossRefGoogle Scholar
  22. Buddecke E. and Andresen G. (1959). Quantitative Bestimmung der Acetalphosphatide (Plasmalogene) in der Aorta des Menschen unter Berucksichtigung der Arteriosklerose. Hoppe-Seyler’s Z. Physiol. Chem. 314:38–45.Google Scholar
  23. Calzada C., Bruckdorfer K. R., and Rice-Evans C. A. (1997). The influence of antioxidant nutrients on platelet function in healthy volunteers. Atherosclerosis 128:97–105.PubMedCrossRefGoogle Scholar
  24. Carballeira N. M. (2002). New advances in the chemistry of methoxylated lipids. Prog. Lipid Res. 41:437–456.PubMedCrossRefGoogle Scholar
  25. Catalán R. E., Martínez A. M., Aragonés M. D., Garde E., and Díaz G. (1993). Platelet-activating factor stimulates protein kinase C translocation in cerebral microvessels. Biochem. Biophys. Res. Commun. 192:446–451.PubMedCrossRefGoogle Scholar
  26. Chalon S., Delion-Vancassel S., Belzung C., Guilloteau D., Leguisquet A. M., Besnard J.-C., and Durand G. (1998). Dietary fish oil affects monoaminergic neurotransmission and behavior in rats. J.-Nutr. 128:2512–2519.PubMedGoogle Scholar
  27. Chao W. and Olson M. S. (1993). Platelet-activating factor: receptors and signal transduction. Biochem. J.-292:617–629.PubMedGoogle Scholar
  28. Cross G. A. M. (1990). Glycolipid anchoring of plasma membrane proteins. Annu. Rev. Cell Biol. 6:1–39.PubMedCrossRefGoogle Scholar
  29. del Cerro S., Arai A., and Lynch G. (1990). Inhibition of long-term potentiation by an antagonist of platelet-activating factor receptors. Behav. Neural Biol. 54:213–217.PubMedCrossRefGoogle Scholar
  30. Derewenda Z. S. and Derewenda U. (1998). The structure and function of platelet-activating factor acetylhydrolases. Cell Mol. Life Sci. 54:446–455.PubMedCrossRefGoogle Scholar
  31. Dudda A., Spiteller G., and Kobelt F. (1996). Lipid oxidation products in ischemic porcine heart tissue. Chem. Phys. Lipids 82:39–51.PubMedCrossRefGoogle Scholar
  32. Duhm J., Engelmann B., Schönthier U. M., and Streich S. (1993). Accelerated maximal velocity of the red blood cell Na+/K+ pump in hyperlipidemia is related to increase in 1-palmitoyl-2-arachidonoyl-plasmalogen phosphatidylethanolamine. Biochim. Biophys. Acta Biomembr. 1149:185–188.CrossRefGoogle Scholar
  33. Engelmann B. (2004). Plasmalogens: targets for oxidants and major lipophilic antioxidants. Biochem. Soc. Trans. 32:147–150.PubMedCrossRefGoogle Scholar
  34. Engelmann B., Streich S., Schönthier U. M., Richter W. O., and Duhm J.-(1992). Changes of membrane phospholipid composition of human erythrocytes in hyperlipidemias. I. Increased phosphatidylcholine and reduced sphingomyelin in patients with elevated levels of triacylglycerol-rich lipoproteins. Biochim. Biophys. Acta Lipids Lipid Metab. 1165:32–37.CrossRefGoogle Scholar
  35. Engelmann B., Bräutigam C., and Thiery J.-(1994). Plasmalogen phospholipids as potential protectors against lipid peroxidation of low density lipoproteins. Biochem. Biophys. Res. Commun. 204:1235–1242.PubMedCrossRefGoogle Scholar
  36. Faden A. I. and Halt P. (1992). Platelet-activating factor reduces spinal cord blood flow and causes behavioral deficits after intrathecal administration in rats through a specific receptor mechanism. J.-Pharmacol. Exp. Ther. 261:1064–1070.PubMedGoogle Scholar
  37. Fahy E., Subramaniam S., Brown H. A., Glass C. K., Merrill A. H. J., Murphy R. C., Raetz C. R. H., Russell D. W., Seyama Y., Shaw W., Shimizu T., Spener F., Van Meer G., VanNieuwenhze M. S., White S. H., Witztum J.-L., and Dennis E. A. (2005). A comprehensive classification system for lipids. J.-Lipid Res. 46:839–861.PubMedCrossRefGoogle Scholar
  38. Farkas T., Kitajka K., Fodor E., Csengeri I., Lahdes E., Yeo Y. K., Krasznai Z., and Halver J.-E. (2000). Docosahexaenoic acid-containing phospholipid molecular species in brains of vertebrates. Proc. Natl Acad. Sci. USA 97:6362–6366.PubMedCrossRefGoogle Scholar
  39. Farooqui A. A. and Horrocks L. A. (2001). Plasmalogens: workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7:232–245.PubMedCrossRefGoogle Scholar
  40. Farooqui A. A., Yang H.-C., and Horrocks L. A. (1995). Plasmalogens, phospholipases A2, and signal transduction. Brain Res. Rev. 21:152–161.PubMedCrossRefGoogle Scholar
  41. Farooqui A. A., Rosenberger T. A., and Horrocks L. A. (1997). Arachidonic acid, neurotrauma, and neurodegenerative diseases. In: Yehuda S. and Mostofsky D. I. (eds.), Handbook of Essential Fatty Acid Biology. Humana Press, Totowa, NJ, pp.-277–295.Google Scholar
  42. Farooqui A. A., Horrocks L. A., and Farooqui T. (2000a). Deacylation and reacylation of neural membrane glycerophospholipids. J.-Mol. Neurosci. 14:123–135.PubMedCrossRefGoogle Scholar
  43. Farooqui A. A., Horrocks L. A., and Farooqui T. (2000b). Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem. Phys. Lipids 106:1–29.PubMedCrossRefGoogle Scholar
  44. Farooqui A. A., Ong W. Y., Horrocks L. A., and Farooqui T. (2000c). Brain cytosolic phospholipase A2: localization, role, and involvement in neurological diseases. Neuroscientist 6:169–180.CrossRefGoogle Scholar
  45. Farooqui A. A., Antony P., Ong W. Y., Horrocks L. A., and Freysz L. (2004a). Retinoic acid-mediated phospholipase A2 signaling in the nucleus. Brain Res. Rev. 45:179–195.PubMedCrossRefGoogle Scholar
  46. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2004b). Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem. Res. 29:1961–1977.PubMedCrossRefGoogle Scholar
  47. Fauconneau B., Stadelmann-Ingrand S., Favrelière S., Baudouin J., Renaud L., Piriou A., and Tallineau C. (2001). Evidence against a major role of plasmalogens in the resistance of astrocytes in lactic acid-induced oxidative stress in-vitro. Arch. Toxicol. 74:695–701.PubMedCrossRefGoogle Scholar
  48. Felde R. and Spiteller G. (1995). Plasmalogen oxidation in human serum lipoproteins. Chem. Phys. Lipids 76:259–267.PubMedCrossRefGoogle Scholar
  49. Fernstrom J.-D. (1999). Effects of dietary polyunsaturated fatty acids on neuronal function. Lipids 34:161–169.PubMedCrossRefGoogle Scholar
  50. Fezza F., Bisogno T., Minassi A., Appendino G., Mechoulam R., and Di Marzo V. (2002). Noladin ether, a putative novel endocannabinoid: inactivation mechanisms and a sensitive method for its quantification in rat tissues. FEBS Lett. 513:294–298.PubMedCrossRefGoogle Scholar
  51. Ford D. A. and Gross R. W. (1988). Identification of endogenous 1-O-alk-1′-enyl-2-acyl-sn-glycerol in myocardium and its effective utilization by choline phosphotransferase. J.-Biol. Chem. 263:2644–2650.PubMedGoogle Scholar
  52. Ford D. A. and Gross R. W. (1989). Differential accumulation of diacyl and plasmalogenic diglycerides during myocardial ischemia. Circ. Res. 64:173–177.PubMedGoogle Scholar
  53. Ford D. A. and Hale C. C. (1996). Plasmalogen and anionic phospholipid dependence of the cardiac sarcolemmal sodium–calcium exchanger. FEBS Lett. 394:99–102.PubMedCrossRefGoogle Scholar
  54. Ford D. A., Miyake R., Glaser P. E., and Gross R. W. (1989). Activation of protein kinase C by naturally occurring ether-linked diglycerides. J.-Biol. Chem. 264:13818–13824.PubMedGoogle Scholar
  55. Francescangeli E., Boila A., and Goracci G. (2000). Properties and regulation of microsomal PAF-synthesizing enzymes in rat brain cortex. Neurochem. Res. 25:705–713.PubMedCrossRefGoogle Scholar
  56. Fujimoto K., Yao K., Miyazaki T., Hirano H., Nishikawa M., Kimura S., Murayama K., and Nonaka M. (1989). The effect of dietary docosahexaenoate on the learning ability of rats. In: Chandra R. K. (ed.), Health Effects of Fish and Fish Oils. ARTS Biomedical, The Netherlands, pp.-275–284.Google Scholar
  57. Fujita S., Ikegaya Y., Nishikawa M., Nishiyama N., and Matsuki N. (2001). Docosahexaenoic acid improves long-term potentiation attenuated by phospholipase A2 inhibitor in rat hippocampal slices. Br. J.-Pharmacol. 132:1417–1422.PubMedCrossRefGoogle Scholar
  58. Gills J.-J. and Dennis P. A. (2004). The development of phosphatidylinositol ether lipid analogues as inhibitors of the serine/threonine kinase, Akt. Expert Opin. Invest. Drugs 13:787–797.CrossRefGoogle Scholar
  59. Ginsberg L., Xuereb J.-H., and Gershfeld N. L. (1998). Membrane instability, plasmalogen content, and Alzheimer’s disease. J.-Neurochem. 70:2533–2538.PubMedCrossRefGoogle Scholar
  60. Glaser P. E. and Gross R. W. (1995). Rapid plasmenylethanolamine-selective fusion of membrane bilayers catalyzed by an isoform of glyceraldehyde-3-phosphate dehydrogenase: discrimination between glycolytic and fusogenic roles of individual isoforms. Biochemistry 34:12193–12203.PubMedCrossRefGoogle Scholar
  61. Gross R. W. (1985). Identification of plasmalogen as the major phospholipid constituent of cardiac sarcoplasmic reticulum. Biochemistry 24:1662–1668.PubMedCrossRefGoogle Scholar
  62. Hahnel D., Beyer K., and Engelmann B. (1999). Inhibition of peroxyl radical-mediated lipid oxidation by plasmalogen phospholipids and α-tocopherol. Free Radic. Biol. Med. 27:1087–1094.PubMedCrossRefGoogle Scholar
  63. Hanusˇ L., Abu-Lafi S., Fride E., Breuer A., Vogel Z., Shalev D. E., Kustanovich I., and Mechoulam R. (2001). 2-Arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proc. Natl Acad. Sci. USA 98:3662–3665.PubMedCrossRefGoogle Scholar
  64. Haroutunian V., Kanof P. D., Tsuboyama G. K., Campbell G. A., and Davis K. L. (1986). Animal models of Alzheimer’s disease: behavior, pharmacology, transplants. Can. J.-Neurol. Sci. 13:385–393.PubMedGoogle Scholar
  65. Hashimoto K., Hirasawa R., and Makino S. (1993). Comparison of the effects of intra-third ventricular administration of interleukin-1 or platelet activating factor on ACTH secretion and the sympathetic-adrenomedullary system in conscious rats. Acta Med. Okayama 47:1–6.PubMedGoogle Scholar
  66. Hazen S. L., Ford D. A., and Gross R. W. (1991). Activation of a membrane-associated phospholipase A2 during rabbit myocardial ischemia which is highly selective for plasmalogen substrate. J.-Biol. Chem. 266:5629–5633.PubMedGoogle Scholar
  67. Hazen S. L. and Gross R. W. (1993). The specific association of a phosphofructokinase isoform with myocardial calcium-independent phospholipase A2. Implications for the-coordinated regulation of phospholipolysis and glycolysis. J.-Biol. Chem. 268:9892–9900.PubMedGoogle Scholar
  68. Hirashima Y., Farooqui A. A., Mills J.-S., and Horrocks L. A. (1992). Identification and purification of calcium-independent phospholipase A2 from bovine brain cytosol. J.-Neurochem. 59:708–714.PubMedCrossRefGoogle Scholar
  69. Hofer G., Lichtenberg D., Kostner G. M., and Hermetter A. (1996). Oxidation of fluorescent glycero- and sphingophospholipids in human plasma lipoproteins: alkenylacyl subclasses are preferred targets. Clin. Biochem. 29:445–450.PubMedCrossRefGoogle Scholar
  70. Hoffman D. R., Truong C. T., and Johnston J.-M. (1986). The role of platelet-activating factor in human fetal lung maturation [published erratum appears in Am. J.-Obstet. Gynecol. 1987;157(1):179]. Am. J.-Obstet. Gynecol. 155:70–75.PubMedGoogle Scholar
  71. Hoffman-Kuczynski B. and Reo N. V. (2004). Studies of myo-inositol and plasmalogen metabolism in rat brain. Neurochem. Res. 29:843–855.PubMedCrossRefGoogle Scholar
  72. Hogyes E., Nyakas C., Kiliaan A., Farkas T., Penke B., and Luiten P. G. (2003). Neuroprotective effect of developmental docosahexaenoic acid supplement against excitotoxic brain damage in infant rats. Neuroscience 119:999–1012.PubMedCrossRefGoogle Scholar
  73. Honda Z., Ishii S., and Shimizu T. (2002). Platelet-activating factor receptor. J.-Biochem. 131:773–779.PubMedGoogle Scholar
  74. Hong S., Gronert K., Devchand P. R., Moussignac R. L., and Serhan C. N. (2003). Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells –– Autacoids in anti-inflammation. J.-Biol. Chem. 278:14677–14687.PubMedCrossRefGoogle Scholar
  75. Horrocks L. A. (1969). Metabolism of the ethanolamine phosphoglycerides of mouse brain myelin and microsomes. J.-Neurochem. 16:13–18.PubMedCrossRefGoogle Scholar
  76. Horrocks L. A. (1989). Sources of brain arachidonic acid uptake and turnover in glycerophospholipids. Ann. NY Acad. Sci. 559:17–24.CrossRefGoogle Scholar
  77. Horrocks L. A. and Sharma M. (1982). Plasmalogens and O-alkyl glycerophospholipids. In: Hawthorne J.-N. and Ansell G. B. (eds.), Phospholipids, New Comprehensive Biochemistry, Vol. 4. Elsevier Biomedical Press, Amsterdam, pp.-51–93.CrossRefGoogle Scholar
  78. Horrocks L. A., Yeo Y. K., Harder H. W., Mozzi R., and Goracci G. (1986). Choline plasmalogens, glycerophospholipid methylation, and receptor-mediated activation of adenylate cyclase. In: Greengard P. and Robison G. A. (eds.), Advances in Cyclic Nucleotide and Protein Phosphorylation Research, Vol. 20. Raven Press, New York, pp.-263–292.Google Scholar
  79. Ishii S. and Shimizu T. (2000). Platelet-activating factor (PAF) receptor and genetically engineered PAF receptor mutant mice. Prog. Lipid Res. 39:41–82.PubMedCrossRefGoogle Scholar
  80. Ishii S., Matsuda Y., Nakamura M., Waga I., Kume K., Izumi T., and Shimizu T. (1996). A murine platelet-activating factor receptor gene: cloning, chromosomal localization and up-regulation of expression by lipopolysaccharide in peritoneal resident macrophages. Biochem. J.-314 (Pt 2):671–678.PubMedGoogle Scholar
  81. Izumi T. and Shimizu T. (1995). Platelet-activating factor receptor: gene expression and signal transduction. Biochim. Biophys. Acta Lipids Lipid Metab. 1259:317–333.CrossRefGoogle Scholar
  82. Jansen G. A. and Wanders R. J.-A. (1997). Plasmalogens and oxidative stress: evidence against a major role of plasmalogens in protection against the superoxide anion radical. J.-Inherit. Metab. Dis. 20:85–94.PubMedCrossRefGoogle Scholar
  83. Jump D. B., Clarke S. D., Thelen A., and Liimatta M. (1994). Coordinate regulation of glycolytic and lipogenic gene expression by polyunsaturated fatty acids. J.-Lipid Res. 35:1076–1084.PubMedGoogle Scholar
  84. Jurkowitz M. S., Horrocks L. A., and Litsky M. L. (1999). Identification and characterization of alkenyl hydrolase (lysoplasmalogenase) in microsomes and identification of a plasmalogen-active phospholipase A2 in cytosol of small intestinal epithelium. Biochim. Biophys. Acta Lipids Lipid Metab. 1437:142–156.Google Scholar
  85. Kang J.-X. and Leaf A. (2000). Prevention of fatal cardiac arrhythmias by polyunsaturated fatty acids. Am. J.-Clin. Nutr. 71:202S–207S.PubMedGoogle Scholar
  86. Kato K. and Zorumski C. F. (1996). Platelet-activating factor as a potential retrograde messenger. J.-Lipid Mediat. Cell Signal. 14:341–348.PubMedCrossRefGoogle Scholar
  87. Kato K., Clark G. D., Bazan N. G., and Zorumski C. F. (1994). Platelet-activating factor as a potential retrograde messenger in CA1 hippocampal long-term potentiation. Nature 367:175–179.PubMedCrossRefGoogle Scholar
  88. Katsuki H. and Okuda S. (1995). Arachidonic acid as a neurotoxic and neurotrophic substance. Prog. Neurobiol. 46:607–636.PubMedCrossRefGoogle Scholar
  89. Kochanek P. M., Nemoto E. M., Melick J.-A., Evans R. W., and Burke D. F. (1988). Cerebrovascular and cerebrometabolic effects of intracarotid infused platelet-activating factor in rats. J.-Cereb. Blood Flow Metab. 8:546–551.PubMedGoogle Scholar
  90. Kochanek P. M., Melick J.-A., Schoettle R. J., Magargee M. J., Evans R. W., and Nemoto E. M. (1990). Endogenous platelet activating factor does not modulate blood flow and metabolism in normal rat brain. Stroke 21:459–462.PubMedGoogle Scholar
  91. Kornecki E. and Ehrlich Y. H. (1988). Neuroregulatory and neuropathological actions of the ether-phospholipid platelet-activating factor. Science 240:1792–1794.PubMedCrossRefGoogle Scholar
  92. Latorre E., Aragonés M. D., Fernández I., and Catalán R. E. (1999). Platelet-activating factor modulates brain sphingomyelin metabolism. Eur. J.-Biochem. 262:308–314.PubMedCrossRefGoogle Scholar
  93. Latorre E., Collado M. P., Fernández I., Aragonés M. D., and Catalán R. E. (2003). Signaling events mediating activation of brain ethanolamine plasmalogen hydrolysis by ceramide. Eur. J.-Biochem. 270:36–46.PubMedCrossRefGoogle Scholar
  94. Lee T. C. (1998). Biosynthesis and possible biological functions of plasmalogens. Biochim. Biophys. Acta Lipids Lipid Metab. 1394:129–145.CrossRefGoogle Scholar
  95. Liliom K., Fischer D. J., Virág T., Sun G., Miller D. D., Tseng J.-L., Desiderio D. M., Seidel M. C., Erickson J.-R., and Tigyi G. (1998a). Identification of a novel growth factor-like lipid, 1-O-cis-alk-1′-enyl-2-lyso-sn-glycero-3-phosphate (alkenyl-GP) that is present in commercial sphingolipid preparations. J.-Biol. Chem. 273: 13461–13468.PubMedCrossRefGoogle Scholar
  96. Liliom K., Guan Z., Tseng J.-L., Desiderio D. M., Tigyi G., and Watsky M. A. (1998b). Growth factor-like phospholipids generated after corneal injury. Am. J.-Physiol. 274:C1065–C1074.PubMedGoogle Scholar
  97. Lohner K. (1996). Is the high propensity of ethanolamine plasmalogens to form non-lamellar lipid structures manifested in the properties of biomembranes? Chem. Phys. Lipids 81:167–184.PubMedCrossRefGoogle Scholar
  98. Lohner K., Balgavy P., Hermetter A., Paltauf F., and Laggner P. (1991). Stabilization of non-bilayer structures by the etherlipid ethanolamine plasmalogen. Biochim. Biophys. Acta 1061:132–140.PubMedCrossRefGoogle Scholar
  99. Lu J., Xiao Y. J., Baudhuin L. M., Hong G. Y., and Xu Y. (2002). Role of ether-linked lysophosphatidic acids in ovarian cancer cells. J. Lipid Res. 43:463–476.PubMedGoogle Scholar
  100. Maclennan K. M., Smith P. F., and Darlington C. L. (1996). Platelet-activating factor in the CNS. Prog. Neurobiol. 50:585–596.PubMedCrossRefGoogle Scholar
  101. Maeba R. and Ueta N. (2003). Ethanolamine plasmalogens prevent the oxidation of cholesterol by reducing the oxidizability of cholesterol in phospholipid bilayers. J.-Lipid Res. 44:164–171.PubMedCrossRefGoogle Scholar
  102. Maeba R. and Ueta N. (2004a). A novel antioxidant action of ethanolamine plasmalogens in lowering the oxidizability of membranes. Biochem. Soc. Trans. 32:141–143.PubMedCrossRefGoogle Scholar
  103. Maeba R. and Ueta N. (2004b). Determination of choline and ethanolamine plasmalogens in human plasma by HPLC using radioactive triiodide (1−) ion (125I3 ). Anal. Biochem. 331:169–176.PubMedGoogle Scholar
  104. Mandel H., Sharf R., Berant M., Wanders R. J.-A., Vreken P., and Aviram M. (1998). Plasmalogen phospholipids are involved in HDL-mediated cholesterol efflux: insights from investigations with plasmalogen-deficient cells. Biochem. Biophys. Res. Commun. 250:369–373.PubMedCrossRefGoogle Scholar
  105. Marcheselli V. L. and Bazan N. G. (1994). Platelet-activating factor is a messenger in the electroconvulsive shock-induced transcriptional activation of c-fos and zif-268 in hippocampus. J.-Neurosci. Res. 37:54–61.PubMedCrossRefGoogle Scholar
  106. Marcheselli V. L., Rossowska M. J., Domingo M. T., Braquet P., and Bazan N. G. (1990). Distinct platelet-activating factor binding sites in synaptic endings and in intracellular membranes of rat cerebral cortex. J.-Biol. Chem. 265:9140–9145.PubMedGoogle Scholar
  107. Marcheselli V. L., Hong S., Lukiw W. J., Tian X. H., Gronert K., Musto A., Hardy M., Gimenez J.-M., Chiang N., Serhan C. N., and Bazan N. G. (2003). Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J.-Biol. Chem. 278:43807–43817.PubMedCrossRefGoogle Scholar
  108. Masuzawa Y., Sugiura T., Ishima Y., and Waku K. (1984). Turnover rates of the molecular species of ethanolamine plasmalogen of rat brain. J.-Neurochem. 42:961–968.PubMedCrossRefGoogle Scholar
  109. Mechoulam R., Ben Shabat S., Hanusˇ L., Ligumsky M., Kaminski N. E., Schatz A. R., Gopher A., Almog S., Martin B. R., and Compton D. R. (1995). Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 50:83–90.PubMedCrossRefGoogle Scholar
  110. Miguel B. G., Calcerrada M. C., Martin L., Catalán R. E., and Martínez A. M. (2001). Increase of phosphoinositide hydrolysis and diacylglycerol production by PAF in isolated rat liver nuclei. Prostaglandins Other Lipid Mediat. 65:159–166.PubMedCrossRefGoogle Scholar
  111. Miller S. L., Benjamin J.-A., and Morell P. (1977). Metabolism of glycerophospholipids of myelin and microsomes in rat brain. Reutilization of precursors. J.-Biol. Chem. 252:4025–4037.PubMedGoogle Scholar
  112. Miller S. L. and Morell P. (1978). Turnover of phosphatidylcholine in microsomes and myelin in brains of young and adult rats. J.-Neurochem. 31:771–777.PubMedCrossRefGoogle Scholar
  113. Mollinedo F., Gajate C., and Modolell M. (1994). The ether lipid 1-octadecyl-2-methyl-rac-glycero-3-phosphocholine induces expression of fos and jun proto-oncogenes and activates AP-1 transcription factor in human leukaemic cells. Biochem. J.-302:325–329.PubMedGoogle Scholar
  114. Müller E., Dagenais P., Alami N., and Rola-Pleszczynski M. (1993). Identification and functional characterization of platelet-activating factor receptors in human leukocyte populations using polyclonal anti-peptide antibody. Proc. Natl Acad. Sci. USA 90:5818–5822.PubMedCrossRefGoogle Scholar
  115. Munn N. J., Arnio E., Liu D., Zoeller R. A., and Liscum L. (2003). Deficiency in ethanolamine plasmalogen leads to altered cholesterol transport. J.-Lipid Res. 44:182–192.PubMedCrossRefGoogle Scholar
  116. Murphy R. C. (2001). Free-radical-induced oxidation of arachidonoyl plasmalogen phospholipids: Antioxidant mechanism and precursor pathway for bioactive eicosanoids. Chem. Res. Toxicol. 14:463–472.PubMedCrossRefGoogle Scholar
  117. Nagan N. and Zoeller R. A. (2001). Plasmalogens: biosynthesis and functions. Prog. Lipid Res. 40:199–229.PubMedCrossRefGoogle Scholar
  118. Nakanishi K., Yasugi E., Morita H., Dohi T., and Oshima M. (1994). Plasmenylethanolamine in human intestinal mucosa detected by an improved method for analysis of phospholipid. Biochem. Mol. Biol. Int. 33:457–462.PubMedGoogle Scholar
  119. Nishikawa M., Kimura S., and Akaike N. (1994). Facilitatory effect of docosahexaenoic acid on N-methyl-D-aspartate response in pyramidal neurones of rat cerebral cortex. J.-Physiol. (London) 475:83–93.PubMedGoogle Scholar
  120. Nogami K., Hirashima Y., Endo S., and Takaku A. (1997). Involvement of platelet-activating factor (PAF) in glutamate neurotoxicity in rat neuronal cultures. Brain Res. 754:72–78.PubMedCrossRefGoogle Scholar
  121. Oka S., Tsuchie A., Tokumura A., Muramatsu M., Suhara Y., Takayama H., Waku K., and Sugiura T. (2003). Ether-linked analogue of 2-arachidonoylglycerol (noladin ether) was not detected in the brains of various mammalian species. J.-Neurochem. 85:1374–1381.PubMedCrossRefGoogle Scholar
  122. Packard M. G., Teather L. A., and Bazan N. G. (1996). Effects of intrastriatal injections of platelet-activating factor and the PAF antagonist BN 52021 on memory. Neurobiol. Learn. Mem. 66:176–182.PubMedCrossRefGoogle Scholar
  123. Paltauf F. (1994). Ether lipids in biomembranes. Chem. Phys. Lipids 74:101–139.PubMedCrossRefGoogle Scholar
  124. Pettegrew J.-W., Panchalingam K., Hamilton R. L., and McClure R. J.-(2001). Brain membrane phospholipid alterations in Alzheimer’s disease. Neurochem. Res. 26:771–782.PubMedCrossRefGoogle Scholar
  125. Portilla D. and Dai G. (1996). Purification of a novel calcium-independent phospholipase A2 from rabbit kidney. J.-Biol. Chem. 271:15451–15457.PubMedCrossRefGoogle Scholar
  126. Powis G., Seewald M. J., Gratas C., Melder D., Riebow J., and Modest E. J.-(1992). Selective inhibition of phosphatidylinositol phospholipase C by cytotoxic ether lipid analogues. Cancer Res. 52:2835–2840.PubMedGoogle Scholar
  127. Prescott S. M., Zimmerman G. A., and McIntyre T. M. (1990). Platelet-activating factor. J.-Biol. Chem. 265:17381–17384.PubMedGoogle Scholar
  128. Rapoport S. I. (1999). In vivo fatty acid incorporation into brain phospholipids in relation to signal transduction and membrane remodeling. Neurochem. Res. 24:1403–1415.PubMedCrossRefGoogle Scholar
  129. Rice S. Q. J., Southan C., Boyd H. F., Terrett J. A., Macphee C. H., Moores K., Gloger I. S., and Tew D. G. (1998). Expression, purification and characterization of a human serine-dependent phospholipase A2 with high specificity for oxidized phospholipids and platelet activating factor. Biochem. J. 330:1309–1315.PubMedGoogle Scholar
  130. Rintala J., Seemann R., Chandrasekaran K., Rosenberger T. A., Chang L., Contreras M. A., Rapoport S. I., and Chang M. C. J.-(1999). 85 kDa cytosolic phospholipase A2 is a target for chronic lithium in rat brain. NeuroReport 10:3887–3890.PubMedCrossRefGoogle Scholar
  131. Roberts W. L., Myher J.-J., Kuksis A., and Rosenberry T. L. (1988). Alkylacylglycerol molecular species in the glycosylinositol phospholipid membrane anchor of bovine erythrocyte acetylcholinesterase. Biochem. Biophys. Res. Commun. 150:271–277.PubMedCrossRefGoogle Scholar
  132. Rosenberger T. A., Oki J., Purdon A. D., Rapoport S. I., and Murphy E. J.-(2002). Rapid synthesis and turnover of brain microsomal ether phospholipids in the adult rat. J.-Lipid Res. 43:59–68.PubMedGoogle Scholar
  133. Rougeot C., Junier M. P., Minary P., Weidenfeld J., Braquet P., and Dray F. (1990). Intracerebroventricular injection of platelet-activating factor induces secretion of adrenocorticotropin, beta-endorphin and corticosterone in conscious rats: a possible link between the immune and nervous systems. Neuroendocrinology 51:267–275.PubMedCrossRefGoogle Scholar
  134. Sasaki Y., Asaoka Y., and Nishizuka Y. (1993). Potentiation of diacylglycerol-induced activation of protein kinase C by lysophospholipids. FEBS Lett. 320:47–51.PubMedCrossRefGoogle Scholar
  135. Schulman G., Bodine P. V., and Litwack G. (1992). Modulators of the glucocorticoid receptor also regulate mineralocorticoid receptor function. Biochemistry 31:1734–1741.PubMedCrossRefGoogle Scholar
  136. Serhan C. N. (2005). Novel ω-3-derived local mediators in anti-inflammation and resolution. Pharmacol. Ther. 105:7–21.PubMedCrossRefGoogle Scholar
  137. Serhan C. N., Arita M., Hong S., and Gotlinger K. (2004). Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers. Lipids 39:1125–1132.PubMedCrossRefGoogle Scholar
  138. Sindelar P. J., Guan Z. Z., Dallner G., and Ernster L. (1999). The protective role of plasmalogens in iron-induced lipid peroxidation. Free Radic. Biol. Med. 26:318–324.PubMedCrossRefGoogle Scholar
  139. Snyder F. (1995). Platelet-activating factor: the biosynthetic and catabolic enzymes. Biochem. J.-305:689–705.PubMedGoogle Scholar
  140. Snyder F., Lee T.-C., and Wykle R. L. (1985). Ether-linked glycerolipids and their bioactive species: enzymes and metabolic regulation. In: Martonosi A. N. (ed.), The enzymes of biological membranes. Plenum Publishing Corporation, New York, pp.-1–58.Google Scholar
  141. Stadelmann-Ingrand S., Pontcharraud R., and Fauconneau B. (2004). Evidence for the reactivity of fatty aldehydes released from oxidized plasmalogens with phosphatidylethanolamine to form Schiff base adducts in rat brain homogenates. Chem. Phys. Lipids 131:93–105.PubMedCrossRefGoogle Scholar
  142. Stafforini D. M., Prescott S. M., Zimmerman G. A., and McIntyre T. M. (1996). Mammalian platelet-activating factor acetylhydrolases. Biochim. Biophys. Acta 1301:161–173.PubMedGoogle Scholar
  143. Sugiura T., Kondo S., Sukagawa A., Nakane S., Shinoda A., Itoh K., Yamashita A., and Waku K. (1995). 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 215:89–97.PubMedCrossRefGoogle Scholar
  144. Tjoelker L. W. and Stafforini D. M. (2000). Platelet-activating factor acetylhydrolases in health and disease. Biochim. Biophys. Acta 1488:102–123.PubMedGoogle Scholar
  145. Tokuoka S. M., Ishii S., Kawamura N., Satoh M., Shimada A., Sasaki S., Hirotsune S., Wynshaw-Boris A., and Shimizu T. (2003). Involvement of platelet-activating factor and LIS1 in neuronal migration. Eur. J.-Neurosci. 18:563–570.PubMedCrossRefGoogle Scholar
  146. Turini M. E. and Holub B. J.-(1994). The cleavage of plasmenylethanolamine by phospholipase A2 appears to be mediated by the low affinity binding site of the TxA2/PGH2 receptor in U46619-stimulated human platelets. Biochim. Biophys. Acta Lipids Lipid Metab. 1213:21–26.CrossRefGoogle Scholar
  147. Uemura Y., Lee T. C., and Snyder F. (1991). A coenzyme A-independent transacylase is linked to the formation of platelet-activating factor (PAF) by generating the lyso-PAF intermediate in the remodeling pathway. J.-Biol. Chem. 266:8268–8272.PubMedGoogle Scholar
  148. Unger C., Maniera T., Kaufmann-Kolle P., and Eibl H. (1998). In vivo antileishmanial activity of hexadecylphosphocholine and other alkylphosphocholines. Drugs Today 34(Suppl. F):133–140.Google Scholar
  149. van der Luit A. H., Budde M., Ruurs P., Verheij M., and Van Blitterswijk W. J.-(2002). Alkyl-lysophospholipid accumulates in lipid rafts and induces apoptosis via raft-dependent endocytosis and inhibition of phosphatidylcholine synthesis. J.-Biol. Chem. 277:39541–39547.CrossRefGoogle Scholar
  150. Watkins L. R., Milligan E. D., and Maier S. F. (2001). Glial activation: a driving force for pathological pain. Trends Neurosci. 24:450–455.PubMedCrossRefGoogle Scholar
  151. Weisser M., Vieth M., Stolte M., Riederer P., Pfeuffer R., Leblhuber F., and Spiteller G. (1997). Dramatic increase of alpha-hydroxyaldehydes derived from plasmalogens in the aged human brain. Chem. Phys. Lipids 90:135–142.PubMedCrossRefGoogle Scholar
  152. Williams S. D. and Ford D. A. (1997). Activation of myocardial cAMP-dependent protein kinase by lysoplasmenylcholine. FEBS Lett. 420:33–38.PubMedCrossRefGoogle Scholar
  153. Williams S. D. and Ford D. A. (2001). Calcium-independent phospholipase A2 mediates CREB phosphorylation and c-fos expression during ischemia. Am. J.-Physiol. Heart Circ. Physiol. 281:H168–H176.PubMedGoogle Scholar
  154. Wu R., Lemne C., De Faire U., and Frostegard J.-(1999). Antibodies to platelet-activating factor are associated with borderline hypertension, early atherosclerosis and the metabolic syndrome. J.-Intern. Med. 246:389–397.PubMedCrossRefGoogle Scholar
  155. Xiao Y. F. and Li X. Y. (1999). Polyunsaturated fatty acids modify mouse hippocampal neuronal excitability during excitotoxic or convulsant stimulation. Brain Res. 846:112–121.PubMedCrossRefGoogle Scholar
  156. Yavin E. and Gatt S. (1972). Oxygen-dependent cleavage of the vinyl ether linkage of plasmalogens. 2. Identification of the low molecular weight active component and the reaction mechanism. Eur. J.-Biochem. 25:437–446.PubMedCrossRefGoogle Scholar
  157. Yehuda S., Rabinovitz S., Carasso R. L., and Mostofsky D. I. (2002). The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol. Aging 23:843–853.PubMedCrossRefGoogle Scholar
  158. Yoshida H., Imaizumi T., Tanji K., Sakaki H., Metoki N., Hatakeyama M., Yamashita K., Ishikawa A., Taima K., Sato Y., Kimura H., and Satoh K. (2005). Platelet-activating factor enhances the expression of nerve growth factor in normal human astrocytes under hypoxia. Mol. Brain Res. 133:95–101.PubMedCrossRefGoogle Scholar
  159. Young C., Gean P. W., Chiou L. C., and Shen Y. Z. (2000). Docosahexaenoic acid inhibits synaptic transmission and epileptiform activity in the rat hippocampus. Synapse 37:90–94.PubMedCrossRefGoogle Scholar
  160. Yue T. L., Gleason M. M., Gu J.-L., Lysko P. G., Hallenbeck J., and Feuerstein G. (1991). Platelet-activating factor (PAF) receptor-mediated calcium mobilization and phosphoinositide turnover in neurohybrid NG108-15 cells: studies with BN50739, a new PAF antagonist. J.-Pharmacol. Exp. Ther. 257:374–381.PubMedGoogle Scholar
  161. Zhu P. M., DeCoster M. A., and Bazan N. G. (2004). Interplay among platelet-activating factor, oxidative stress, and group I metabotropic glutamate receptors modulates neuronal survival. J.-Neurosci. Res. 77:525–531.PubMedCrossRefGoogle Scholar
  162. Zimmer L., Delion-Vancassel S., Durand G., Guilloteau D., Bodard S., Besnard J.-C., and Chalon S. (2000). Modification of dopamine neurotransmission in the nucleus accumbens of rats deficient in n-3 polyunsaturated fatty acids. J.-Lipid Res. 41:32–40.PubMedGoogle Scholar
  163. Zimmerman G. A., Elstad M. R., Lorant D. E., Mclntyre T. M., Prescott S. M., Topham M. K., Weyrich A. S., and Whatley R. E. (1996). Platelet-activating factor (PAF): signalling and adhesion in cell–cell interactions. Adv. Exp. Med. Biol. 416:297–304.PubMedGoogle Scholar
  164. Zoeller R. A., Morand O. H., and Raetz C. R. H. (1988). A possible role for plasmalogens in protecting animal cells against photosensitized killing. J.-Biol. Chem. 263:11590–11596.PubMedGoogle Scholar
  165. Zommara M., Tachibana N., Mitsui K., Nakatani N., Sakono M., Ikeda I., and Imaizumi K. (1995). Inhibitory effect of ethanolamine plasmalogen on iron- and copper-dependent lipid peroxidation. Free Radical Biol. Med. 18:599–602.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations