Skip to main content

Prodrugs of Amides, Imides and Other NH-acidic Compounds

  • Chapter
Prodrugs

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume V))

Abstract

The term ‘NH-acidic compound,’ in the context of this chapter, refers to amides, carbamates, ureas, imides, and sulfonamides (Figure 1). However, the above term will not include amines, as they are discussed in a previous chapter. This chapter reviews various prodrug strategies for modifying the physical, chemical, and biochemical properties of NH-acidic compounds. Synthetic methodologies are not covered, as this information is readily available from the primary references cited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 399.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almansa C, Bartroli J, Belloc J, Cavalcanti FL, Ferrando R, Gomez LA, Ramis I, Carceller E, Merlos M, and Garcia-Rafanell J. New Water-Soluble Sulfonylphosphoramidic Acid Derivatives of the COX-2 Selective Inhibitor Cimicoxib. A Novel Approach to Sulfonamide Prodrugs. J Med Chem 2004;47:5579–5582

    Article  PubMed  CAS  Google Scholar 

  • Bak A, Fich M, Larsen BD, Frokjaer S, and Friis GJ. N-terminal 4-Imidazolidinone Prodrugs of Leu-enkephalin: Synthesis, Chemical and Enzymic Stability Studies. European J Pharm Sci 1999; 7:317–323

    Article  CAS  Google Scholar 

  • Bansal PC, Pitman IH, and Higuchi T. N-Hydroxymethyl Derivatives of Nitrogen Heterocycles as Possible Prodrugs. II: Possible Prodrugs of Allopurinol, Glutethimide, and Phenobarbital. J Pharm Sci 1981; 70:855–857

    Article  PubMed  CAS  Google Scholar 

  • Beall H, Prankerd R, and Sloan K. Transdermal Delivery of 5-Fluorouracil (5-Fu) through Hairless Mouse Skin by 1-Alkyloxycarbonyl-5-Fu Prodrugs-Physicochemical Characterization of Prodrugs and Correlations with Transdermal Delivery. Int J Pharm 1994; 111:223–233

    Article  CAS  Google Scholar 

  • Beall HD, and Sloan KB. Transdermal Delivery of 5-Fluorouracil (5-FU) by 1-Alkylcarbonyl-5-FU Prodrugs. Int J Pharm 1996; 129:203–210

    Article  CAS  Google Scholar 

  • Beall HD, and Sloan KB. Topical Delivery of 5-Fluorouracil (5-FU) by 3-Alkylcarbonyl-5-FU Prodrugs. Int J Pharm 2001; 217:127–137

    Article  PubMed  CAS  Google Scholar 

  • Beall HD, and Sloan KB. Topical Delivery of 5-Fluorouracil (5-FU) by 1,3-bisalkylcarbonyl-5-FU Prodrugs. Int J Pharm 2002; 231:43–49

    Article  PubMed  CAS  Google Scholar 

  • Beall HD, Prankerd RJ, and Sloan KB. 1-Alkylcarbonyl-5-fluorouracil Prodrugs: Synthesis, Thermal and Hydrolytic Stability. Drug Dev Ind Pharm 1996; 22:85–90

    Article  CAS  Google Scholar 

  • Beall HD, Prankerd RJ, and Sloan KB. 1,3-bisalkylcarbonyl-and 3-Alkylcarbonyl-5-fluorouracil Prodrugs: Synthesis, Thermal and Hydrolytic Stability. Drug Dev Ind Pharm 1997; 23:517–525

    Article  CAS  Google Scholar 

  • Beall HD, Prankerd RJ, Todaro LJ, and Sloan KB. Structure of 3-Acetyl-5-Fluorouracil (5-Fu)-Implication for Its Rearrangements During Hydrolysis and Upon Heating. Pharm Res 1993; 10:905–912

    Article  PubMed  CAS  Google Scholar 

  • Bosch J, Roca T, Domenech J, and Suriol M. Synthesis of Water-soluble Phenytoin Prodrugs. Bioorg Med Chem Lett 1999; 9:1859–1862

    Article  PubMed  CAS  Google Scholar 

  • Bundgaard H. Novel Bioreversible Derivatives of Amides, Imides, Ureides, Amines and Other Chemical Entities not Readily Derivatizable. In: Bundgaard H, Hansen AB and Kofod H. Optimization of Drug Delivery. Copenhagen: Munksgaard; 1982:178–198

    Google Scholar 

  • Bundgaard H. Drug Targeting: Prodrugs. In: Breimer DD and Speiser P. Topics in Pharmaceutical Sciences. Amsterdam: Elsevier; 1983:329–343

    Google Scholar 

  • Bundgaard H. Formation of Prodrugs of Amines, Amides, Ureides, And Imides. Meth Enzymol 1985a; 112:347–359

    PubMed  CAS  Google Scholar 

  • Bundgaard H. Design of Prodrugs: Bioreversible Derivatives for Various Functional Groups and Chemical Entities. In: Bundgaard H. Design of Prodrugs. Amsterdam: Elsevier; 1985b:1–92

    Google Scholar 

  • Bundgaard H. The Double Prodrug Concept and its Applications. Adv Drug Del Rev 1989; 3:39–65

    Article  CAS  Google Scholar 

  • Bundgaard H. Prodrugs as a Means to Improve the Delivery of Peptide Drugs. Adv Drug Del Rev 1992a; 8:1–38

    Article  CAS  Google Scholar 

  • Bundgaard H. The Utility of the Prodrug Approach to Improve Peptide Absorption. J Control Rel 1992b; 21:63–72

    Article  CAS  Google Scholar 

  • Bundgaard H, and Larsen C. Pro-drugs as Drug Delivery Systems. V. Cyclization of Methyl Esters of Succinamic and Glutaramic Acids to the Corresponding Imides (Phensuximide and Glutethimide) in Aqueous Solution. Acta Pharm Suec 1979a; 16:309–318

    PubMed  CAS  Google Scholar 

  • Bundgaard H, and Larsen C. Pro-drugs as Drug Delivery Systems. II. Open-ring Ester Derivatives as Novel Pro-drug Candidates Trimethadione. Arch Pharm Chem Sci Ed 1979b; 7:41–50

    Google Scholar 

  • Bundgaard H, and Johansen M. Pro Drugs As Drug Delivery Systems. X. NMannich Bases as Novel Pro-drug Candidates for Amides, Imides, Urea Derivatives, Amines and Other NH-acidic Compounds. Kinetics and Mechanisms Of Decomposition and Structure-Reactivity Relationships. Arch Pharm Chem Sci Ed 1980a; 8:29–52

    CAS  Google Scholar 

  • Bundgaard H, and Johansen M. Pro-drugs as Drug Delivery Systems. XV. Bioreversible Derivatization of Phenytoin, Acetazolamide, Chlorzoxazone, and Various Other NH-Acidic Compounds by N-Aminomethylation to Effect Enhanced Dissolution Rates. Int J Pharm 1980b; 7:129–136

    Article  CAS  Google Scholar 

  • Bundgaard H, and Johansen M. Prodrugs as Drug Delivery Systems. IV: NMannich bases as Potential Novel Prodrugs for Amides, Ureides, Amines, and Other NH-Acidic Compounds. J Pharm Sci 1980c; 69:44–46

    Article  PubMed  CAS  Google Scholar 

  • Bundgaard H, and Johansen M. Pro-drugs as Drug Delivery Systems. VIII. Bioreversible Derivatization of Hydantoins by N-hydroxymethylation. Int J Pharm 1980d; 5:67–77

    Article  CAS  Google Scholar 

  • Bundgaard H, and Johansen M. Pro-drugs as Drug Delivery Systems. XVIII. Bioreversible Derivatization of Allopurinol by N-aminomethylation to Effect Enhanced Dissolution Rates. Acta Pharm Suec 1981a; 18:129–134

    CAS  Google Scholar 

  • Bundgaard H, and Johansen M. Prodrugs as Drug Delivery Systems. XIX. Bioreversible Derivatization of Aromatic Amines by Formation of N-Mannich Bases with Succinimide. Int J Pharm 1981b; 8:183–192

    Article  CAS  Google Scholar 

  • Bundgaard H, and Johansen M. Hydrolysis of N-(α-hydroxybenzyl)benzamide and Other N-(α-hydroxyalkyl) Amide Derivatives: Implications for the Design of N-acyloxyalkyl-type Prodrugs. Int J Pharm 1984; 22:45–56

    Article  CAS  Google Scholar 

  • Bundgaard H, and Falch E. Improved Rectal and Parenteral Delivery of Allopurinol Using the Prodrug Approach. Arch Pharm Chem Sci Ed 1985a; 13:39–48

    CAS  Google Scholar 

  • Bundgaard H, and Falch E. Allopurinol Prodrugs. II. Synthesis, Hydrolysis Kinetics and Physicochemical Properties of Various N-acyloxymethyl Allopurinol Derivatives. Int J Pharm 1985b; 24:307–325

    Article  CAS  Google Scholar 

  • Bundgaard H, and Falch E. Allopurinol prodrugs. III. Water-soluble Nacyloxymethyl Allopurinol Derivatives for Rectal or Parenteral Use. Int J Pharm 1985c; 25:27–39

    Article  CAS  Google Scholar 

  • Bundgaard H, and Falch E. Allopurinol Prodrugs. I. Synthesis, Stability and Physicochemical Properties of Various N1-Acyl Allopurinol Derivatives. Int J Pharm 1985d; 23:223–237

    Article  CAS  Google Scholar 

  • Bundgaard H, and Buur A. Prodrugs as Drug Delivery Systems. 65. Hydrolysis of α-Hydroxy-and α-Acyloxy-N-benzoylglycine Derivatives and Implications for the Design of Prodrugs of NH-Acidic Compounds. Int J Pharm 1987; 37:185–194

    Article  CAS  Google Scholar 

  • Bundgaard H, and Nielsen NM. Prodrugs as Drug Delivery Systems. 74 Facile Hydrolysis of N-(acyloxymethyl)amide Derivatives and Implications for the Design of Prodrugs of NH-acidic Compounds and of Carboxylic Acids. Acta Pharm Suec 1987; 24:233–246

    PubMed  CAS  Google Scholar 

  • Bundgaard H, and Møss J. Prodrugs of Peptides. IV: Bioreversible Derivatization of the Pyroglutamyl Group by N-acylation and N-aminomethylation to Effect Protection against Pyroglutamyl Aminopeptidase. J Pharm Sci 1989; 78:122–126

    Article  PubMed  CAS  Google Scholar 

  • Bundgaard H, and Rasmussen GJ. Prodrugs of Peptides. 9. Bioreversible N-α-hydroxyalkylation of the Peptide Bond to Effect Protection against Carboxypeptidase or Other Proteolytic Enzymes. Pharm Res 1991a; 8:313–322

    Article  PubMed  CAS  Google Scholar 

  • Bundgaard H, and Rasmussen GJ. Prodrugs of Peptides. 11. Chemical and Enzymic Hydrolysis Kinetics of N-acyloxymethyl Derivatives of a Peptide-like Bond. Pharm Res 1991b; 8:1238–1242

    Article  PubMed  CAS  Google Scholar 

  • Bundgaard H, and Friis GJ. Prodrugs of Peptides. 16. Isocyclosporin A as a Potential Prodrug of Cyclosporin A. Int J Pharm 1992; 82:85–90

    Article  CAS  Google Scholar 

  • Bundgaard H, Hansen AB, and Larsen C. Pro-drugs as Drug Delivery Systems. I. Esters of Malonuric Acids as Novel Pro-drug Candidates of Barbituric Acids. Arch Pharm Chem Sci Ed 1978; 6:231–240

    Google Scholar 

  • Bundgaard H, Bagger Hansen A, and Larsen C. Pro-drugs as Drug Delivery Systems. III. Esters of Malonuric Acids as Novel Pro-drug Types for Barbituric Acids. Int J Pharm 1979a; 3:341–353

    Article  CAS  Google Scholar 

  • Bundgaard H, Bagger Hansen A, and Larsen C. Pro-drugs as Drug Delivery Systems. VII. Rapid Cyclization of Methyl Diethylthiomalonurate to Thiobarbital in Aqueous Solution. Arch Pharm Chem Sci Ed 1979b; 7:193–198

    CAS  Google Scholar 

  • Bundgaard H, Falch E, and Larsen C. Pro-drugs as Drug Delivery Systems. XI. Preparation and Characterization of a Novel Water-soluble Pro-drug Type for Barbituric Acids. Int J Pharm 1980; 6:19–27

    Article  CAS  Google Scholar 

  • Bundgaard H, Klixbull U, and Falch E. Prodrugs as Drug Delivery Systems. 44. O-Acyloxymethyl, O-acyl and N-acyl Salicylamide Derivatives as Possible Prodrugs for Salicylamide. Int J Pharm 1986; 30:111–121

    Article  CAS  Google Scholar 

  • Bundgaard H, Falch E, and Jensen E. A Novel Solution-stable, Water-soluble Prodrug Type for Drugs Containing a Hydroxyl or an NH-acidic Group. J Med Chem 1989; 32:2503–2507

    Article  PubMed  CAS  Google Scholar 

  • Bundgaard H, Johansen M, Stella V, and Cortese M. Prodrugs as Drug Delivery Systems. XXI. Preparation, Physicochemical Properties and Bioavailability of a Novel Water-soluble Prodrug Type for Carbamazepine. Int J Pharm 1982; 10:181–192

    Article  CAS  Google Scholar 

  • Bundgaard H, Falch E, Pedersen SB, and Nielsen GH. Allopurinol Prodrugs. IV. Improved Rectal and Parenteral Delivery of Allopurinol Using the Prodrug Approach as Evaluated in Rabbits. Int J Pharm 1985; 27:71–80

    Article  CAS  Google Scholar 

  • Bundgaard H, Buur A, Hansen KT, Larsen JD, Moess J, and Olsen L. Prodrugs as Drug Delivery Systems. 77. Phthalidyl Derivatives as Prodrug Forms for Amides, Sulfonamides, Carbamates and Other NH-acidic Compounds. Int J Pharm 1988; 45:47–57

    Article  CAS  Google Scholar 

  • Burke M, Redden PR, Douglas JA, Dick A, and Horrobin DF. In Vitro Hydrolysis Of Novel _-Linolenoyloxyalkyl Derivatives of Theophylline. Int J Pharm 1997; 157:81–91

    Article  CAS  Google Scholar 

  • Butler TC, and Waddell WJ. N-methylated Derivatives of Barbituric Acid, Hydantoin and Oxazolidinedione Used in the Treatment of Epilepsy. Neurology 1958; 8:106–112

    PubMed  CAS  Google Scholar 

  • Buur A, and Bundgaard H. Prodrugs of 5-Fluorouracil. II. Hydrolysis Kinetics, Bioactivation, Solubility and Lipophilicity on N-Alkoxycarbonyl Derivatives of 5-Fluorouracil. Arch Pharm Chem Sci Ed 1984a; 12:37–44

    CAS  Google Scholar 

  • Buur A, and Bundgaard H. Prodrugs of 5-Fluorouracil. I. Hydrolysis Kinetics and Physicochemical Properties of Various N-acyl Derivatives of 5-Fluorouracil. Int J Pharm 1984b; 21:349–364

    Article  CAS  Google Scholar 

  • Buur A and Bundgaard H. Prodrugs of 5-Fluorouracil. III. Hydrolysis Kinetics in Aqueous Solution and Biological Media, Lipophilicity and Solubility of Various 1-Carbamoyl Derivatives of 5-Fluorouracil. Int J Pharm 1985; 23:209–222

    Article  CAS  Google Scholar 

  • Buur A, and Bundgaard H. Prodrugs of 5-Fluorouracil V. 1-Alkoxycarbonyl Derivatives as Potential Prodrug Forms for Improved Rectal or Oral Delivery of 5-Fluorouracil. J Pharm Sci 1986a; 75:522–527

    Article  PubMed  CAS  Google Scholar 

  • Buur A, and Bundgaard H. Prodrugs of 5-Fluorouracil. VI. Hydrolysis Kinetics and Bioactivation of 3-Nicotinoyl-5-Fluorouracil and Various 1-Substituted Derivatives of 3-Benzoyl-5-Fluorouracil. Arch Pharm Chem Sci Ed 1986b; 14:99–112

    CAS  Google Scholar 

  • Buur A, and Bundgaard H. Prodrugs of 5-Fluorouracil. VIII. Improved Rectal and Oral Delivery of 5-Fluorouracil via Various Prodrugs. Structure-rectal Absorption Relationships. Int J Pharm 1987; 36:41–49

    Article  CAS  Google Scholar 

  • Buur A, and Bundgaard H. Prodrugs of Peptides. III. 5-Oxazolidinones as Bioreversible Derivatives for the α-Amidocarboxy Moiety in Peptides. Int J Pharm 1988; 46:159–167

    Article  CAS  Google Scholar 

  • Buur A, Bundgaard H, and Falch E. Prodrugs of 5-Fluorouracil. IV. Hydrolysis Kinetics, Bioactivation and Physicochemical Properties of Various Nacyloxymethyl Derivatives of 5-Fluorouracil. Int J Pharm 1985; 24:43–60

    Article  CAS  Google Scholar 

  • Buur A, Bundgaard H, and Falch E. Prodrugs of 5-Fluorouracil. VII. Hydrolysis Kinetics and Physicochemical Properties of N-Ethoxy-and N-Phenoxycarbonyloxymethyl Derivatives of 5-Fluorouracil. Acta Pharm Suec 1986; 23:205–216

    PubMed  CAS  Google Scholar 

  • Buur A, Trier L, Magnusson C, and Artursson P. Permeability of 5-Fluorouracil and Prodrugs in Caco-2 Cell Monolayers. Int J Pharm 1996; 129:223–231

    Article  CAS  Google Scholar 

  • Calheiros T, Iley J, Lopes F, and Moreira R. Acyloxymethyl as a Drug Protecting Group-Synthesis and Reactivity of N-Acyloxymethylsulfonamide Prodrugs. Bioorg Med Chem Lett 1995; 5:937–940

    Article  CAS  Google Scholar 

  • Chikhale PJ, Marvanyos E, and Bodor NS. Improved Delivery through Biological-Membranes.61. Design, Synthesis, and Evaluation of a Lipolol-Based Intradermal Drug Targeting System for 4-Fluorouracil. Cancer Biother 1994; 9:245–252

    PubMed  CAS  Google Scholar 

  • Craine L, and Raban M. The Chemistry of Sulfenamides. Chem Rev 1989; 89:689–712

    Article  CAS  Google Scholar 

  • Davis FA. Chemistry of the Sulfur-Nitrogen Bond in Sulfenamides. Int J Sulfur Chem 1973; 8:71–81

    CAS  Google Scholar 

  • de Silva JAF, Koechlin BA, and Bader G. Blood Level Distribution Patterns of Diazepam and its Major Metabolite in Man. J Pharm Sci 1966; 55:692–702

    Article  PubMed  Google Scholar 

  • Eadie MJ. Formation of Active Metabolites of Anticonvulsant Drugs. Clin Pharmacokinet 1991; 21:27–41

    Article  PubMed  CAS  Google Scholar 

  • El-Masri HA, and Portier CJ. Physiologically Based Pharmacokinetics Model of Primidone and its Metabolites Phenobarbital and Phenylethylmalonamide in Humans, Rats, and Mice. Drug Metab Dispos 1998; 26:585–594

    PubMed  CAS  Google Scholar 

  • Ferres H. Pro-drugs of β-Lactam Antibiotics. Drugs of Today 1983; 19:499–538

    CAS  Google Scholar 

  • Friis GJ, Bak A, Larsen BD, and Frøkjær S. Prodrugs of Peptides Obtained by Derivatization of the C-terminal Peptide Bond in order to Effect Protection against Degradation by Carboxypeptidases. Int J Pharm 1996; 136:61–69

    Article  CAS  Google Scholar 

  • Guarino VR. Sulfenamide Prodrugs: A Novel Prodrug Approach for Amides, Imides and other NH-Acidic Compounds. Doctoral Dissertation. University of Kansas. 2004. 241p.

    Google Scholar 

  • Guarino VR, Karunaratne V, and Stella VJ. Novel Prodrugs of N-H Bond-Containing Compounds and Methods of Making Thereof. PCT Int. Appl. WO 03/032908 A2. 2003. 73p.

    Google Scholar 

  • Hamada Y, Matsumoto H, Kimura T, Hayashi Y, and Kiso Y. Effect of the Acyl Groups on O,N Acyl Migration in the Water-soluble Prodrugs of HIV-1 Protease Inhibitor. Bioorg Med Chem Lett 2003; 13:2727–2730

    Article  PubMed  CAS  Google Scholar 

  • Hamada Y, Ohtake J, Sohma Y, Kimura T, Hayashi Y, and Kiso Y. New Water-soluble Prodrugs of HIV Protease Inhibitors Based on O,N Intramolecular Acyl Migration. Bioorg Med Chem 2002; 10:4155–4167

    Article  PubMed  CAS  Google Scholar 

  • Hamada Y, Matsumoto H, Yamaguchi S, Kimura T, Hayashi Y, and Kiso Y. Water-soluble Prodrugs of Dipeptide HIV Protease Inhibitors Based on O,N Intramolecular Acyl Migration: Design, Synthesis and Kinetic Study. Bioorg Med Chem 2004; 12:159–170

    Article  PubMed  CAS  Google Scholar 

  • Hayashi Y, Skwarczynski M, Hamada Y, Sohma Y, Kimura T, and Kiso Y. A Novel Approach of Water-Soluble Paclitaxel Prodrug with No Auxiliary and No Byproduct: Design and Synthesis of Isotaxel. J Med Chem 2003; 46:3782–3784

    Article  PubMed  CAS  Google Scholar 

  • Hurley TR, Colson CE, Hicks G, and Ryan MJ. Orally Active Water-soluble N,O-acyl Transfer Products of a β,γ-bishydroxyl Amide Containing Renin Inhibitor. J Med Chem 1993; 36:1496–1498

    Article  PubMed  CAS  Google Scholar 

  • Iley J, Moreira R, and Rosa E. Acyloxymethyl as a Drug Protecting Group. Kinetics and Mechanism of the Hydrolysis of N-acyloxymethylbenzamides. J Chem Soc Perkin Trans 2 1991; 563–570

    Google Scholar 

  • Johansen M, and Bundgaard H. Pro-drugs as Drug Delivery Systems. VI. Kinetics and Mechanism of the Decomposition of N-hydroxymethylated Amides and Imides in Aqueous Solution and Assessment of their Suitability as Possible Prodrugs. Arch Pharm Chem Sci Ed 1979; 7:175–192

    CAS  Google Scholar 

  • Johansen M, and Bundgaard H. Pro-drugs as Drug Delivery Systems. XIII. Kinetics of Decomposition of N-Mannich Bases of Salicylamide and Assessment of their Suitability as Possible Pro-drugs for Amines. Int J Pharm 1980a; 7:119–127

    Article  CAS  Google Scholar 

  • Johansen M, and Bundgaard H. Prodrugs as Drug Delivery Systems. XII. Solubility, Dissolution and Partitioning Behaviour of N-Mannich Bases and N-hydroxymethyl Derivatives. Arch Pharm Chem Sci Ed 1980b; 8:141–151

    Google Scholar 

  • Johansen M, and Bundgaard H. Decomposition of Rolitetracycline and Other N-Mannich Bases and of N-hydroxymethyl Derivatives in the Presence of Plasma. Arch Pharm Chem Sci Ed 1981a; 9:40–42

    CAS  Google Scholar 

  • Johansen M, and Bundgaard H. Pro-drugs as Drug Delivery Systems. XVI. Novel Water-soluble Pro-drug Types for Chlorzoxazone by Esterification of the N-hydroxymethyl Derivative. Arch Pharm Chem Sci Ed 1981b; 9:43–54

    CAS  Google Scholar 

  • Jolimaître P, Malet-Martino M, and Martino R. Fluorouracil Prodrugs for the Treatment of Proliferative Vitreoretinopathy: Formulation in Silicone Oil and In Vitro Release of Fluorouracil. Int J Pharm 2003; 259:181–192

    Article  PubMed  CAS  Google Scholar 

  • Jusko WJ, and Lewis GP. Comparison of Ampicillin and Hetacillin Pharmacokinetics in Man. J Pharm Sci 1973; 62:69–76

    Article  PubMed  CAS  Google Scholar 

  • Kahns AH, and Bundgaard H. Prodrugs of Peptides. 13. Stabilization of Peptide Amides against α-Chymotrypsin by the Prodrug Approach. Pharm Res 1991a; 8:1533–1538

    Article  PubMed  CAS  Google Scholar 

  • Kahns AH, and Bundgaard H. N-Acyl Derivatives as Prodrug Forms for Amides: Chemical Stability and Enzymic Hydrolysis of Various N-acyl and N-alkoxycarbonyl Amide Derivatives. Int J Pharm 1991b; 71:31–43

    Article  CAS  Google Scholar 

  • Kahns AH, and Bundgaard H. Hydrolysis Kinetics of 1,3-Benzoxazine-2,4-dione (a Potential Salicylamide Prodrug) and Various N-substituted Derivatives. Acta Pharm Nord 1991c; 3:45–50

    PubMed  CAS  Google Scholar 

  • Kahns AH, Friis GJ, and Bundgaard H. Protection of the Peptide Bond against α-Chymotrypsin by the Prodrug Approach. Bioorg Med Chem Lett 1993; 3:809–812

    Article  CAS  Google Scholar 

  • Kazmierski WM, Bevans P, Furfine E, Spaltenstein A, and Yang H. Novel Prodrug Approach to Amprenavir-based HIV-1 Protease Inhibitors via O,N Acyloxy Migration of P1 Moiety. Bioorg Med Chem Lett 2003; 13:2523–2526

    Article  PubMed  CAS  Google Scholar 

  • Kerr D, Roberts W, Tebbett I, and Sloan KB. 7-Alkylcarbonyloxymethyl Prodrugs of Theophylline: Topical Delivery of Theophylline. Int J Pharm 1998; 167:37–48

    Article  CAS  Google Scholar 

  • Kharasch N, Potempa SJ, and Wehrmeister HL. The Sulfenic Acids and their Derivatives. Chem Rev 1946; 39:269–332

    Article  CAS  Google Scholar 

  • Kiso Y, Matsumoto H, Yamaguchi S, and Kimura T. Design of Small Peptidomimetic HIV-1 Protease Inhibitors and Prodrug Forms. Lett Pept Sci 1999; 6:275–281

    CAS  Google Scholar 

  • Klixbüll U, and Bundgaard H. Prodrugs as Drug Delivery Systems. XXX. 4-Imidazolidinones as Potential Bioreversible Derivatives for the α-Aminoamide Moiety in Peptides. Int J Pharm 1984; 20:273–284

    Article  Google Scholar 

  • Klixbüll U, and Bundgaard H. Kinetics of Reversible Reactions of Ampicillin with Various Aldehydes and Ketones with Formation of 4-Imidazolidinones. Int J Pharm 1985; 23:163–173

    Article  Google Scholar 

  • Koval IV. Advances in the Chemistry of Sulfenic Acid Amides. Russian Chem Rev 1990; 59:836–849

    Google Scholar 

  • Koval IV. Chemistry of Sulfenamides. Russian J Org Chem 1996; 32:1239–1270

    Google Scholar 

  • Larsen JD, and Bundgaard H. Prodrug Forms for the Sulfonamide Group. I. Evaluation of N-acyl Derivatives, N-sulfonylamidines, N-sulfonylsulfilimines and Sulfonylureas as Possible Prodrug Derivatives. Int J Pharm 1987; 37:87–95

    Article  CAS  Google Scholar 

  • Larsen JD, Bundgaard H, and Lee VHL. Prodrug Forms for the Sulfonamide Group. II. Water-soluble Amino Acid Derivatives of N-methylsulfonamides as Possible Prodrugs. Int J Pharm 1988; 47:103–110

    Article  CAS  Google Scholar 

  • Larsen SW, Sidenius M, Ankersen M, and Larsen C. Kinetics of Degradation Of 4-Imidazolidinone Prodrug Types Obtained from Reacting Prilocaine with Formaldehyde and Acetaldehyde. European J Pharm Sci 2003; 20:233–240

    Article  CAS  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, and Feeney PJ. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv Drug Del Rev 1997; 23:3–25

    Article  CAS  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, and Feeney PJ. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings*. Adv Drug Del Rev 2001; 46:3–26

    Article  CAS  Google Scholar 

  • Lopes F, Moreira R, and Iley J. Acyloxymethyl as a Drug Protecting Group. Part 5. Kinetics and Mechanism of the Hydrolysis of Tertiary N-acyloxymethylsulfonamides. J Chem Soc Perkin Trans 2 1999; 431–439

    Google Scholar 

  • Lopes F, Moreira R, and Iley J. Acyloxymethyl as a Drug Protecting Group. Part 6. N-Acyloxymethyl-and N-[(aminocarbonyloxy)methyl]sulfonamides as Prodrugs of Agents Containing a Secondary Sulfonamide Group. Bioorg Med Chem 2000; 8:707–716

    Article  PubMed  CAS  Google Scholar 

  • Møllgaard B, Hoelgaard A, and Bundgaard H. Prodrugs as Drug Delivery Systems. XXIII. Improved Dermal Delivery of 5-Fluorouracil through Human Skin via N-acyloxymethyl Prodrug Derivatives. Int J Pharm 1982; 12:153–162

    Article  Google Scholar 

  • Møss J, and Bundgaard H. Prodrugs of Peptides. 19. Protection of the Pyroglutamyl Residue against Pyroglutamyl Aminopeptidase by N-acyloxymethylation and Other Means. Acta Pharm Nord 1992a; 4:301–308

    PubMed  Google Scholar 

  • Møss J, and Bundgaard H. Prodrugs of peptides. 17. Bioreversible Derivatization of the C-terminal Prolineamide Residue in Peptides to Afford Protection against Prolyl Endopeptidase. Int J Pharm 1992b; 82:91–97

    Article  Google Scholar 

  • Ogiso T, Tanino T, Kawaratani D, Iwaki M, Tanabe G, and Muraoka O. Enhancement of The Oral Bioavailability of Phenytoin by N-acetylation and Absorptive Characteristics. Biol Pharm Bull 1998; 21:1084–1089

    PubMed  CAS  Google Scholar 

  • Oliyai R. Prodrugs of Peptides and Peptidomimetics for Improved Formulation and Delivery. Adv Drug Del Rev 1996; 19:275–286

    Article  CAS  Google Scholar 

  • Oliyai R, and Stella VJ. Kinetics and Mechanism of Isomerization of Cyclosporin A. Pharm Res 1992; 9:617–622

    Article  PubMed  CAS  Google Scholar 

  • Oliyai R, and Stella VJ. Structural Factors Affecting the Kinetics of O,N-acyl Transfer in Potential O-peptide Prodrugs. Bioorg Med Chem Lett 1995; 5:2735–2740

    Article  CAS  Google Scholar 

  • Ozaki S, Kong XZ, Watanabe Y, Hoshiko T, Ogasawara T, Ueno T, Furukawa U, Iigo M, and Hoshi A. 5-Fluorouracil Derivatives-XXIII. Synthesis and Antitumor Activities of 1-Carbamoyl-5-fluorouracils Having Aromatic Ring. Chin J Chem 1998; 16:171–177

    CAS  Google Scholar 

  • Ozaki S, Kong XZ, Watanabe Y, Hoshiko T, Koga T, Ogasawara T, Takizawa T, Fujisawa H, Iigo M, and Hoshi A. 5-Fluorouracil Derivatives. 22. Synthesis and Antitumor Activities of 1-Carbamoyl-5-fluorouracils. Chem Pharm Bull 1997; 45:1372–1375

    PubMed  CAS  Google Scholar 

  • Pitman IH. Pro-drugs of Amides, Imides, and Amines. Med Res Rev 1981; 1:189–214

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen GJ, and Bundgaard H. Prodrugs of Peptides. 15. 4-Imidazolidinone Prodrug Derivatives of Enkephalins to Prevent Aminopeptidase-catalyzed Metabolism in Plasma and Absorptive Mucosae. Int J Pharm 1991; 76:113–122

    Article  CAS  Google Scholar 

  • Redden P, Douglas JAE, Burke MJ, and Horrobin DF. In Vitro Hydrolysis of Polyunsaturated Fatty Acid N-acyloxymethyl Derivatives of Theophylline. Int J Pharm 1998; 165:87–96

    Article  CAS  Google Scholar 

  • Redden PR, Melanson RL, Douglas JAE, and Dick AJ. Acyloxymethyl Acidic Drug Derivatives: In Vitro Hydrolytic Reactivity. Int J Pharm 1999; 180:151–160

    Article  PubMed  CAS  Google Scholar 

  • Roberts WJ, and Sloan KB. Topical Delivery of 5-Fluorouracil (5-FU) by 3-Alkylcarbonyloxymethyl-5-FU Prodrugs. J Pharm Sci 2003; 92:1028–1036

    Article  PubMed  CAS  Google Scholar 

  • Schwartz MA, and Hayton WL. Relative Stability of Hetacillin and Ampicillin in Solution. J Pharm Sci 1972; 61:906–909

    Article  PubMed  CAS  Google Scholar 

  • Scriba GKE. Phenytoin Lipid Conjugates-Chemical, Plasma Esterase-Mediated, and Pancreatic Lipase-Mediated Hydrolysis in-Vitro. Pharm Res 1993a; 10:1181–1186

    Article  PubMed  CAS  Google Scholar 

  • Scriba GKE. Phenytoin-Lipid Conjugates as Potential Prodrugs of Phenytoin. Arch Pharm 1993b; 326:477–481

    Article  CAS  Google Scholar 

  • Scriba GKE, and Lambert DM. Bioavailability of Phenytoin and Anticonvulsant Activity after Oral Administration of Phenytoin-bis-hydroxyisobutyrate to Rats. Pharm Res 1997; 14:251–253

    Article  PubMed  CAS  Google Scholar 

  • Scriba GKE, and Lambert DM. Synthesis and Anticonvulsant Activity of Nbenzyloxycarbonyl Amino Acid Prodrugs of Phenytoin. J Pharm Pharmacol 1999; 51:549–553

    Article  PubMed  CAS  Google Scholar 

  • Scriba GKE, Lambert DM, and Poupaert JH. Bioavailability and Anticonvulsant Activity of a Monoglyceride-Derived Prodrug of Phenytoin after Oral Administration to Rats. J Pharm Sci 1995a; 84:300–302

    Article  PubMed  CAS  Google Scholar 

  • Scriba GKE, Lambert DM, and Poupaert JH. Bioavailability of Phenytoin Following Oral Administration of Phenytoin-Lipid Conjugates to Rats. J Pharm Pharmacol 1995b; 47:945–948

    PubMed  CAS  Google Scholar 

  • Scriba GKE, Lambert DM, and Poupaert JH. Anticonvulsant Activity of Phenytoin-Lipid Conjugates, a New Class of Phenytoin Prodrugs. J Pharm Pharmacol 1995c; 47:197–203

    PubMed  CAS  Google Scholar 

  • Shaw KJ, Erhardt PW, Hagedom AA, III, Pease CA, Ingebretsen WR, and Wiggins JR. Cardiotonic Agents. 7. Prodrug Derivatives Of 4-Ethyl-1,3-dihydro-5-[4-(2-methyl-1H-imidazol-1-yl)benzoyl]-2H-imidazol-2-one. J Med Chem 1992; 35:1267–1272

    Article  PubMed  CAS  Google Scholar 

  • Skwarczynski M, Sohma Y, Kimura M, Hayashi Y, Kimura T, and Kiso Y. O,N Intramolecular Acyl Migration Strategy in Water-soluble Prodrugs of Taxoids. Bioorg Med Chem Lett 2003; 13:4441–4444

    Article  PubMed  CAS  Google Scholar 

  • Sloan KB. Prodrugs for Dermal Delivery. Adv Drug Del Rev 1989; 3:67–101

    Article  CAS  Google Scholar 

  • Sloan KB, and Bodor N. Hydroxymethyl and Acyloxymethyl Prodrugs of Theophylline: Enhanced Delivery of Polar Drugs through Skin. Int J Pharm 1982; 12:299–313

    Article  CAS  Google Scholar 

  • Sloan KB, Koch SAM, and Siver KG. Mannich Base Derivatives of Theophylline and 5-Fluorouracil: Syntheses, Properties and Topical Delivery Characteristics. Int J Pharm 1984; 21:251–264

    Article  CAS  Google Scholar 

  • Sloan KB, Sherertz EF, and McTiernan RG. The Effect of Structure of Mannich Base Prodrugs on their Ability to Deliver Theophylline and 5-Fluorouracil through Hairless Mouse Skin. Int J Pharm 1988; 44:87–96

    Article  CAS  Google Scholar 

  • Sloan KB, Getz JJ, Beall HD, and Prankerd RJ. Transdermal Delivery of 5-Fluorouracil (5-Fu) through Hairless Mouse Skin by 1-Alkylaminocarbonyl-5-Fu Prodrugs-Physicochemical Characterization of Prodrugs and Correlations with Transdermal Delivery. Int J Pharm 1993; 93:27–36

    Article  CAS  Google Scholar 

  • Sloan KB, Wasdo S, Ezike-Mkparu U, Murray T, Nickels D, Singh S, Shanks T, Tovar J, Ulmer K, and Waranis R. Topical Delivery of 5-Fluorouracil and 6-Mercaptopurine by their Alkylcarbonyloxymethyl Prodrugs from Water: Vehicle Effects on Design of Prodrugs. Pharm Res 2003; 20:639–645

    Article  PubMed  CAS  Google Scholar 

  • Sorel RHA, and Roseboom H. Rapid In Vitro and In Vivo Conversion of Hydroxymethyl-nitrofurantoin into Nitrofurantoin as Measured by HPLC. Int J Pharm 1979; 3:93–99

    Article  CAS  Google Scholar 

  • Spencer CF, and Michels JG. 3-Hydroxymethyl 1-(5-Nitrofurfurylideneamino)hydantoin. J Org Chem 1964; 29:3416–3418

    Article  CAS  Google Scholar 

  • Steffansen B, Ashton P, and Buur A. Intraocular Drug Delivery. In Vitro Release Studies of 5-Fluorouracil from N-1-Alkoxycarbonyl Prodrugs in Silicone Oil. Int J Pharm 1996; 132:243–250

    Article  CAS  Google Scholar 

  • Stella V, and Higuchi T. Hydrolytic Behavior of N-Acyl Phthalimides. J Pharm Sci 1973a; 62:968–970

    Article  PubMed  CAS  Google Scholar 

  • Stella V, and Higuchi T. Esters of Hydantoic Acids as Prodrugs of Hydantoins. J Pharm Sci 1973b; 62:962–967

    Article  PubMed  CAS  Google Scholar 

  • Stella V, and Higuchi T. Kinetics of the Acid-catalyzed Closure of Hydantoic Acids. Effect of 2-Aryl and 2-Alkyl Substituents. J Org Chem 1973c; 38:1527–1534

    Article  CAS  Google Scholar 

  • Stella VJ. A Case for Prodrugs: Fosphenytoin. Adv Drug Del Rev 1996; 19:311–330

    Article  CAS  Google Scholar 

  • Stella VJ, Martodihardjo S, and Rao VM. Aqueous Solubility and Dissolution Rate Does Not Adequately Predict In Vivo Performance: A Probe Utilizing Some NAcyloxymethyl Phenytoin Prodrugs. J Pharm Sci 1999; 88:775–779

    Article  PubMed  CAS  Google Scholar 

  • Stella VJ, Martodihardjo S, Terada K, and Rao VM. Some Relationships between the Physical Properties of Various 3-Acyloxymethyl Prodrugs of Phenytoin to Structure: Potential In Vivo Performance Implications. J Pharm Sci 1998; 87:1235–1241

    Article  PubMed  CAS  Google Scholar 

  • Talley JJ, Bertenshaw SR, Brown DL, Carter JS, Graneto MJ, Kellogg MS, Koboldt CM, Yuan JH, Zhang YY, and Seibert K. N-(5-methyl-3-phenylisoxazol-4-yl)-phenyl Sulfonyl Propanamide, Sodium Salt, Parecoxib Sodium: A Potent and Selective Inhibitor of COX-2 for Parenteral Administration. J Med Chem 2000; 43:1661–1663

    Article  PubMed  CAS  Google Scholar 

  • Tanino T, Ogiso T, Iwaki M, Tanabe G, and Muraoka O. Enhancement of Oral Bioavailability of Phenytoin by Esterification, and In Vitro Hydrolytic Characteristics of Prodrugs. Int J Pharm 1998; 163:91–102

    Article  CAS  Google Scholar 

  • Taylor HE, and Sloan KB. 1-Alkylcarbonyloxymethyl Prodrugs of 5-Fluorouracil (5-FU): Synthesis, Physicochemical Properties, and Topical Delivery of 5-FU. J Pharm Sci 1998; 87:15–20

    Article  PubMed  CAS  Google Scholar 

  • Tenn WJ III, French NL, and Nagorski RW. Kinetic Dependence of the Aqueous Reaction of N-(Hydroxymethyl)benzamide Derivatives upon Addition of Electron Withdrawing Groups. Org Lett 2001; 3:75–78

    Article  PubMed  CAS  Google Scholar 

  • Varia SA, and Stella VJ. Phenytoin Prodrugs. V: In Vivo Evaluation of Some Watersoluble Phenytoin Prodrugs in Dogs. J Pharm Sci 1984a; 73:1080–1087

    Article  PubMed  CAS  Google Scholar 

  • Varia SA, and Stella VJ. Phenytoin Prodrugs. VI: In Vivo Evaluation of a Phosphate Ester Prodrug of Phenytoin after Parenteral Administration to Rats. J Pharm Sci 1984b; 73:1087–1090

    Article  PubMed  CAS  Google Scholar 

  • Varia SA, Schuller S, and Stella VJ. Phenytoin Prodrugs. IV: Hydrolysis of Various 3-(Hydroxymethyl)phenytoin Esters. J Pharm Sci 1984a; 73:1074–1080

    Article  PubMed  CAS  Google Scholar 

  • Varia SA, Schuller S, Sloan KB, and Stella VJ. Phenytoin Prodrugs. III: Watersoluble Prodrugs for Oral and/or Parenteral Use. J Pharm Sci 1984b; 73:1068–1073

    Article  PubMed  CAS  Google Scholar 

  • Vej-Hansen B, and Bundgaard H. Kinetics of Degradation of Rolitetracycline in Aqueous Solutions and Reconstituted Formulations. Arch Pharm Chem Sci Ed 1979; 7:65–77

    Google Scholar 

  • Venuti MC, Alvarez R, Bruno JJ, Strosberg AM, Gu L, Chiang HS, Massey IJ, Chu N, and Fried JH. Inhibitors of cyclic AMP Phosphodiesterase. 4. Synthesis and Evaluation of Potential Prodrugs of Lixazinone (N-cyclohexyl-N-methyl-4-[(1,2,3,5-tetrahydro-2-oxoimidazo[2,1-b]quinazolin-7-yl)oxy]butyramide, RS-82856). J Med Chem 1988; 31:2145–2152

    Article  PubMed  CAS  Google Scholar 

  • Williams DB, Varia SA, Stella VJ, and Pitman IH. Evaluation of the Prodrug Potential of the Sulfate Esters of Acetaminophen and 3-Hydroxymethylphenytoin. Int J Pharm 1983; 14:113–120

    Article  CAS  Google Scholar 

  • Yamaoka Y, Roberts RD, and Stella VJ. Low-melting Phenytoin Prodrugs as Alternative Oral Delivery Modes for Phenytoin: A Model for Other Highmelting Sparingly Water-soluble Drugs. J Pharm Sci 1983; 72:400–405

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Guarino, V.R., Stella, V.J. (2007). Prodrugs of Amides, Imides and Other NH-acidic Compounds. In: Stella, V.J., Borchardt, R.T., Hageman, M.J., Oliyai, R., Maag, H., Tilley, J.W. (eds) Prodrugs. Biotechnology: Pharmaceutical Aspects, vol V. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49785-3_23

Download citation

Publish with us

Policies and ethics