Assay Methods for Phospholipase A2 Activities in Brain


Assay Procedure Fluorometric Assay Spectrophotometric Procedure Coupling Enzyme Fatty Aldehyde 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aarsman A. J.-and van den Bosch H. (1977). A continuous spectrophotometric assay for membrane-bound lysophospholipases using a thioester substrate analog. FEBS Lett. 79:317–320.PubMedCrossRefGoogle Scholar
  2. Aarsman A. J.-and van den Bosch H. (1979). A comparison of acyl-oxyester and acyl-thioester substrates for some lipolytic enzymes. Biochim. Biophys. Acta 572:519–530.PubMedGoogle Scholar
  3. Akbar M., Calderon F., Wen Z. M., and Kim H. Y. (2005). Docosahexaenoic acid: a positive modulator of Akt signaling in neuronal survival. Proc. Natl Acad. Sci. USA 102:10858, 12997.PubMedCrossRefGoogle Scholar
  4. Albers M., Meurer H., Marki F., and Klotz J.-(1993). Phospholipase A2 activity in serum of neuroleptic-naive psychiatric inpatients. Pharmacopsychiatry 26:94–98.PubMedCrossRefGoogle Scholar
  5. Babitskaya S. V., Kisel M. A., and Kisselev P. A. (2004). Bromoacyl analogues of phosphatidylcholine with intramolecular fluorescence quenching and their use as substrates for continuous monitoring of phospholipase A2 activity. Appl. Biochem. Microbiol. 40:351–356.CrossRefGoogle Scholar
  6. Bayburt T., Yu B. Z., Street I., Ghomashchi F., Laliberte F., Perrier H., Wang Z., Homan R., Jain M. K., and Gelb M. H. (1995). Continuous, vesicle-based fluorimetric assays of 14- and 85-kDa phospholipases A2. Anal. Biochem. 232:7–23.PubMedCrossRefGoogle Scholar
  7. Blanchard S. G., Harris C. O., and Parks D. J.-(1994). A fluorescence-based assay for human type II phospholipase A2. Anal. Biochem. 222:435–440.PubMedCrossRefGoogle Scholar
  8. Blanchard S. G., Andrews R. C., Brown P. J., Gan L. S., Lee F. W., Sinhababu A. K., and Wheeler T. N. (1998). Discovery of bioavailable inhibitors of secretory phospholipase A2. Pharm. Biotechnol. 11:445–463.PubMedCrossRefGoogle Scholar
  9. Bligh E. G. and Dyer W. J.-(1959). A rapid method of total lipid extraction and purification. Can. J.-Biochem. Physiol. 37:911–917.PubMedGoogle Scholar
  10. Bolognese B., McCord M., and Marshall L. A. (1995). Differential regulation of elicited-peritoneal macrophage 14 kDa and 85 kDa phospholipase A2(s) by transforming growth factor-beta. Biochim. Biophys. Acta 1256:201–209.PubMedGoogle Scholar
  11. Caramelo J.-J. and Delfino J.-M. (2004). A subnanogram assay for phospholipase activity based on a long-chain radioiodinatable phosphatidylcholine. Anal. Biochem. 333:289–295.PubMedCrossRefGoogle Scholar
  12. Cox J.-W. and Horrocks L. A. (1981). Preparation of thioester substrates and development of continuous spectrophotometric assays for phospholipase A1 and monoacylglycerol lipase. J.-Lipid Res. 22:496–505.PubMedGoogle Scholar
  13. De Haas G. H., Bonsen P. P. M., Pieterson W. A., and van Deenen L. L. M. (1971). Studies on phospholipase A and its zymogen from porcine pancreas. 3. Action of the enzyme on short-chain lecithins. Biochim. Biophys. Acta 239:252–266.PubMedGoogle Scholar
  14. Dole V. P. (1956). A relation between non-esterified fatty acids in plasma and the metabolism of glucose. J.-Clin. Invest. 35:150–154.PubMedCrossRefGoogle Scholar
  15. Duncombe W. G. (1963). The colorimetric micro-determination of long-chain fatty acids. Biochem. J.-88:7–12.PubMedGoogle Scholar
  16. Elsbach P. and Weiss J.-(1991). Utilization of labeled Escherichia coli as phospholipase substrate. Methods Enzymol. 197:24–31.PubMedCrossRefGoogle Scholar
  17. Farooqui A. A. and Horrocks L. A. (1988). Methods for the determination of phospholipases, lipases and lysophospholipases. In: Boulton A. A., Baker G. B., and Horrocks L. A. (eds.), Neuromethods, Vol. 7, Lipids and Related Compounds. Humana Press, New Jersey, pp.-179–209.Google Scholar
  18. Farooqui A. A., Taylor W. A., Pendley C. E. **2., Cox J.-W., and Horrocks L. A. (1984). Spectrophotometric determination of lipases, lysophospholipases, and phospholipases. J.-Lipid Res. 25:1555–1562.PubMedGoogle Scholar
  19. Farooqui A. A., Yang H.-C., Hirashima Y., and Horrocks L. A. (1999). Determination of plasmalogen-selective phospholipase A2 activity by radiochemical and fluorometric assay procedures. In: Doolittle M. H. and Reue K. (eds.), Mammalian Lipases and Phospholipases. Humana Press, Totowa, NJ, pp.-39–47.Google Scholar
  20. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2003a). Plasmalogens, docosahexaenoic acid, and neurological disorders. In: Roels F., Baes M., and de Bies S. (eds.), Peroxisomal Disorders and Regulation of Genes. Kluwer Academic/Plenum Publishers, London, pp.-335–354.Google Scholar
  21. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2003b). Stimulation of lipases and phospholipases in Alzheimer disease. In: Szuhaj B. and van Nieuwenhuyzen W. (eds.), Nutrition and Biochemistry of Phospholipids. AOCS Press, Champaign, pp.-14–29.Google Scholar
  22. Fuji M., Watanabe F., Fujii Y., Hashizume H., Okuno T., Shirahase K., Teshirogi I., and-Ohtani M. (1997). A stereoselective and highly practical synthesis of cytosolic phospholipase A2 substrate, 2-S-arachidonoyl-1-O-hexadecyl-sn-2-thioglycero-3- O-phosphocholine. J.-Org. Chem. 62:6804–6809.CrossRefGoogle Scholar
  23. Gattaz W. F., Kollisch M., Thuren T., Virtanen J.-A., and Kinnunen P. K. (1987). Increased plasma phospholipase A2 activity in schizophrenic patients: reduction after neuroleptic therapy. Biol. Psychiatry 22:421–426.PubMedCrossRefGoogle Scholar
  24. Hendrickson H. S. (1991). Phospholipase A2 assays with fluorophore-labeled lipid substrates. Methods Enzymol. 197:90–94.PubMedCrossRefGoogle Scholar
  25. Hendrickson H. S. (1994). Fluorescence-based assays of lipases, phospholipases, and other lipolytic enzymes. Anal. Biochem. 219:1–8.PubMedCrossRefGoogle Scholar
  26. Hendrickson H. S. and Rauk P. N. (1981). Continuous fluorometric assay of phospholipase A2 with pyrene-labeled lecithin as a substrate. Anal. Biochem. 116:553–558.PubMedCrossRefGoogle Scholar
  27. Hendrickson H. S., Kotz K. J., and Hendrickson E. K. (1990). Evaluation of fluorescent and colored phosphatidylcholine analogs as substrates for the assay of phospholipase A2. Anal. Biochem. 185:80–83.PubMedCrossRefGoogle Scholar
  28. Hendrickson H. S., Hendrickson E. K., Johnson I. D., and Farber S. A. (1999). Intramolecularly quenched BODIPY-labeled phospholipid analogs in phospholipase A2 and platelet-activating factor acetylhydrolase assays and in-vivo fluorescence imaging. Anal. Biochem. 276:27–35.PubMedCrossRefGoogle Scholar
  29. Hirashima Y., Farooqui A. A., and Horrocks L. A. (1989a). Fluorimetric coupled enzyme assay for lysoplasmalogenase activity in liver. Biochem. J.-260:605–608.PubMedGoogle Scholar
  30. Hirashima Y., Jurkowitz-Alexander M. S., Farooqui A. A., and Horrocks L. A. (1989b). Continuous spectrophotometric assay of phospholipase A2 activity hydrolyzing plasmalogens using coupling enzymes. Anal. Biochem. 176:180–184.PubMedCrossRefGoogle Scholar
  31. Hirashima Y., Mills J.-S., Yates A. J., and Horrocks L. A. (1990). Phospholipase A2 activities with a plasmalogen substrate in brain and in neural tumor cells: a sensitive and specific assay using pyrenesulfonyl-labeled plasmenylethanolamine. Biochim. Biophys. Acta 1074:35–40.Google Scholar
  32. Hirashima Y., Farooqui A. A., Mills J.-S., and Horrocks L. A. (1992). Identification and purification of calcium-independent phospholipase A2 from bovine brain cytosol. J.-Neurochem. 59:708–714.PubMedCrossRefGoogle Scholar
  33. Huang Z., Laliberté F., Tremblay N. M., Weech P. K., and Street I. P. (1994). A continuous fluorescence-based assay for the human high-molecular-weight cytosolic phospholipase A 2. Anal. Biochem. 222:110–115.PubMedCrossRefGoogle Scholar
  34. Jiménez M., Cabanes J., Gandía-Herrero F., Escribano J., García-Carmona F., and Pérez-Gilabert M. (2003). A continuous spectrophotometric assay for phospholipase A2 activity. Anal. Biochem. 319:131–137.PubMedCrossRefGoogle Scholar
  35. Jurkowitz-Alexander M. S. and Horrocks L. A. (1990). Lysoplasmalogenase: solubilization and partial purification from liver microsomes. Methods Enzymol. 197:483–490.CrossRefGoogle Scholar
  36. Jurkowitz-Alexander M. S., Hirashima Y., and Horrocks L. A. (1991). Coupled enzyme assays for phospholipase activities with plasmalogen substrates. Methods Enzymol. 197:79–89.PubMedCrossRefGoogle Scholar
  37. Katila H., Appelberg B., and Rimon R. (1997). No differences in phospholipase-A2 activity between acute psychiatric patients and controls. Schizophr. Res. 26:103–105.PubMedCrossRefGoogle Scholar
  38. Kinkaid A. R. and Wilton D. C. (1993). A continuous fluorescence displacement assay for phospholipase A2 using albumin and medium chain phospholipid substrates. Anal. Biochem. 212:65–70.PubMedCrossRefGoogle Scholar
  39. Lasch J., Willhardt I., Kinder D., Sauer H., and Smesny S. (2003). Fluorometric assays of phospholipase A2 activity with three different substrates in biological samples of patients with schizophrenia. Clin. Chem. Lab. Med. 41:908–914.PubMedCrossRefGoogle Scholar
  40. Lucas K. K. and Dennis E. A. (2005). Distinguishing phospholipase A2 types in biological samples by employing group-specific assays in the presence of inhibitors. Prostaglandins Other Lipid Mediat. 77:235–248.PubMedCrossRefGoogle Scholar
  41. Marki F., Pignat W., Steinbruckner B., and Hoffmann G. E. (1990). Determination of human serum phospholipase A2. Comparison of two methods. J.-Clin. Chem. Clin. Biochem. 28:543–544.PubMedGoogle Scholar
  42. Markova M., Koratkar R. A., Silverman K. A., Sollars V. E., MacPhee-Pellini M., Walters R., Palazzo J.-P., Buchberg A. M., Siracusa L. D., and Farber S. A. (2005). Diversity in secreted PLA2-IIA activity among inbred mouse strains that are resistant or susceptible to Apc Min /+ tumorigenesis. Oncogene 24:6450–6458.PubMedGoogle Scholar
  43. Nakamura T., Lin L. L., Kharbanda S., Knopf J., and Kufe D. (1992). Macrophage colony stimulating factor activates phosphatidylcholine hydrolysis by cytoplasmic phospholipase A2. EMBO J.-11:4917–4922.PubMedGoogle Scholar
  44. Nevalainen T. J., Eerola L. I., Rintala E., Jukka V., Laine O., Lambeau G., and Timo J.-N. A. (2005). Time-resolved fluoroimmunoassays of the complete set of secreted phospholipases A2 in human serum. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1733:210–223.CrossRefGoogle Scholar
  45. Radvanyi F., Jordan L., Russo-Marie F., and Bon C. (1989). A sensitive and continuous fluorometric assay for phospholipase A2 using pyrene-labeled phospholipids in the presence of serum albumin. Anal. Biochem. 177:103–109.PubMedCrossRefGoogle Scholar
  46. Reynolds L. J., Washburn W. N., Deems R. A., and Dennis E. A. (1991). Assay strategies and methods for phospholipases. Methods Enzymol. 197:3–23.PubMedCrossRefGoogle Scholar
  47. Reynolds L. J., Hughes L. L., Yu L., and Dennis E. A. (1994). 1-Hexadecyl-2-arachidonoylthio-2-deoxy-sn-glycero-3-phosphorylcholine as a substrate for the microtiterplate assay of human cytosolic phospholipase A2. Anal. Biochem. 217:25–32.PubMedCrossRefGoogle Scholar
  48. Rosenthal M. D., Gordon M. N., Buescher E. S., Slusser J.-H., Harris L. K., and Franson R. C. (1995). Human neutrophils store type II 14-kDa phospholipase A2 in granules and secrete active enzyme in response to soluble stimuli. Biochem. Biophys. Res. Commun. 208:650–656.PubMedCrossRefGoogle Scholar
  49. Roshak A., Sathe G., and Marshall L. A. (1994). Suppression of monocyte 85-kDa phospholipase A2 by antisense and effects on endotoxin-induced prostaglandin biosynthesis. J.-Biol. Chem. 269:25999–26005.PubMedGoogle Scholar
  50. Ross B. M., Hudson C., Erlich J., Warsh J.-J., and Kish S. J.-(1997). Increased phospholipid breakdown in schizophrenia –– evidence for the involvement of a calcium-independent phospholipase A2. Arch. Gen. Psychiatry 54:487–494.PubMedGoogle Scholar
  51. Santavuori S. A., Kortesuo P. T., Eskola J.-U., and Nevalainen T. J.-(1991). Application of a new monoclonal antibody for time-resolved fluoroimmunoassay of human pancreatic phospholipase A2. Eur. J.-Clin. Chem. Clin. Biochem. 29:819–826.PubMedGoogle Scholar
  52. Schulze R. M., Muller W. E., and Gattaz W. F. (1988). A radioenzymatic assay for the determination of phospholipase A2 in serum suitable for psychiatric and non-psychiatric patients. Pharmacopsychiatry 21:348–349.PubMedCrossRefGoogle Scholar
  53. Somerharju P. (2002). Pyrene-labeled lipids as tools in membrane biophysics and cell biology. Chem. Phys. Lipids 116:57–74.PubMedCrossRefGoogle Scholar
  54. Sunamoto J., Kondo H., Nomura T., and Okamoto M. (1980). Liposomal membranes. 2.-Synthesis of a novel pyrene-labeled lecithin and structural studies on liposomal bilayers. J.-Am. Chem. Soc. 102:1146–1152.CrossRefGoogle Scholar
  55. Vesterqvist O., Sargent C. A., Grover G. J., Warrack B. M., DiDonato G. C., and Ogletree M. L. (1994). Characterization of rabbit myocardial phospholipase A2 activity using endogenous phospholipid substrates. Anal. Biochem. 217:210–219.PubMedCrossRefGoogle Scholar
  56. Wells M. A. (1972). A kinetic study of the phospholipase A2 (Crotalus adamanteus) catalyzed hydrolysis of 1,2-dibutyryl-sn-glycero-3-phosphorylcholine. Biochemistry 11:1030–1041.PubMedCrossRefGoogle Scholar
  57. Wilton D. C. (1990). A continuous fluorescence displacement assay for the measurement of phospholipase A2 and other lipases that release long-chain fatty acids. Biochem. J.-266:435–439.PubMedGoogle Scholar
  58. Yang H. C., Mosior M., Johnson C. A., Chen Y. J., and Dennis E. A. (1999). Group-specific assays that distinguish between the four major types of mammalian phospholipase A2. Anal. Biochem. 269:278–288.PubMedCrossRefGoogle Scholar
  59. Yarger D. E., Patrick C. B., Rapoport S. I., and Murphy E. J.-(2000). A continuous fluorometric assay for phospholipase A2 activity in brain cytosol. J.-Neurosci. Methods 100:127–133.PubMedCrossRefGoogle Scholar
  60. Yu L. and Dennis E. A. (1991). Thio-based phospholipase assay. Methods Enzymol. 197:65–75.PubMedCrossRefGoogle Scholar
  61. Yu L., Ternansky R. J., Crisologo J.-F., Chang J., Baker B. L., and Coutts S. M. (1998). Carbonothioate phospholipids as substrate for a spectrophotometric assay of phospholipase A2. Anal. Biochem. 265:35–41.PubMedCrossRefGoogle Scholar
  62. Zhu X., Munoz N. M., Rubio N., Herrnreiter A., Mayer D., Douglas I., and Leff A. R. (1996). Quantitation of the cytosolic phospholipase A2 (type IV) in isolated human peripheral blood eosinophils by sandwich-ELISA. J.-Immunol. Methods 199:119–126.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations