Skip to main content

Algorithms for Robotic Deployment of WSN in Adaptive Sampling Applications

  • Chapter

Part of the book series: Signals and Communication Technology ((SCT))

Recently, there has been renewed interest in using mobile robots as sensor-carrying platforms in order to perform hazardous tasks, such as searching for harmful biological and chemical agents, search and rescue in disaster areas, or environmental mapping and monitoring. Even though mobility introduces additional degrees of complexity in managing an untethered collection of sensors, it also expands the coverage and fault tolerance of a sensor network. When considering mobile sensor nodes, many important issues regarding the deployment architecture have yet to be fully addressed, including trade-offs between node size, cost, and coverage, the selection of appropriate information measures to quantify the data collection performance of the mobile wireless sensor network (MWSN), distribution of communication and computation, etc.

Developing robust deployment algorithms for mobile sensor units requires simultaneous consideration of several optimization problems that have traditionally been addressed separately. One problem is related to the quality and usefulness of the collected sensor information (e.g., choosing optimal locations in space where environmental samples are taken by the robotic system), another is related to the robot team behavior for goal attainment (e.g., how does the robot team accomplish the sampling objectives), and a third is related to routing and congestion control in the ad-hoc wireless network formed by the robots (e.g., how do we reposition the robots to increase the communication bandwidth).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Aarabi, Self-localizing dynamic microphone arrays, IEEE Transactions on Systems, Man and Cybernetics, Part C, Vol. 32, pp. 474−484, Nov., 2002.

    Article  Google Scholar 

  2. Ronald C. Arkin, Behavior-Based Robotics(Intelligent Robotics and Autonomous Agents), MIT Press, May 22, 1998.

    Google Scholar 

  3. A. Bennet, Inverse Modeling of the Ocean and Atmosphere, Cambridge Press, 2002.

    Google Scholar 

  4. Brink, K.H., Observational coastal oceanography, Advances and Primary Re-search Opportunities in Physical Oceanography Studies, (APROPOS) Workshop, NSF-sponsored workshop on the Future of Physical Oceanography, 15-17 Decem-ber, 1997.

    Google Scholar 

  5. D. R. Blidberg, The development of autonomous underwater vehicles (AUV); a brief summary, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Seoul, Korea, May, 2000.

    Google Scholar 

  6. W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun., Collaborative multirobot exploration, in Proc. of IEEE International Conferenceon Robotics and Automation, volume 1, pages 476-81, 2000.

    Google Scholar 

  7. Y. Cao, A. Fukunaga, and A. Kahng, Cooperative mobile robotics: Antecedents and directions, Autonomous Robots, vol. 4, pp. 7-27, 1997.

    Article  Google Scholar 

  8. J. Chen, L. Yip, J. Elson, H. Wang, D. Maniezzo, R. Hudson, K. Yao, D. Estrin, Coherent acoustic array processing and localization on wireless sensor networks, in Proceedings of the IEEE, vol. 91, pp. 1154-1162, August, 2003.

    Article  Google Scholar 

  9. J. Cortes, S. Martinez, T. Karatas, and F. Bullo, Coverage control for mobile sensor networks, in IEEE Trans. On Robotics and Automation, 2002.

    Google Scholar 

  10. Curtin, T.B., J.G. Bellingham, J. Catipovic and D. Webb, Autonomous ocean sampling networks, Oceanography, 6(3), pp. 86-94, 1993.

    Google Scholar 

  11. D. Estrin, et al. Embedded Everywhere, a Research Agenda for Networked Sys-tems of Embedded Computers. Landover, MD: Computer Science and Telecom-munications Board, National Research Council, National Academy Press, 2001.

    Google Scholar 

  12. J. Fenwick, P. Newman, and J. Leonard, Cooperative concurrent mapping and localization, in Proc. IEEE Int. Conf. On Robotics and Automation, pp. 1810-1817, Washington, D.C., May, 2002.

    Google Scholar 

  13. D. W. Gage., Command control for many-robot systems, in AUVS-92, the Nineteenth Annual AUVS Technical Symposium, pages 22-24, Hunstville Alabama, USA, June 1992. Reprinted in Unmanned Systems Magazine, Fall 1992, Volume 10, Number 4, pp. 28-34.

    Google Scholar 

  14. Glenn, S.M., G.Z. Forristall, P. Cornillon and G. Milkowski, 1990. Observations of Gulf Stream Ring 83-E and Their Interpretation Using Feature Models, Journal of Geophysical Research, 95, 13,043-13,063.

    Google Scholar 

  15. J. Cox, An experiment in guidance and navigation of an autonomous robot vehicle, IEEE Transactions on Robotics and Automation, vol. 7, pp. 193-204, April, 1991.

    Google Scholar 

  16. H. F. Durrant-Whyte, Sensor models and multisensor integration, Int. J. Robotics Research, vol. 7, pp. 97-113, 1988. [17] Creed, E.L., S.M. Glenn and R. Chant, “Adaptive Sampling Experiment at LEO-15”, 1998.

    Google Scholar 

  17. P. Gupta, and P.R. Kumar, The Capacity of Wireless Networks, in IEEE Transactions on Information Theory, vol. 46, No.2, March 2000.

    Google Scholar 

  18. Z. J. Haas, A new routing protocol for the reconfigurable wireless networks, in IEEE International Conference on Universal Personal Computing, 1997.

    Google Scholar 

  19. A. T. Hayes, A. Martinoli, and R. M. Goodman Distributed Odor Source Lo-calization, in IEEE Sensors Journal, Vol. 2, No. 3, June 2002.

    Google Scholar 

  20. A. Howard, M. J. Mataric, and G. S. Sukhatme, An incremental Self-Deployment Algorithm for Mobile Sensor Networks, in Autonomous Robots 13, pp. 113-126, 2002.

    Article  MATH  Google Scholar 

  21. N. Hutin, C. Pegard, E. Brassart, A Communication Strategy for Cooperative Robots, in Proc. 1998 IEEE/RSJ Int’l Cong. On Intelligent Robots and Systems”, Oct. 1998.

    Google Scholar 

  22. Y. Koten and J. Borenstein Potential Field Methods and Their Inherent Lim-itations for Mobile Robot Navigation, in Proc. Of International Conference on Robotics and Automation, 1991.

    Google Scholar 

  23. O. Khatib Real-time obstacle avoidance for manipulators and mobile robots, in Proc. Of International Conference on Robotics and Automation, 1985.

    Google Scholar 

  24. V. Kumar G. A. S. Pereira, A. K. Das and M. F. M. Campos, Decentralized motion planning for multiple robots subject to sensing and communications con-straints, in Proceedings of the Second Multi Robot Systems Workshop, 2003.

    Google Scholar 

  25. B. H. Krogh, A generalized potential field approach to obstacle avoidance con-trol, in Robotics Research: The Next Five Years and Beyond, Society of Manu-facturing Engineers, 1984.

    Google Scholar 

  26. J. Latombe, Robot Motion Planning, Kluwer Academic Publishers, MA, 1991.

    Google Scholar 

  27. F.L. Lewis, Optimal Estimation with an Introduction to Stochastic Control Theory, John Wiley and Sons, New York, 1986.

    MATH  Google Scholar 

  28. D. Li, K. Wong, Y. Hu, A. Sayeed, Detection, classification, and tracking of targets, IEEE Signal Processing Magazine, pp. 17-29, March, 2002.

    Google Scholar 

  29. M. Mataric, Issues and approaches in the design of collective autonomous agents, Robotics and Autonomous Systems, vol. 16, pp. 321-331, December, 1995.

    Google Scholar 

  30. M. J. Mataric A. Howard and G. S. Sukhatme, Mobile sensor network deploy-ment using potential fields: A distributed, scalable solution to the area coverage problem, in Proceedings of the 6th Int’l Symposium on Distributed Autonomous Robotics Systems, 2002.

    Google Scholar 

  31. F. Michaud and E. Robichaud, Sharing charging stations for long-term activity of autonomous robots, in Proc. IEEE International Conference on Intelligent Robots and Systems, 2002.

    Google Scholar 

  32. P. Newman, On The Structure and Solution of the Simultaneous Localisation and Map Building Problem. PhD thesis, University of Sydney, Australian Centre for Field Robotics, 1999.

    Google Scholar 

  33. R. Chatila and J.-P. Laumond, Position referencing and consistent world mod-eling for mobile robots., in Proc. IEEE Int. Conf. Robotics and Automation, pp. 138-145, 1985.

    Google Scholar 

  34. F. Paganini S.H. Low and J. C. Doyle, Internet congestion control, in IEEE Control Systems Magazine, 2002.

    Google Scholar 

  35. L. E. Parker, B. Kannan, X. Fu, and Y. Tang, Heterogeneous Mobile Sensor Net Deployment Using Robot Herding and Line-of-Sight Formations, in Proc. of IEEE International Conference on Intelligent Robots and Systems, 2003.

    Google Scholar 

  36. S. Poduri and G. S. Sukhatme, Constrained Coverage for Mobile Sensor Net-works, in Proc. IEEE Int. Conf. Robotics and Automation, New Orleans, LA, April, 2004.

    Google Scholar 

  37. D. Popa, J. Wen, Nonholonomic Path-Planning with Obstacle avoidance, in Proc. Int’l Conference in Robotics and Automation, Minneapolis, April 1996.

    Google Scholar 

  38. D. Popa, C. Helm, H. E. Stephanou, A. Sanderson, Robotic Deployment of Sensor Networks using Potential Fields, in Proc. Of International Robotics and Automation Conference, April-May 2004.

    Google Scholar 

  39. D. Popa, A. Sanderson, R. Komerska, S. Mupparapu, R. Blidberg, S. Chappel, Adaptive Sampling Algorithms for Multiple Autonomous Underwater Vehicles, in Proc. of 2004 Workshop on Underwater Vehicles, Sebasco Estates, ME, June 2004.

    Google Scholar 

  40. D. Popa, K. Sreenath, and F.L. Lewis, Robotic Deployment for Environmental Sampling Applications, in Proc. Int’l Conf. on Control Applications, Budapest, June 2005.

    Google Scholar 

  41. A. Pandya, A. Kansal, G. Pottie, and M. Srivastava, “Bounds on the Rate Distortion of Multiple Cooperative Gaussian Sources”, Center for Embedded Networked Sensing (CENS) Technical Report 0027, Sept. 2003.

    Google Scholar 

  42. M. Rahimi, R. Pon, W. J. Kaiser, G. S. Sukhatme, D. Estrin, and M. Srivastava, Adaptive Sampling for Environmental Robotics, Proc. IEEE Int. Conf. Robotics and Automation, New Orleans, LA, April, 2004.

    Google Scholar 

  43. J. Ren and K. A. McIsaac, A Hybrid-Systems Approach to Potential Field Navigation for a Multi-Robot Team, in Proc. Of International Conference on Robotics and Automation, Taipei, Taiwan, 2003.

    Google Scholar 

  44. E. Rimon, D. Koditscheck, Exact Robot Navigation using Artificial Potential Functions, in IEEE Trans. On Robotics and Automation, Vol. 8, No. 5, October 1992.

    Article  Google Scholar 

  45. A. C. Sanderson, Multirobot navigation using cooperative teams, Distributed Autonomous Robotic Systems 2, Berlin, Springer-Verlag, Asama et al., eds., pp. 389-400, 1998.

    Google Scholar 

  46. R. Simmons, D. Apfelbaum, W. Burgard, D. Fox, M. Moors, S. Thrun, and H. Younes, Coordination for multi-robot exploration and mapping, in Proc. of the Seventeenth National Conference on Artificial Intelligence (AAAI-2000), pages 852-858, 2000.

    Google Scholar 

  47. B. Sinopoli, C. Sharp, L. Schenato, S. Schaffert, S. Shastry, Distributed control applications within sensor networks, in Proceedings of the IEEE, vol. 91, pp. 1225-1246, August, 2003.

    Google Scholar 

  48. R. Smith and P. Cheeseman, On the estimation and representation of spatial uncertainty, Int. J. Robotics Research, vol. 5, Winter, 1987.

    Google Scholar 

  49. J. Tan, N. Xi, W. Sheng, and J. Xiao, Modeling Multiple Robot Systems for Area Coverage and Cooperation, in Proc. IEEE Int. Conf. Robotics and Automation, New Orleans, LA, April, 2004.

    Google Scholar 

  50. P. Vandakkepat, K.C. Tan, et.al., Evolutionary Artificial Potential Fields and Their Applications to Real-TimeRoboticPath-Planning, in Proc. Of IEEE Congress on Evolutionary Computing, 2000.

    Google Scholar 

  51. D. Vail and M. Veloso, Dynamic Multi-Robot Coordination, Multi-Robot Systems, Kluwer 2003.

    Google Scholar 

  52. W. Ye, J. Heindemann, D. Estrin, An Energy-Efficient MAC Protocol for Wire-less Sensor Networks, in Proc. of INFOCOM 2002.

    Google Scholar 

  53. Y. Yu, R. Govindan, D. Estrin, Geographical and energy aware routing: a re-cursive data dissemination protocol for wireless sensor networks, UCLA CS De-partment Technical Report, CSD-TR-01-0023, May, 2001.

    Google Scholar 

  54. J. T. Wen and M. Arcak, A unifying passivity framework for network control, IEEE Trans. on Automatic Control, vol.2, pp. 1156-1166, March, 2003.

    Google Scholar 

  55. F. Zhao, J. Liu, J. Liu, L. Guibas, J. Reich, Collaborative signal and information processing: an information-directed approach, in Proceedings of the IEEE, vol. 91, pp. 1199-1209, August, 2003.

    Google Scholar 

  56. F. Zhao, J. Shin, J. Reich, Information-driven dynamic sensor collaboration, IEEE Signal Processing Magazine, pp. 61-72, March, 2002.

    Google Scholar 

  57. Y. Zou and K. Chakrabarty, Sensor Deployment and Target Localization Based On Virtual Forces, in Proc. of IEEE INFOCOMM, 2003.

    Google Scholar 

  58. R. Bachmayer and N. E. Leonard, Vehicle Networks for a Gradient Descent in a Sampled Environment, in Proceedings of the 41st IEEE Conference on Decision and Control, December 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Popa, D.O., Lewis, F.L. (2008). Algorithms for Robotic Deployment of WSN in Adaptive Sampling Applications. In: Li, Y., Thai, M.T., Wu, W. (eds) Wireless Sensor Networks and Applications. Signals and Communication Technology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-49592-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-49592-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-49591-0

  • Online ISBN: 978-0-387-49592-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics