An Eddy-Resolving Hindcast Simulation of the Quasiglobal Ocean from 1950 to 2003 on the Earth Simulator

  • Hideharu Sasaki
  • Masami Nonaka
  • Yukio Masumoto
  • Yoshikazu Sasai
  • Hitoshi Uehara
  • Hirofumi Sakuma

Summary

An eddy-resolving hindcast experiment forced by daily mean atmospheric reanalysis data covering the second half of the twentieth century was completed successfully on the Earth Simulator. The domain covers quasiglobal from 75°S to 75°N excluding arctic regions, with horizontal resolution of 0.1° and 54° vertical levels. Encouraged by high performance of the preceding spin-up integration in capturing the time-mean and transient eddy fields of the world oceans, the hindcast run is executed to see how well the observed variations in the low- and midlatitude regions spanning from intraseasonal to decadal timescales are reproduced in the simulation. Our report presented here covers, among others, the El Niño and the Indian Ocean Dipole events, the Pacific and the Pan-Atlantic decadal oscillations, and the intraseasonal variations in the equatorial Pacific and Indian Oceans, which are represented well in the hindcast simulation, comparing with the observations. The simulated variations in not only the surface but also subsurface layers are compared with observations, for example, the decadal subsurface temperature change with narrow structures in the Kuroshio Extension region. Furthermore, we focus on the improved aspects of the hindcast simulation over the spin-up run, possibly brought about by realistic high-frequency daily mean forcing.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonov, J.I., S. Levitus, T.P. Boyer, M.E. Conkright, T. O’Brien, and C. Stephens, 1998a: World Ocean Atlas 1998 Vol. 1: Temperature of the Atlantic Ocean, NOAA Atlas NESDIS 27. U.S. Government Printing Office, Washington, DC.Google Scholar
  2. Antonov, J.I., S. Levitus, T.P. Boyer, M.E. Conkright, T. O’Brien, and C. Stephens, 1998b: World Ocean Atlas 1998 Vol. 2: Temperature of the Pacific Ocean, NOAA Atlas NESDIS 28. U.S. Government Printing Office, Washington, DC.Google Scholar
  3. Antonov, J.I., S. Levitus, T.P. Boyer, M.E. Conkright, T. O’Brien, C. Stephens, and T. Trotsenko, 1998c: World Ocean Atlas 1998 Vol. 3: Temperature of the Indian Ocean, NOAA Atlas NESDIS 29. U.S. Government Printing Office, Washington, DC.Google Scholar
  4. Boyer, T.P., S. Levitus, J.I. Antonov, M.E. Conkright, T. O’Brien, and C. Stephens, 1998a: World Ocean Atlas 1998 Vol. 4: Salinity of the Atlantic Ocean, NOAA Atlas NESDIS 30. U.S. Government Printing Office, Washington, DC.Google Scholar
  5. Boyer, T.P., S. Levitus, J.I. Antonov, M.E. Conkright, T. O’Brien, and C. Stephens, 1998b: World Ocean Atlas 1998 Vol. 5: Salinity of the Pacific Ocean, NOAA Atlas NESDIS 31. U.S. Government Printing Office, Washington, DC.Google Scholar
  6. Boyer, T.P., S. Levitus, J.I. Antonov, M.E. Conkright, T. O’Brien, C. Stephens, and B. Trotsenko, 1998c: World Ocean Atlas 1998 Vol. 6: Salinity of the Indian Ocean, NOAA Atlas NESDIS 32. U.S. Government Printing Office, Washington, DC.Google Scholar
  7. Boyer, T.P., C. Stephens, J.I. Antonov, M.E. Conkright, R.A. Locarnini, T.D. O’Brien, and H.E. Garcia, 2002: World Ocean Atlas 2001, Vol. 2: Salinity. S. Levitus, Ed., NOAA Atlas NESDIS 50, U.S. Government Printing Office, Washington, DC, 165 pp., CD-ROMs.Google Scholar
  8. Carton, J.A., G.A. Chepurin, X. Cao, and B.S. Giese, 2000a: A Simple Ocean Data Assimilation analysis of the global upper ocean 1950-1995. Part I. Methodology, J. Phys. Oceanogr., 30, 294-309.CrossRefGoogle Scholar
  9. Carton, J.A., G.A. Chepurin, and X. Cao, 2000b: A Simple Ocean Data Assimilation analysis of the global upper ocean 1950-1995. Part II. Results, J. Phys. Oceanogr., 30, 311-326.CrossRefGoogle Scholar
  10. Chassignet, E.P. and Z.D. Garraffo, 2001: Viscosity parameterization and the Gulf Stream separation. In: P. Muller and D. Henderson, editors, Aha Huliko’a Hawaiian Winter Workshop. University of Hawaii, pp. 37-41.Google Scholar
  11. Coward, A.C., B.A. de Cuevas, and D.J. Webb, 2002: Early results from a 1/12 × 1/12 global ocean model. Poster from WOCE Final Conference, http://www.soc.soton.ac.uk/ JRD/OCCAM/POSTERS.
  12. Deser, C., M.A. Alexander, and M.S. Timlin, 1999: Evidence for a wind-driven intensification of the Kuroshio Current Extension from the 1970s to the 1980s. J. Clim., 12, 1697-1706.CrossRefGoogle Scholar
  13. Ducet, N., P.Y.L. Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1/2. J. Geophys. Res., 105(C8), 19477-19498.CrossRefGoogle Scholar
  14. Feng, M. and G. Meyers, 2003: Interannual variability in the tropical Indian Ocean: A two-year time-scale of Indian Ocean Dipole. Deep Sea Res. II, 50, 2263-2284.Google Scholar
  15. Gille, S.T., 1994: Mean sea surface height of the Antarctic circumpolar current from Geosat data: Method and application. J. Geophys. Res., 99(C9), 18255-18273.CrossRefGoogle Scholar
  16. Gille, S.T., D.P. Stevens, R.T. Tokmakian, and K.J. Heywood, 2001: Antarctic circumpolar current response to zonally averaged winds. J. Geophys. Res., 106(C2), 2743-2759.CrossRefGoogle Scholar
  17. Hughes, C.W. and E.R. Ash, 2001: Eddy forcing of mean flow in the Southern Ocean. J. Geophys. Res., 106(C2), 2713-2722.Google Scholar
  18. Hurlburt, H.E. and P.J. Hogan (2000): Impact of 1/8 to 1/64 resolution on Gulf Stream modeldata comparisons in basin-scale subtropical Atlantic Ocean models. Dyn. Atmos. Oceans, 32, 283-329.CrossRefGoogle Scholar
  19. Jia, Y., 2000: Formation of an Azores Current due to Mediterranean overflow in a modeling study of the North Atlantic. J. Phys. Oceanogr., 30, 2342-2358.CrossRefGoogle Scholar
  20. Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K.C. Mo, C. Ropelewski, A. Leetmaa, R. Reynolds, and R. Jenne, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc., 77, 437-471.CrossRefGoogle Scholar
  21. Large, W.G., J.C. McWilliams, and S.C. Doney, 1994: Oceanic vertical mixing - A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363-403.CrossRefGoogle Scholar
  22. Legeckis, R., 1977: Long waves in the eastern equatorial Pacific Ocean: A view from a geostationary satellite. Science, 197, 1179-1181.CrossRefGoogle Scholar
  23. Lutjeharms, J.R.E. and D.J. Webb, 1995: Modelling the Agulhas Current system with FRAM (Fine Resolution Antarctic Model). Deep Sea Res. I, 42, 523-551.CrossRefGoogle Scholar
  24. Madden, R.A. and P.R. Julian, 1971: Description of a 40-50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702-708.CrossRefGoogle Scholar
  25. Maltrud, M.E. and J.L. McClean, 2005: An eddy resolving global 1/10 ocean simulation. Ocean Model., 8, 31-54.CrossRefGoogle Scholar
  26. Mantua, N.J, S.R. Hare, Y. Zhang, J.M. Wallace, and R.C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc., 78, 1069-1079.CrossRefGoogle Scholar
  27. Masumoto, Y., H. Sasaki, T. Kagimoto, N. Komori, A. Ishida, Y. Sasai, T. Miyama, T. Motoi, H. Mitsudera, K. Takahashi, H. Sakuma, and T. Yamagata, 2004: A fifty-year eddy-resolving simulation of the world ocean: Preliminary outcomes of OFES (OGCM for the Earth Simulator). J. Earth Simulator, 1, 35-56.Google Scholar
  28. Masumoto, Y., H. Hase, Y. Kuroda, H. Matsuura, and K. Takeuchi, 2005: Intraseasonal variability in the upper layer currents observed in the eastern equatorial Indian Ocean. Geophys. Res. Lett., 32, L02607, doi:10.1029/2004GRL21896.CrossRefGoogle Scholar
  29. McPhaden, M.J., 1999: Genesis and evolution of 1997-1998 El Ni ño, Science, 283, 950-954.CrossRefGoogle Scholar
  30. McPhaden, M.J., 2004: Evolution of the 2002/03 El Ni ño. Bull. Am. Meteorol. Soc., 85, 677-695.CrossRefGoogle Scholar
  31. Nakamura, H., G. Fin, and T. Yamagata, 1997: Decadal climate variability in the North Pacific during the recent decades. Bull. Am. Meteorol. Soc., 78, 2215-2225.CrossRefGoogle Scholar
  32. Nonaka, M., H. Nakamura, Y. Tanimoto, T. Kagimoto, and H. Sasaki, 2006: Decadal variability in the Kuroshio-Oyashio Extension simulated in an eddy-resolving OGCM. J. Clim., 19, 1970-1989.CrossRefGoogle Scholar
  33. Ohfuchi, W., H. Sasaki, Y. Masumoto, and H. Nakamura, 2005: Mesoscale resolving simulations of global atmosphere and ocean on the Earth Simulator. EOS, 86, 45-46.CrossRefGoogle Scholar
  34. Orsi, A.H., T. Whitworth III, and W.D. Nowlin, 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res. I, 42, 641-673.CrossRefGoogle Scholar
  35. Pacanowski, R.C. and A. Gnanadesikan, 1998: Transit response in a z -level ocean model that resolves topography with partial-cells. Mon. Weather. Rev., 126, 3248-3270.CrossRefGoogle Scholar
  36. Pacanowski, R.C. and S.M. Griffies, 1999: The MOM 3 Manual, GFDL Ocean Group Technical Report No. 4, Princeton, NJ: NOAA/Geophysical Fluid Dynamics Laboratory, 680 pp.Google Scholar
  37. Peterson, R.G., 1988: On the transport of the Antarctic Circumpolar Current through Drake Passage and its relation to wind. J. Geophys. Res., 93(C11), 13993-14004.CrossRefGoogle Scholar
  38. Rao, S.A., S.K. Behera, Y. Masumoto, and T. Yamagata, 2002: Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean Dipole. Deep Sea Res. II, 49,1549-1572.Google Scholar
  39. Rayhner, N.A., E.B. Horton, D.E. Parker, C.K. Folland, and R.B. Hachett, 1996: Version 2.2 of the global sea ice sea surface temperature data set. Climate Research Technical Note 74, UK Meteorological Office, Bracknell.Google Scholar
  40. Rosati, A. and K. Miyakoda, 1988: A general circulation model for upper ocean circulation. J. Phys. Oceanogr., 18, 1601-1626.CrossRefGoogle Scholar
  41. Saji, N.H., B.N. Goswami, P.N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360-363.Google Scholar
  42. Sasai, Y., A. Ishida, Y. Yamanaka, and H. Sasaki, 2004: Chlorofluorocarbons in a global ocean eddyresolving OGCM: Pathway and formation of Antarctic Bottom Water. Geophys. Res. Lett., 31, L12305, doi:10.1029/2004GL019895.CrossRefGoogle Scholar
  43. Sasai, Y., A. Ishida, H. Sasaki, S. Kawahara, H. Uehara, and Y. Yamanaka, 2005: Spreading of Antarctic bottom water examined with the simulated CFC-11 distribution: Results of CFC-11 simulation in an eddy-resolving OGCM. Polar Meteorol Glaciol, 19, 15-27.Google Scholar
  44. Saunders, P. and S.R. Thompson, 1993: Transport, heat and freshwater fluxes within a diagnostic model (FRAM). J. Phys. Oceanogr., 23, 452-464.CrossRefGoogle Scholar
  45. Semtner, A.J. and R.M. Chervin, 1992: Ocean general circulation from a global eddy-resolving model. J. Geophys. Res., 97(C4), 5493-5550.CrossRefGoogle Scholar
  46. Smith, R.D., M.E. Maltrud, F.O. Bryan, and M.W. Hecht, 2000: Numerical simulation of the North Atlantic Ocean at 1/10 . J. Phys. Oceanogr., 30, 1532-1561.CrossRefGoogle Scholar
  47. Stephens, C., J.I. Antonov, T.P. Boyer, M.E. Conkright, R.A. Locarnini, T.D. O’Brien, and H.E. Garcia, 2002: World Ocean Atlas 2001, Vol. 1: Temperature. S. Levitus, Ed., NOAA Atlas NESDIS 49, U.S. Government Printing Office, Washington, D.C., 167 pp., CD-ROMs.Google Scholar
  48. Takayabu, Y. N., T. Iguchi, M. Kachi, A. Shibata, and H. Kanzawa, 1999: Abrupt termination of the 1997-98 El Ni ño in response to a Madden-Julian oscillation. Nature, 402, 279-282.CrossRefGoogle Scholar
  49. Tanimoto, Y. and S.P. Xie, 2002: Inter-hemispheric decadal variations in SST, surface wind, heat flux and cloud cover over the Atlantic Ocean. J. Meteor. Soc. Jpn., 80, 1199-1219.CrossRefGoogle Scholar
  50. Uehara, H., S. Kawahara, N. Ohno, M. Furuichi, and A Kageyama, 2006: MovieMaker: A parallel movie-making software for large scale simulations. J. Plasma Phys., 72, 841-844.CrossRefGoogle Scholar
  51. Wearn, R.B. and D.J. Baker, 1980: Bottom pressure measurements across the Antarctic Circumpolar Current and their relation to the wind. Deep Sea Res., 27A, 875-888.Google Scholar
  52. Webb, D.J., 2000: Evidence for shallow zonal jets in the South Equatorial Current region of the Southwest Pacific. J. Phys. Oceanogr., 30, 706-720.CrossRefGoogle Scholar
  53. Whitworth, T. and R.G. Peterson, 1985: Volume transport of the Antarctic Circumpolar Current from bottom pressure measurements. J. Phys. Oceanogr., 15, 810-816.CrossRefGoogle Scholar
  54. Woodruff, S.D., R.J. Sluts, R.L. Jenne, and P.M. Steurer, 1987: A comprehensive ocean-atmosphere dataset. Bull. Am. Meteorol. Soc., 68, 521-527.CrossRefGoogle Scholar
  55. Xie, S.P. and Y. Tanimoto, 1998: A pan-Atlantic decadal climate oscillation. Geophys. Res. Lett., 25,2185-2188.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hideharu Sasaki
  • Masami Nonaka
  • Yukio Masumoto
  • Yoshikazu Sasai
  • Hitoshi Uehara
  • Hirofumi Sakuma

There are no affiliations available

Personalised recommendations