Skip to main content

Hardware Considerations in Ultra High Field MRI

An Overview of System Integration

  • Chapter
Ultra High Field Magnetic Resonance Imaging

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 26))

Abstract

Ultra high field MRI systems present a number of unique challenges to the system designer and integrator beyond simply scaling up the performance of a lower field system. The primary areas of concern are the magnet, gradient coils and drivers, and RF coils and coil interface. The art of system integration lies in identifying sufficiently clear performance targets for each of the subsystems and ensuring that those targets are met in a way that preserves the overall performance of the system. The following discussion identifies for each of these areas the key performance requirements that are changed at higher field strengths, methods to address those requirements, and how those methods affect the rest of the system. As this is an area of ongoing research and development, many of the specific solutions presented here are likely to be superseded in the future, but the general approach to the problem should remain valid. While a complete description of every aspect of system design and integration of UHFMRI systems is beyond the scope of this chapter, the following is intended to provide practical guidance in addressing the more common problems in siting or operating a UHFMRI system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. Kimmlingen R, Eberlein E, Gebhardt M, Hartinger B, Ladebeck R, Lazar R, Reese T, Riegler J, Schmitt F, Sorensen GA, Wedeen V, Wald LL. 2005. An easy to exchange high performance head gradient insert for a 3T whole body MRI system: first results. Proc Int Soc Magn Reson Med 1630.

    Google Scholar 

  2. Bomsdorf H, Helzel T, Kunz D, Roschmann P, Tschendel O, Wieland J. 1988. Spectroscopy and imaging with a 4 Telsa whole-body MR system. NMR Biomed 1:151–158.

    Article  PubMed  CAS  Google Scholar 

  3. Barfuss H, Fisher H, Hentschel D, Ladebeck R, Vetter J. 1988. Whole-body MR imaging and spectroscopy with a 4-T system. Radiology 169:811–816.

    PubMed  CAS  Google Scholar 

  4. Schenck JF, Dumoulin CL, Redington RW, Kressel HY, Elliott RT, McDougall IL. 1992. Human exposure to 4.0-Tesla magnetic fields in a whole-body scanner. Med Phys 19(4):1089–98.

    Article  PubMed  CAS  Google Scholar 

  5. Robitaille PML, Warner R, Jagadeesh J, Abduljalil AM, Kangarlu A, Burgess RE, Yu Y, Yang L, Zhu H, Jiang Z, Bailey RE, Chung W, Somawiharja Y, Feynan P, Rayner D. 1999. Design and assembly of an 8 tesla whole body MRI scanner. J Comput Assist Tomogr 23:808–820.

    Article  PubMed  CAS  Google Scholar 

  6. Hoult DI. 2000. Sensitivity and power deposition in a high field imaging experiment. J Magn Reson Imag 12(1):46–67.

    Article  CAS  Google Scholar 

  7. Vaughan JT, Garwood M, Collins CM, Liu W, DelaBarre L, Adriany G, Anderson P, Merkle H, Goebel R, Smith MB, Ugurbil K. 2001. 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 46(1):24–30.

    Article  PubMed  CAS  Google Scholar 

  8. Edelstein WA, Glover GH, Hardy CJ, Redington RW. 1986. The intrinsic signal-to-noise ratio in NMR imaging. Magn Reson Med 3(4):604–18.9.

    Article  PubMed  CAS  Google Scholar 

  9. Durney CM, Iskander MF. 1986. Radiofrequency radiation dosimetry handbook. Salt Lake City: U Utah P.

    Google Scholar 

  10. Roemer PB, Edelstein WA, Hayes CE, Souza SP, Meuller OM. 1990. The NMR phased array. Magn Reson Med 16:192–225.

    Article  PubMed  CAS  Google Scholar 

  11. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. 1999. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962.

    Article  PubMed  CAS  Google Scholar 

  12. Wilson MN. 1983. Superconducting magnets. Oxford: Clarendon Press.

    Google Scholar 

  13. Iwasa Y. 1994. Case studies in superconducting magnets. New York: Plenum Press.

    Google Scholar 

  14. Montgomery DB. 1969. Solenoid magnet design. New York: Wiley-Interscience.

    Google Scholar 

  15. Pearson R. 2004. Personal communication.

    Google Scholar 

  16. Wilson JL, Jenkinson M, Jezzard P. 2002. Optimization of static field homogeneity in human brain using diamagnetic passive shims. Magn Reson Med 48(5):906–914.

    Article  PubMed  Google Scholar 

  17. Jin JM. 1999. Electromagnetic analysis and design in magnetic resonance imaging. Boca Raton, FL: CRC Press.

    Google Scholar 

  18. Strilka RJ, Li SZ, Martin JT, Collins CM, Smith MB. 1998. A numerical study of radiofrequency deposition in a spherical phantom using surface coils. Magn Reson Imag 16(7):787–798.

    Article  CAS  Google Scholar 

  19. Ibrahim TL, Baertlein B, Abduljalil A, Zhu H, Robitaille PML. 2001. Effect of RF coil excitation on field inhomogeneity at ultra high fields: a field optimized TEM resonator. Magn Reson Imag 19(10):1339–1347.

    Article  CAS  Google Scholar 

  20. Edelstein WA, Schenk JF, Hart HR, Hardy CJ, Foster TH, Bottomley PA. 1985. Surface coil magnetic resonance imaging. JAMA 253(6):828.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang X, Webb A. 2004. Design of a capacitively decoupled transmit/receive NMR phased array for high field microscopy at 14.1 T. J Magn Reson 170(1):149–155.

    Article  PubMed  CAS  Google Scholar 

  22. Ardenkjaer-Larsen JH, Fridlund B, Gram A, Hansson L, Lerche MH, Servin R, Thaning M, Golman K. 2003. Increase in signal-to-noise ratio of >10,000 times in liquidstate NMR. Proc Natl Acad Sci USA 100(18):10158–10163.

    Article  PubMed  CAS  Google Scholar 

  23. Golman K, Ardenkjaer-Larsen JH, Svensson J, Axelsson O, Hansson G, Hansson L, Johannesson H, Leunbach I, Mansson S, Petersson JS, Pettersson G, Servin R, Wistrand LG. 2002. 13C-angiography. Acad Radiol 9:S507–510.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kelley, D.A.C. (2006). Hardware Considerations in Ultra High Field MRI. In: Ultra High Field Magnetic Resonance Imaging. Biological Magnetic Resonance, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-49648-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-49648-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-34231-3

  • Online ISBN: 978-0-387-49648-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics