Arachidonic Acid Phosphatidic Acid Lysophosphatidic Acid Phospholipid Metabolism Lipid Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adayev T., Estephan R., Meserole S., Mazza B., Yurkow E. J., and Banerjee P. (1998). Externalization of phosphatidylserine may not be an early signal of apoptosis in neuronal cells, but only the phosphatidylserine-displaying apoptotic cells are phagocytosed by microglia. J.-Neurochem. 71:1854–1864.PubMedCrossRefGoogle Scholar
  2. Alb J.-G., Jr., Kearns M. A., and Bankaitis V. A. (1996). Phospholipid metabolism and membrane dynamics. Curr. Opin. Cell Biol. 8:534–541.PubMedCrossRefGoogle Scholar
  3. Albi E. and Magni M. P. V. (2004). The role of intranuclear lipids. Biol. Cell 96:657–667.PubMedCrossRefGoogle Scholar
  4. Albi E. and Viola M. M. (1999). Phosphatidylcholine-dependent phospholipase C in rat liver chromatin. Biochem. Biophys. Res. Commun. 265:640–643.PubMedCrossRefGoogle Scholar
  5. Albi E., Rossi G., Maraldi N. M., Magni M. V., Cataldi S., Solimando L., and Zini N. (2003). Involvement of nuclear phosphatidylinositol-dependent phospholipases C in cell cycle progression during rat liver regeneration. J.-Cell. Physiol. 197:181–188.PubMedCrossRefGoogle Scholar
  6. Antonsson B. (1997). Phosphatidylinositol synthase from mammalian tissues. Biochim. Biophys. Acta 1348:179–186.PubMedGoogle Scholar
  7. Antony P., Kanfer J.-N., and Freysz L. (2000). Phosphatidylcholine metabolism in nuclei of phorbol ester activated LA-N-1 neuroblastoma cells. Neurochem. Res. 25:1073–1082.PubMedCrossRefGoogle Scholar
  8. Antony P., Freysz L., Horrocks L. A., and Farooqui A. A. (2001). Effect of retinoic acid on the Ca2+-independent phospholipase A2 in nuclei of LA-N-1 neuroblastoma cells. Neurochem. Res. 26:83–88.PubMedCrossRefGoogle Scholar
  9. Antony P., Freysz L., Horrocks L. A., and Farooqui A. A. (2003). Ca2+-independent phospholipases A2 and production of arachidonic acid in nuclei of LA-N-1 cell cultures: a specific receptor activation mediated with retinoic acid. Mol. Brain Res. 115:187–195.PubMedCrossRefGoogle Scholar
  10. Araki W. and Wurtman R. J.-(1997). Control of membrane phosphatidylcholine biosynthesis by diacylglycerol levels in neuronal cells undergoing neurite outgrowth. Proc. Natl Acad. Sci. USA 94:11946–11950.PubMedCrossRefGoogle Scholar
  11. Attard G. S., Templer R. H., Smith W. S., Hunt A. N., and Jackowski S. (2000). Modulation of CTP:phosphocholine cytidylyltransferase by membrane curvature elastic stress. Proc. Natl Acad. Sci. USA 97:9032–9036.PubMedCrossRefGoogle Scholar
  12. Baker R. R. and Chang H. Y. (1987). The incorporation of fatty acids into triacylglycerols of isolated neuronal nuclear envelopes: the influence of thiol reducing reagents and chromatin. Biochim. Biophys. Acta 920:285–292.PubMedGoogle Scholar
  13. Baker R. R. and Chang H. (1990a). Phosphatidylinositol synthetase activities in neuronal nuclei and microsomal fractions isolated from immature rabbit cerebral cortex. Biochim. Biophys. Acta 1042:55–61.PubMedGoogle Scholar
  14. Baker R. R. and Chang H. Y. (1990b). The acylation of 1-acyl-sn-glycero-3-phosphate by neuronal nuclei and microsomal fractions of immature rabbit cerebral cortex. Biochem. Cell Biol. 68:641–647.PubMedCrossRefGoogle Scholar
  15. Baker R. R. and Chang H. Y. (1997). Neuronal nuclear acetyltransferases involved in the synthesis of platelet-activating factor are located in the nuclear envelope and show differential losses in activity. Biochim. Biophys. Acta Lipids Lipid Metab. 1345:197–206.CrossRefGoogle Scholar
  16. Baudry M., Massicotte G., and Hauge S. (1991). Phosphatidylserine increases the affinity of the AMPA/quisqualate receptor in rat brain membranes. Behav. Neural Biol. 55:137–140.PubMedCrossRefGoogle Scholar
  17. Binaglia L., Goracci G., Porcellati G., Roberti R., and Woelk H. (1973). The synthesis of choline and ethanolamine phosphoglycerides in neuronal and glial cells of rabbit in-vitro. J.-Neurochem. 21:1067–1082.PubMedCrossRefGoogle Scholar
  18. Bleasdale J.-E., Eichberg J., and Hauser G. (1985). Inositol and phosphoinositides: metabolism and regulation, pp.-1–698. Humana Press, Clifton, NJ.Google Scholar
  19. Blusztajn J.-K., Zeisel S. H., and Wurtman R. J.-(1979). Synthesis of lecithin (phosphatidylcholine) from phosphatidylethanolamine in bovine brain. Brain Res. 179:319–327.PubMedCrossRefGoogle Scholar
  20. Bottiglieri T. and Hyland K. (1994). S-adenosylmethionine levels in psychiatric and neurological disorders: a review. Acta Neurol. Scand. Suppl. 154:19–26.PubMedCrossRefGoogle Scholar
  21. Brown D. A. and London E. (1998a). Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14:111–136.PubMedCrossRefGoogle Scholar
  22. Brown D. A. and London E. (1998b). Structure and origin of ordered lipid domains in biological membranes. J.-Membr. Biol. 164:103–114.PubMedCrossRefGoogle Scholar
  23. Buratta S., Mambrini R., Miniaci M. C., Tempia F., and Mozzi R. (2004). Group I metabotropic glutamate receptors mediate the inhibition of phosphatidylserine synthesis in rat cerebellar slices: a possible role in physiology and pathology. J.-Neurochem. 89:730–738.PubMedCrossRefGoogle Scholar
  24. Carter A. N., Huang R., Sorisky A., Downes C. P., and Rittenhouse S. E. (1994). Phosphatidylinositol 3,4,5-trisphosphate is formed from phosphatidylinositol 4,5-bisphosphate in thrombin-stimulated platelets. Biochem. J.-301:415–420.PubMedGoogle Scholar
  25. Cheng H. F., Jiang M. J., Chen C. L., Liu S. M., Wong L. P., Lomasney J.-W., and King K. (1995). Cloning and identification of amino acid residues of human phospholipase Cδ1 essential for catalysis. J.-Biol. Chem. 270:5495–5505.PubMedCrossRefGoogle Scholar
  26. Chiu E. K. and Richardson J.-S. (1985). Behavioral and neurochemical aspects of prostaglandins in brain function. Gen. Pharmacol. 16:163–175.PubMedGoogle Scholar
  27. Chun J.-(1999). Lysophospholipid receptors: implications for neural signaling. Crit Rev. Neurobiol. 13:151–168.PubMedGoogle Scholar
  28. Chun J., Contos J.-J. A., and Munroe D. (1999). A growing family of receptor genes for lysophosphatidic acid (LPA) and other lysophospholipids (LPs). Cell Biochem. Biophys. 30:213–242.PubMedCrossRefGoogle Scholar
  29. Clark J.-D., Schievella A. R., Nalefski E. A., and Lin L.-L. (1995). Cytosolic phospholipase A2. J.-Lipid Mediat. Cell Signal. 12:83–117.PubMedCrossRefGoogle Scholar
  30. Cocco L., Martelli A. M., Gilmour R. S., Rhee S. G., and Manzoli F. A. (2001). Nuclear phospholipase C and signaling. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1530:1–14.CrossRefGoogle Scholar
  31. Colquhoun A. (1998). Induction of apoptosis by polyunsaturated fatty acids and its relationship to fatty acid inhibition of carnitine palmitoyltransferase I activity in Hep2 cells. Biochem. Mol. Biol. Int. 45:331–336.PubMedGoogle Scholar
  32. Crews F. (1982). Rapid changes in phospholipid metabolism during secretion and receptor activation. Int. Rev. Neurobiol. 23:141–163.PubMedCrossRefGoogle Scholar
  33. D’Santos C. S., Clarke J.-H., and Divecha N. (1998). Phospholipid signalling in the nucleus. Biochim. Biophys. Acta Lipids Lipid Metab. 1436:201–232.Google Scholar
  34. Dainous F., Freysz L., Mozzi R., Dreyfus H., Louis J.-C., Porcellati G., and Massarelli R. (1982). Synthesis of choline phospholipids in neuronal and glial cell cultures by the methylation pathway. FEBS Lett. 146:221–223.PubMedCrossRefGoogle Scholar
  35. Daleke D. L. and Lyles J.-V. (2000). Identification and purification of aminophospholipid flippases. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1486:108–127.CrossRefGoogle Scholar
  36. Das A. K. and Hajra A. K. (1989). Quantification, characterization and fatty acid composition of lysophosphatidic acid in different rat tissues. Lipids 24:329–333.PubMedCrossRefGoogle Scholar
  37. De Simone R., Ajmone-Cat M. A., Tirassa P., and Minghetti L. (2003). Apoptotic PC12 cells exposing phosphatidylserine promote the production of anti-inflammatory and neuroprotective molecules by microglial cells. J.-Neuropathol. Exp. Neurol. 62:208–216.PubMedGoogle Scholar
  38. Dennis E. A., Rhee S. G., Billah M. M., and Hannun Y. A. (1991). Role of phospholipases in generating lipid second messengers in signal transduction. FASEB J.-5:2068–2077.PubMedGoogle Scholar
  39. Doherty P. and Walsh F. S. (1993). Glycosylphosphatidylinositol anchored recognition molecules that mediate intracellular adhesion and promote neurite outgrowth. In: Massarelli R., Horrocks L. A., Kanfer J.-N., and Löffelholz K. (eds.), Phospholipids and Signal Transmission. Springer-Verlag, Berlin, pp.-1–11.Google Scholar
  40. Emoto K., Toyama-Sorimachi N., Karasuyama H., Inoue K., and Umeda M. (1997). Exposure of phosphatidylethanolamine on the surface of apoptotic cells. Exp. Cell Res. 232:430–434.PubMedCrossRefGoogle Scholar
  41. Englund P. T. (1993). The structure and biosynthesis of glycosyl phosphatidylinositol protein anchors. Annu. Rev. Biochem. 62:121–138.PubMedCrossRefGoogle Scholar
  42. Exton J.-H. (1994). Phosphatidylcholine breakdown and signal transduction. Biochim. Biophys. Acta Lipids Lipid Metab. 1212:26–42.CrossRefGoogle Scholar
  43. Exton J.-H. (1997). Phospholipase D: enzymology, mechanisms of regulation, and function. Physiol. Rev. 77:303–320.PubMedGoogle Scholar
  44. Exton J.-H. (1999). Regulation of phospholipase D. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1439:121–133.CrossRefGoogle Scholar
  45. Fadok V. A., Voelker D. R., Campbell P. A., Cohen J.-J., Bratton D. L., and Henson P. M. (1992). Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J.-Immunol. 148:2207–2216.PubMedGoogle Scholar
  46. Fanani M. L., Topham M. K., Walsh J.-P., and Epand R. M. (2004). Lipid modulation of the activity of diacylglycerol kinase α- and ζ-isoforms: Activation by phosphatidylethanolamine and cholesterol. Biochemistry 43:14767–14777.PubMedCrossRefGoogle Scholar
  47. Fang M., Rivas M. P., and Bankaitis V. A. (1998). The contribution of lipids and lipid metabolism to cellular functions of the Golgi complex. Biochim. Biophys. Acta 1404:85–100.PubMedCrossRefGoogle Scholar
  48. Farooqui A. A. and Horrocks L. A. (1985). Metabolic and functional aspects of neural membrane phospholipids. In: Horrocks L. A., Kanfer J.-N., and Porcellati G. (eds.), Phospholipids in the Nervous System, Vol. II: Physiological Role. Raven Press, New York, pp.-341–348.Google Scholar
  49. Farooqui A. A. and Horrocks L. A. (2004). Brain phospholipases A2: a perspective on the history. Prostaglandins Leukot. Essent. Fatty Acids 71:161–169.PubMedCrossRefGoogle Scholar
  50. Farooqui A. A., Farooqui T., Yates A. J., and Horrocks L. A. (1988). Regulation of protein kinase C activity by various lipids. Neurochem. Res. 13:499–511.PubMedCrossRefGoogle Scholar
  51. Farooqui A. A., Hirashima Y., and Horrocks L. A. (1992). Brain phospholipases and their role in signal transduction. In: Bazan N. G., Toffano G., and Murphy M. (eds.), Neurobiology of Essential Fatty Acids. Plenum Press, New York, pp.-11–25.Google Scholar
  52. Farooqui A. A., Yang H.-C., and Horrocks L. A. (1995). Plasmalogens, phospholipases A2, and signal transduction. Brain Res. Rev. 21:152–161.PubMedCrossRefGoogle Scholar
  53. Farooqui A. A., Rosenberger T. A., and Horrocks L. A. (1997a). Arachidonic acid, neurotrauma, and neurodegenerative diseases. In: Yehuda S. and Mostofsky D. I. (eds.), Handbook of Essential Fatty Acid Biology. Humana Press, Totowa, NJ, pp.-277–295.Google Scholar
  54. Farooqui A. A., Yang H. C., Rosenberger T. A., and Horrocks L. A. (1997b). Phospholipase A2 and its role in brain tissue. J.-Neurochem. 69:889–901.PubMedCrossRefGoogle Scholar
  55. Farooqui A. A., Horrocks L. A., and Farooqui T. (2000a). Deacylation and reacylation of neural membrane glycerophospholipids. J.-Mol. Neurosci. 14:123–135.PubMedCrossRefGoogle Scholar
  56. Farooqui A. A., Horrocks L. A., and Farooqui T. (2000b). Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem. Phys. Lipids 106:1–29.PubMedCrossRefGoogle Scholar
  57. Farooqui A. A., Ong W. Y., Horrocks L. A., and Farooqui T. (2000c). Brain cytosolic phospholipase A2: localization, role, and involvement in neurological diseases. Neuroscientist 6:169–180.CrossRefGoogle Scholar
  58. Farooqui A. A., Farooqui T., and Horrocks L. A. (2002). Molecular species of phospholipids during brain development. Their occurrence, separation and roles. In: Skinner E. R. (ed.), Brain Lipids and Disorders in Biological Psychiatry. Elsevier Science B.V., Amsterdam, pp.-147–158.CrossRefGoogle Scholar
  59. Farooqui A. A., Antony P., Ong W. Y., Horrocks L. A., and Freysz L. (2004a). Retinoic acid-mediated phospholipase A2 signaling in the nucleus. Brain Res. Rev. 45:179–195.PubMedCrossRefGoogle Scholar
  60. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2004b). Biochemical aspects of neurodegeneration in human brain: Involvement of neural membrane phospholipids and phospholipases A2. Neurochem. Res. 29:1961–1977.PubMedCrossRefGoogle Scholar
  61. Fernández-Tome M., Kraemer L., Federman S. C., Favale N., Speziale E., and Sterin-Speziale N. (2004). COX-2-mediated PGD2 synthesis regulates phosphatidylcholine biosynthesis in rat renal papillary tissue. Biochem. Pharmacol. 67:245–254.PubMedCrossRefGoogle Scholar
  62. Frayne J., Ingram C., Love S., and Hall L. (1999). Localisation of phosphatidylethanolamine-binding protein in the brain and other tissues of the rat. Cell Tissue Res. 298:415–423.PubMedCrossRefGoogle Scholar
  63. Freysz L., Lastennet A., and Mandel P. (1972). Phosphocholine diglyceride transferase activity during development of the chicken brain. J.-Neurochem. 19:2599–2605.PubMedCrossRefGoogle Scholar
  64. Freysz L., Dreyfus H., Vincendon G., Binaglia L., Roberti R., and Porcellati G. (1982). Asymmetry of brain microsomal membranes: correlation between the asymmetric distribution of phospholipids and the enzymes involved in their synthesis. In: Horrocks L. A., Ansell G. B., and Porcellati G. (eds.), Phospholipids in the Nervous System. Raven Press, New York, pp.-37–47.Google Scholar
  65. Fruman D. A., Meyers R. E., and Cantley L. C. (1998). Phosphoinositide kinases. Annu. Rev. Biochem. 67:481–507.PubMedCrossRefGoogle Scholar
  66. Fukui Y., Ihara S., and Nagata S. (1998). Downstream of phosphatidylinositol-3 kinase, a multifunctional signaling molecule, and its regulation in cell responses. J.-Biochem. (Tokyo) 124:1–7.PubMedGoogle Scholar
  67. Fukushima N. (2004). LPA in neural cell development. J.-Cell. Biochem. 92:993–1003.PubMedCrossRefGoogle Scholar
  68. Gagné J., Giguère C., Tocco G., Ohayon M., Thompson R. F., Baudry M., and Massicotte G. (1996). Effect of phosphatidylserine on the binding properties of glutamate receptors in brain sections from adult and neonatal rats. Brain Res. 740:337–345.PubMedCrossRefGoogle Scholar
  69. Gehrmann T., Vereb G., Schmidt M., Klix D., Meyer H. E., Varsanyi M., and Heilmeyer L. M., Jr. (1996). Identification of a 200 kDa polypeptide as type 3 phosphatidylinositol 4-kinase from bovine brain by partial protein and cDNA sequencing. Biochim. Biophys. Acta 1311:53–63.PubMedCrossRefGoogle Scholar
  70. Gomez-Muñoz A. (1998). Modulation of cell signalling by ceramides. Biochim. Biophys. Acta Lipids Lipid Metab. 1391:92–109.CrossRefGoogle Scholar
  71. Goswami R., Dawson S. A., and Dawson G. (2000). Multiple polyphosphoinositide pathways regulate apoptotic signalling in a dorsal root ganglion derived cell line. J.-Neurosci. Res. 59:136–144.PubMedCrossRefGoogle Scholar
  72. Hall E. D. (1992). Novel inhibitors of iron-dependent lipid peroxidation for neurodegenerative disorders. Ann. Neurol. 32(Suppl.):S137–S142.PubMedCrossRefGoogle Scholar
  73. Halliwell B. (1994). Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344:721–724.PubMedCrossRefGoogle Scholar
  74. Hammond G., Thomas C. L., and Schiavo G. (2004). Nuclear phosphoinositides and their functions. In: Stenmark H. (ed.), Phosphoinositides in Subcellular Targeting and Enzyme Activation. Springer-Verlag, Berlin, pp.-177–206.Google Scholar
  75. Hannun Y. A. and Obeid L. M. (1995). Ceramide: an intracellular signal for apoptosis. Trends Biochem. Sci. 20:73–77.PubMedCrossRefGoogle Scholar
  76. Hayakawa M., Ishida N., Takeuchi K., Shibamoto S., Hori T., Oku N., Ito F., and Tsujimoto M. (1993). Arachidonic acid-selective cytosolic phospholipase A2 is crucial in the cytotoxic action of tumor necrosis factor. J.-Biochem. 268:11290–11295.Google Scholar
  77. Hayakawa M., Jayadev S., Tsujimoto M., Hannun Y. A., and Ito F. (1996). Role of ceramide in stimulation of the transcription of cytosolic phospholipase A2 and cyclooxygenase 2. Biochem. Biophys. Res. Commun. 220:681–686.PubMedCrossRefGoogle Scholar
  78. Heacock A. M. and Agranoff B. W. (1997). CDP-diacylglycerol synthase from mammalian tissues. Biochim. Biophys. Acta 1348:166–172.PubMedGoogle Scholar
  79. Hirabayashi T., Murayama T., and Shimizu T. (2004). Regulatory mechanism and physiological role of cytosolic phospholipase A2. Biol. Pharm. Bull. 27:1168–1173.PubMedCrossRefGoogle Scholar
  80. Hirashima Y., Farooqui A. A., Mills J.-S., and Horrocks L. A. (1992). Identification and purification of calcium-independent phospholipase A2 from bovine brain cytosol. J.-Neurochem. 59:708–714.PubMedCrossRefGoogle Scholar
  81. Hooper N. M. (1997). Glycosyl-phosphatidylinositol anchored membrane enzymes. Clin. Chim. Acta 266:3–12.PubMedCrossRefGoogle Scholar
  82. Horrocks L. A., Yeo Y. K., Harder H. W., Mozzi R., and Goracci G. (1986). Choline plasmalogens, glycerophospholipid methylation, and receptor-mediated activation of adenylate cyclase. In: Greengard P. and Robison G. A. (eds.), Advances in Cyclic Nucleotide and Protein Phosphorylation Research, Vol. 20. Raven Press, New York, pp.-263–292.Google Scholar
  83. Hozumi Y., Ito T., Nakano T., Nakagawa T., Aoyagi M., Kondo H., and Goto K. (2003). Nuclear localization of diacylglycerol kinase zeta in neurons. Eur. J.-Neurosci. 18:1448–1457.PubMedCrossRefGoogle Scholar
  84. Hunt A. N., Clark G. T., Attard G. S., and Postle A. D. (2001). Highly saturated endonuclear phosphatidylcholine is synthesized in-situ and colocated with CDP-choline pathway enzymes. J.-Biol. Chem. 276:8492–8499.PubMedCrossRefGoogle Scholar
  85. Ilincheta de Boschero M. G., Roque M. E., Salvador G. A., and Giusto N. M. (2000). Alternative pathways for phospholipid synthesis in different brain areas during aging. Exp. Gerontol. 35:653–668.PubMedCrossRefGoogle Scholar
  86. Irvine R. F. (1995). Inositide evolution: what can it tell us about functions? Biochem. Soc. Trans. 23:27–35.PubMedGoogle Scholar
  87. Irvine R. F. (2003). Nuclear lipid signalling. Nature Rev. Mol. Cell Biol. 4:349–360.CrossRefGoogle Scholar
  88. Isaac G., Bylund D., Mansson J.-E., Markides K. E., and Bergquist J.-(2003). Analysis of phosphatidylcholine and sphingomyelin molecular species from brain extracts using capillary liquid chromatography electrospray ionization mass spectrometry. J.-Neurosci. Meth. 128:111–119.CrossRefGoogle Scholar
  89. Ishidate K. (1997). Choline/ethanolamine kinase from mammalian tissues. Biochim. Biophys. Acta Lipids Lipid Metab. 1348:70–78.CrossRefGoogle Scholar
  90. Ivanova P. T., Milne S. B., Forrester J.-S., and Brown H. A. (2004). Lipid arrays: new tools in the understanding of membrane dynamics and lipid signaling. Mol. Interv. 4:86–96.PubMedCrossRefGoogle Scholar
  91. Jayadev S., Hayter H. L., Andrieu N., Gamard C. J., Liu B., Balu R., Hayakawa M., Ito F., and Hannun Y. A. (1997). Phospholipase A2 is necessary for tumor necrosis factor α-induced ceramide generation in L929 cells. J.-Biol. Chem. 272:17196–17203.PubMedCrossRefGoogle Scholar
  92. Jones D., Morgan C., and Cockcroft S. (1999). Phospholipase D and membrane traffic – Potential roles in regulated exocytosis, membrane delivery and vesicle budding. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1439:229–244.CrossRefGoogle Scholar
  93. Kanfer J.-N., McCartney D., Singh I. N., and Freysz L. (1996). Phospholipase D activity of rat brain neuronal nuclei. J.-Neurochem. 67:760–766.PubMedCrossRefGoogle Scholar
  94. Kanoh H., Kai M., and Wada I. (1999). Molecular characterization of the type 2 phosphatidic acid phosphatase. Chem. Phys. Lipids 98:119–126.PubMedCrossRefGoogle Scholar
  95. Katsuki H. and Okuda S. (1995). Arachidonic acid as a neurotoxic and neurotrophic substance. Prog. Neurobiol. 46:607–636.PubMedCrossRefGoogle Scholar
  96. Keller J.-N., Steiner M. R., Mattson M. P., and Steiner S. M. (1996). Lysophosphatidic acid decreases glutamate and glucose uptake by astrocytes. J.-Neurochem. 67:2300–2305.PubMedCrossRefGoogle Scholar
  97. Kent C. (1997). CTP:phosphocholine cytidylyltransferase. Biochim. Biophys. Acta Lipids Lipid Metab. 1348:79–90.CrossRefGoogle Scholar
  98. Kingsbury M. A., Rehen S. K., Ye X., and Chun J.-(2004). Genetics and cell biology of lysophosphatidic acid receptor-mediated signaling during cortical neurogenesis. J.-Cell. Biochem. 92:1004–1012.PubMedCrossRefGoogle Scholar
  99. Klein J., Chalifa V., Liscovitch M., and Löffelholz K. (1995). Role of phospholipase D activation in nervous system physiology and pathophysiology. J.-Neurochem. 65:1445–1455.PubMedCrossRefGoogle Scholar
  100. Kleuser B., Maceyka M., Milstien S., and Spiegel S. (2001). Stimulation of nuclear sphingosine kinase activity by platelet-derived growth factor. FEBS Lett. 503:85–90.PubMedCrossRefGoogle Scholar
  101. Komatsu H., Westerman J., Snoek G. T., Taraschi T. F., and Janes N. (2003). L-α-Glycerylphosphorylcholine inhibits the transfer function of phosphatidylinositol transfer protein α. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1635:67–74.CrossRefGoogle Scholar
  102. Kuge O. and Nishijima M. (1997). Phosphatidylserine synthase I and II of mammalian cells. Biochim. Biophys. Acta Lipids Lipid Metab. 1348:151–156.CrossRefGoogle Scholar
  103. Kurzchalia T. V., Dupree P., Parton R. G., Kellner R., Virta H., Lehnert M., and Simons K. (1992). VIP21, a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles. J.-Cell Biol. 118:1003–1014.PubMedCrossRefGoogle Scholar
  104. Lang D., Leray C., Mestre R., Massarelli R., Dreyfus H., and Freysz L. (1995). Molecular species analysis of 1,2-diglycerides on phorbol ester stimulation of LA-N-1 neuroblastoma cells during proliferation and differentiation. J.-Neurochem. 65:810–817.PubMedCrossRefGoogle Scholar
  105. Ledeen R. W. and Wu G. S. (2004). Nuclear lipids: key signaling effectors in the nervous system and other tissues. J.-Lipid Res. 45:1–8.PubMedCrossRefGoogle Scholar
  106. Lee A. G. (2003). Lipid–protein interactions in biological membranes: a structural perspective. Biochim. Biophys. Acta 1612:1–40.PubMedCrossRefGoogle Scholar
  107. Leray C., Sarliève L. L., Dreyfus H., Massarelli R., Binaglia L., and Freysz L. (1994). Molecular species of choline and ethanolamine glycerophospholipids in rat brain myelin during development. Lipids 29:77–81.PubMedCrossRefGoogle Scholar
  108. Low M. G. (1989). The glycosyl-phosphatidylinositol anchor of membrane proteins. Biochim. Biophys. Acta 988:427–454.PubMedGoogle Scholar
  109. Lucero H. A. and Robbins P. W. (2004). Lipid rafts–protein association and the regulation of protein activity. Arch. Biochem. Biophys. 426:208–224.PubMedCrossRefGoogle Scholar
  110. Luquain C., Sciorra V. A., and Morris A. J.-(2003). Lysophosphatidic acid signaling: how a small lipid does big things. Trends Biochem. Sci. 28:377–383.PubMedCrossRefGoogle Scholar
  111. Lykidis A., Murti K. G., and Jackowski S. (1998). Cloning and characterization of a second human CTP:phosphocholine cytidylyltransferase. J.-Biol. Chem. 273:14022–14029.PubMedCrossRefGoogle Scholar
  112. Lykidis A., Baburina I., and Jackowski S. (1999). Distribution of CTP:phosphocholine cytidylyltransferase (CCT) isoforms. Identification of a new CCTβ splice variant. J.-Biol. Chem. 274:26992–27001.PubMedCrossRefGoogle Scholar
  113. MacEwan D. J.-(1996). Elevated cPLA2 levels as a mechanism by which the p70 TNF and p75 NGF receptors enhance apoptosis. FEBS Lett. 379:77–81.PubMedCrossRefGoogle Scholar
  114. Mancini A., Del Rosso F., Roberti R., Orvietani P., Coletti L., and Binaglia L. (1999). Purification of ethanolaminephosphotransferase from bovine liver microsomes. Biochim. Biophys. Acta Lipids Lipid Metab. 1437:80–92.Google Scholar
  115. Martelli A. M., Capitani S., and Neri L. M. (1999). The generation of lipid signaling molecules in the nucleus. Prog. Lipid Res. 38:273–308.PubMedCrossRefGoogle Scholar
  116. Martelli A. M., Bortul R., Tabellini G., Bareggi R., Manzoli L., Narducci P., and Cocco L. (2002a). Diacylglycerol kinases in nuclear lipid-dependent signal transduction pathways. Cell. Mol. Life Sci. 59:1129–1137.PubMedCrossRefGoogle Scholar
  117. Martelli A. M., Manzoli L., Faenza I., Bortul R., Billi A., and Cocco L. (2002b). Nuclear inositol lipid signaling and its potential involvement in malignant transformation. Biochim. Biophys. Acta 1603:11–17.PubMedGoogle Scholar
  118. Martelli A. M., Fala F., Faenza I., Billi A. M., Cappellini A., Manzoli L., and Cocco L. (2004a). Metabolism and signaling activities of nuclear lipids. Cell. Mol. Life Sci. 61:1143–1156.PubMedCrossRefGoogle Scholar
  119. Martelli A. M., Manzoli L., and Cocco L. (2004b). Nuclear inositides: facts and perspectives. Pharmacol. Ther. 101:47–64.PubMedCrossRefGoogle Scholar
  120. Martin T. F. J.-(1997). Phosphoinositides as spatial regulators of membrane traffic. Curr. Opin. Neurobiol. 7:331–338.PubMedCrossRefGoogle Scholar
  121. McLean L. R., Hagaman K. A., and Davidson W. S. (1993). Role of lipid structure in the activation of phospholipase A2 by peroxidized phospholipids. Lipids 28:505–509.PubMedCrossRefGoogle Scholar
  122. McMaster C. R. and Bell R. M. (1997a). CDP-choline:1,2-diacylglycerol cholinephosphotransferase. Biochim. Biophys. Acta Lipids Lipid Metab. 1348:100–110.CrossRefGoogle Scholar
  123. McMaster C. R. and Bell R. M. (1997b). CDP-ethanolamine:1,2-diacylglycerol ethanolaminephosphotransferase. Biochim. Biophys. Acta Lipids Lipid Metab. 1348:117–123.CrossRefGoogle Scholar
  124. Morand J.-N. and Kent C. (1989). Localization of the membrane-associated CTP: phosphocholine cytidylyltransferase in Chinese hamster ovary cells with an altered membrane composition. J.-Biol. Chem. 264:13785–13792.PubMedGoogle Scholar
  125. Moreau P. and Cassagne C. (1994). Phospholipid trafficking and membrane biogenesis. Biochim. Biophys. Acta Rev. Biomembr. 1197:257–290.Google Scholar
  126. Mozzi R. and Porcellati G. (1979). Conversion of phosphatidylethanolamine to phosphatidylcholine in rat brain by the methylation pathway. FEBS Lett. 100:363–366.PubMedCrossRefGoogle Scholar
  127. Mozzi R., Buratta S., and Goracci G. (2003). Metabolism and functions of phosphatidylserine in mammalian brain. Neurochem. Res. 28:195–214.PubMedCrossRefGoogle Scholar
  128. Nagle J.-F. and Tristram-Nagle S. (2000). Structure of lipid bilayers. Biochim. Biophys. Acta 1469:159–195.PubMedGoogle Scholar
  129. Nakagawa T., Goto K., and Kondo H. (1996). Cloning, expression, and localization of 230-kDa phosphatidylinositol 4-kinase. J.-Biol. Chem. 271:12088–12094.PubMedCrossRefGoogle Scholar
  130. Negre-Aminou P., Nemenoff R. A., Wood M. R., de la Houssaye B. A., and Pfenninger K.-H. (1996). Characterization of phospholipase A2 activity enriched in the nerve growth cone. J.-Neurochem. 67:2599–2608.PubMedCrossRefGoogle Scholar
  131. Nieva J.-L., Goñi F. M., and Alonso A. (1989). Liposome fusion catalytically induced by phospholipase C. Biochemistry 28:7364–7367.PubMedCrossRefGoogle Scholar
  132. Orr J.-W. and Newton A. C. (1992). Interaction of protein kinase C with phosphatidylserine. 2. Specificity and regulation. Biochemistry 31:4667–4673.PubMedCrossRefGoogle Scholar
  133. Pande A. H., Moe D., Nemec K. N., Qin S., Tan S. H., and Tatulian S. A. (2004). Modulation of human 5-lipoxygenase activity by membrane lipids. Biochemistry 43:14653–14666.PubMedCrossRefGoogle Scholar
  134. Park S. K., Provost J.-J., Bae C. D., Ho W. T., and Exton J.-H. (1997). Cloning and characterization of phospholipase D from rat brain. J.-Biol. Chem. 272:29263–29271.PubMedCrossRefGoogle Scholar
  135. Pasquare S. J., Salvador G. A., and Giusto N. M. (2004). Phospholipase D and phosphatidate phosphohydrolase activities in rat cerebellum during aging. Lipids 39:553–560.PubMedCrossRefGoogle Scholar
  136. Payrastre B., Nievers M., Boonstra J., Breton M., Verkleij A. J., and van Bergen en Henegouwen P. M. (1992). A differential location of phosphoinositide kinases, diacylglycerol kinase, and phospholipase C in the nuclear matrix. J.-Biol. Chem. 267:5078–5084.PubMedGoogle Scholar
  137. Pearce J.-M. and Komoroski R. A. (2000). Analysis of phospholipid molecular species in brain by 31P NMR spectroscopy. Magn. Reson. Med. 44:215–223.PubMedCrossRefGoogle Scholar
  138. Pete M. J.-and Exton J.-H. (1996). Purification of a lysophospholipase from bovine brain that selectively deacylates arachidonoyl-substituted lysophosphatidylcholine. J.-Biol. Chem. 271:18114–18121.PubMedCrossRefGoogle Scholar
  139. Pike L. J.-(2004). Lipid rafts: heterogeneity on the high seas. Biochem. J.-378:281–292.PubMedCrossRefGoogle Scholar
  140. Pomorski T., Holthuis J.-C. M., Herrmann A., and Van Meer G. (2004). Tracking down lipid flippases and their biological functions. J.-Cell Sci. 117:805–813.PubMedCrossRefGoogle Scholar
  141. Porcellati G. (1983). Phospholipid metabolism in neural membranes. In: Sun G. Y., Bazan N., Wu J.-Y., Porcellati G., and Sun A. Y. (eds.), Neural Membranes. Humana Press, New York, pp.-3–35.Google Scholar
  142. Purdon A. D. and Rapoport S. I. (1998). Energy requirements for two aspects of phospholipid metabolism in mammalian brain. Biochem. J.-335:313–318.Google Scholar
  143. Purdon A. D., Rosenberger T. A., Shetty H. U., and Rapoport S. I. (2002). Energy consumption by phospholipid metabolism in mammalian brain. Neurochem. Res. 27:1641–1647.PubMedCrossRefGoogle Scholar
  144. Rameh L. E., Tolias K. F., Duckworth B. C., and Cantley L. C. (1997). A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature 390:192–196.PubMedCrossRefGoogle Scholar
  145. Randazzo P. A. and Kahn R. A. (1994). GTP hydrolysis by ADP-ribosylation factor is dependent on both an ADP-ribosylation factor GTPase-activating protein and acid phospholipids. J.-Biol. Chem. 269:10758–10763.PubMedGoogle Scholar
  146. Regan R. F. and Guo Y. P. (1998). Toxic effect of hemoglobin on spinal cord neurons in culture. J.-Neurotrauma 15:645–653.PubMedCrossRefGoogle Scholar
  147. Rhee S. G. and Choi K. D. (1992). Regulation of inositol phospholipid-specific phospholipase C isozymes. J.-Biol. Chem. 267:12393–12396.PubMedGoogle Scholar
  148. Robinson B. S., Hii C. S. T., Poulos A., and Ferrante A. (1997). Activation of neutral sphingomyelinase in human neutrophils by polyunsaturated fatty acids. Immunology 91:274–280.PubMedCrossRefGoogle Scholar
  149. Ross B. M., Kim D. K., Bonventre J.-V., and Kish S. J.-(1995). Characterization of a novel phospholipase A2 activity in human brain. J.-Neurochem. 64:2213–2221.PubMedCrossRefGoogle Scholar
  150. Ross B. M., Moszczynska A., Blusztajn J.-K., Sherwin A., Lozano A., and Kish S. J.-(1997). Phospholipid biosynthetic enzymes in human brain. Lipids 32:351–358.PubMedCrossRefGoogle Scholar
  151. Rothberg K. G., Heuser J.-E., Donzell W. C., Ying Y. S., Glenney J.-R., and Anderson R. G. (1992). Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682.PubMedCrossRefGoogle Scholar
  152. Saba J.-D. (2004). Lysophospholipids in development: miles apart and edging in. J.-Cell. Biochem. 92:967–992.PubMedCrossRefGoogle Scholar
  153. Saido T. C., Shibata M., Takenawa T., Murofushi H., and Suzuki K. (1992). Positive regulation of ∝-calpain action by polyphosphoinositides. J.-Biol. Chem. 267:24585–24590.PubMedGoogle Scholar
  154. Sandra A., Van’t Hof W., Van Genderen I., and Van Meer G. (1993). Lipid synthesis and targeting to the mammalian cell surface. In: Massarelli R., Horrocks L. A., Kanfer J.-N., and Löffelholz K. (eds.), Phospholipids and Signal Transmission. Springer-Verlag, Berlin, pp.-13–37.Google Scholar
  155. Sato T., Kageura T., Hashizume T., Hayama M., Kitatani K., and Akiba S. (1999). Stimulation by ceramide of phospholipase A2 activation through a mechanism related to the phospholipase C-initiated signaling pathway in rabbit platelets. J.-Biochem. (Tokyo) 125:96–102.PubMedGoogle Scholar
  156. Senisterra G. and Epand R. M. (1993). Role of membrane defects in the regulation of the activity of protein kinase C. Arch. Biochem. Biophys. 300:378–383.PubMedCrossRefGoogle Scholar
  157. Sinensky M. and Lutz R. J.-(1992). The prenylation of proteins. BioEssays 14:25–31.PubMedCrossRefGoogle Scholar
  158. Singh J.-K., Dasgupta A., Adayev T., Shahmehdi S. A., Hammond D., and Banerjee P. (1996). Apoptosis is associated with an increase in saturated fatty acid containing phospholipids in the neuronal cell line, HN2-5. Biochim. Biophys. Acta Lipids Lipid Metab. 1304:171–178.CrossRefGoogle Scholar
  159. Spector A. A. and Yorek M. A. (1985). Membrane lipid composition and cellular function. J.-Lipid Res. 26:1015–1035.PubMedGoogle Scholar
  160. Stephens L. R., Hughes K. T., and Irvine R. F. (1991). Pathway of phosphatidylinositol(3,4,5)-trisphosphate synthesis in activated neutrophils. Nature 351:33–39.PubMedCrossRefGoogle Scholar
  161. Sun G. Y. and MacQuarrie R. A. (1989). Deacylation–reacylation of arachidonoyl groups in cerebral phospholipids. Ann. NY Acad. Sci. 559:37–55.PubMedCrossRefGoogle Scholar
  162. Sun G. Y., Xu J.-F., Jensen M. D., and Simonyi A. (2004). Phospholipase A2 in the central nervous system: implications for neurodegenerative diseases. J.-Lipid Res. 45:205–213.PubMedCrossRefGoogle Scholar
  163. Sunshine C. and McNamee M. G. (1992). Lipid modulation of nicotinic acetylcholine receptor function: the role of neutral and negatively charged lipids. Biochim. Biophys. Acta 1108:240–246.PubMedCrossRefGoogle Scholar
  164. Takenawa T., Itoh T., and Fukami K. (1999). Regulation of phosphatidylinositol 4,5-bisphosphate levels and its roles in cytoskeletal re-organization and malignant transformation. Chem. Phys. Lipids 98:13–22.PubMedCrossRefGoogle Scholar
  165. Tamiya-Koizumi K. (2002). Nuclear lipid metabolism and signaling. J.-Biochem. 132:13–22.PubMedGoogle Scholar
  166. Tamiya-Koizumi K., Umekawa H., Yoshida S., Ishihara H., and Kojima K. (1989). A novel phospholipase A2 associated with nuclear matrix: stimulation of the activity and modulation of the Ca2+-dependency by polyphosphoinositides. Biochim. Biophys. Acta 1002:182–188.PubMedGoogle Scholar
  167. Tokumura A. (1995). A family of phospholipid autacoids: occurrence, metabolism and bioactions. Prog. Lipid Res. 34:151–184.PubMedCrossRefGoogle Scholar
  168. Tolias K. F. and Cantley L. C. (1999). Pathways for phosphoinositide synthesis. Chem. Phys. Lipids 98:69–77.PubMedCrossRefGoogle Scholar
  169. Tolias K. F., Rameh L. E., Ishihara H., Shibasaki Y., Chen J., Prestwich G. D., Cantley L. C., and Carpenter C. L. (1998). Type I phosphatidylinositol-4-phosphate 5-kinases synthesize the novel lipids phosphatidylinositol 3,5-bisphosphate and phosphatidylinositol 5-phosphate. J.-Biol. Chem. 273:18040–18046.PubMedCrossRefGoogle Scholar
  170. Toman R. E. and Spiegel S. (2002). Lysophospholipid receptors in the nervous system. Neurochem. Res. 27:619–627.PubMedCrossRefGoogle Scholar
  171. Tsvetnitsky V., Auchi L., Nicolaou A., and Gibbons W. A. (1995). Characterization of phospholipid methylation in rat brain myelin. Biochem. J.-307:239–244.PubMedGoogle Scholar
  172. Uchida K., Emoto K., Daleke D. L., Inoue K., and Umeda M. (1998). Induction of apoptosis by phosphatidylserine. J.-Biochem. (Tokyo) 123:1073–1078.PubMedGoogle Scholar
  173. Van den Eijnde S. M., Boshart L., Reutelingsperger C. P. M., De Zeeuw C. I., and Vermeij-Keers C. (1997). Phosphatidylserine plasma membrane asymmetry in-vivo: a pancellular phenomenon which alters during apoptosis. Cell Death Differ. 4:311–316.PubMedCrossRefGoogle Scholar
  174. Van Meer G. (1989). Lipid traffic in animal cells. Annu. Rev. Cell Biol. 5:247–275.PubMedCrossRefGoogle Scholar
  175. Vanags D. M., Larsson P., Feltenmark S., Jakobsson P. J., Orrenius S., Claesson H. E., and Aguilar-Santelises M. (1997). Inhibitors of arachidonic acid metabolism reduce DNA and nuclear fragmentation induced by TNF plus cycloheximide in U937 cells. Cell Death Differ. 4:479–486.PubMedCrossRefGoogle Scholar
  176. Vance D. E. (1996). Glycerolipid biosynthesis in eukaryotes. In: Vance D. E. and Vance J.-E. (eds.), Biochemistry of Lipids, Lipoproteins, and Membranes. Elsevier, New York, pp.-153–181.CrossRefGoogle Scholar
  177. Vance J.-E. and Vance D. E. (2004). Phospholipid biosynthesis in mammalian cells. Biochem. Cell Biol. 82:113–128.PubMedCrossRefGoogle Scholar
  178. Vance D. E., Walkey C. J., and Cui Z. (1997). Phosphatidylethanolamine N-methyltransferase from liver. Biochim. Biophys. Acta 1348:142–150.PubMedGoogle Scholar
  179. Vecchini A., Panagia V., and Binaglia L. (1997). Analysis of phospholipid molecular species. Mol. Cell. Biochem. 172:129–136.PubMedCrossRefGoogle Scholar
  180. Voelker D. R. (1997). Phosphatidylserine decarboxylase. Biochim. Biophys. Acta Lipids Lipid Metab. 1348:236–244.CrossRefGoogle Scholar
  181. Voelker D. R. (2003). New perspectives on the regulation of intermembrane glycerophospholipid traffic. J.-Lipid Res. 44:441–449.PubMedCrossRefGoogle Scholar
  182. Voelker D. R. (2004). Genetic analysis of intracellular aminoglycerophospholipid traffic. Biochem. Cell Biol. 82:156–169.PubMedCrossRefGoogle Scholar
  183. Volterra A., Trotti D., and Racagni G. (1994). Glutamate uptake is inhibited by arachidonic acid and oxygen radicals via two distinct and additive mechanisms. Mol. Pharmacol. 46:986–992.PubMedGoogle Scholar
  184. Wang X. J., Li N., Liu B., Sun H. Y., Chen T. Y., Li H. Z., Qiu J.-M., Zhang L. H., Wan T., and Cao X. T. (2004). A novel human phosphatidylethanolamine-binding protein resists tumor necrosis factor alpha-induced apoptosis by inhibiting mitogen-activated protein kinase pathway activation and phosphatidylethanolamine externalization. J.-Biol. Chem. 279:45855–45864.PubMedCrossRefGoogle Scholar
  185. Welti R. and Glaser M. (1994). Lipid domains in model and biological membranes. Chem. Phys. Lipids 73:121–137.PubMedCrossRefGoogle Scholar
  186. Weltzien H. U. (1979). Cytolytic and membrane-perturbing properties of lysophosphatidylcholine. Biochim. Biophys. Acta 559:259–287.PubMedGoogle Scholar
  187. Wirtz K. W. A. (1997). Phospholipid transfer proteins revisited. Biochem. J.-324:353–360.PubMedGoogle Scholar
  188. Wolfe L. S. and Horrocks L. A. (1994). Eicosanoids. In: Siegel G. J., Agranoff B. W., Albers R. W., and Molinoff P. B. (eds.), Basic Neurochemistry. Raven Press, New York, pp.-475–490.Google Scholar
  189. Wood W. G., Schroeder F., Igbavboa U., Avdulov N. A., and Chochina V. V. (2002). Brain membrane cholesterol domains, aging and amyloid beta-peptides. Neurobiol. Aging 23:685–694.PubMedCrossRefGoogle Scholar
  190. Yamashita A., Sugiura T., and Waku K. (1997). Acyltransferases and transacylases involved in fatty acid remodeling of phospholipids and metabolism of bioactive lipids in mammalian cells. J.-Biochem. (Tokyo) 122:1–16.PubMedGoogle Scholar
  191. Yang H. C., Mosior M., Ni B., and Dennis E. A. (1999). Regional distribution, ontogeny, purification, and characterization of the Ca2+-independent phospholipase A2 from rat brain. J.-Neurochem. 73:1278–1287.PubMedCrossRefGoogle Scholar
  192. Ye X. Q., Fukushima N., Kingsbury M. A., and Chun J.-(2002). Lysophosphatidic acid in neural signaling. NeuroReport 13:2169–2175.PubMedCrossRefGoogle Scholar
  193. Yeagle P. (1989). Lipid regulation of cell membrane structure and function. FASEB J. 3:1833–1842.PubMedGoogle Scholar
  194. Yin H. L. and Janmey P. A. (2003). Phosphoinositide regulation of the actin cytoskeleton. Annu. Rev. Physiol. 65:761–789.PubMedCrossRefGoogle Scholar
  195. Zachowski A. (1993). Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem. J.-294:1–14.PubMedGoogle Scholar
  196. Zhang G., Gurtu V., Kain S. R., and Yan G. (1997). Early detection of apoptosis using a fluorescent conjugate of annexin V. Biotechniques 23:525–531.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations