Skip to main content

Using Heart-Lung Interactions for Functional Hemodynamic Monitoring: Important Factors beyond Preload

  • Conference paper
Intensive Care Medicine
  • 966 Accesses

Abstract

The basic mechanism underlying functional preload indices, such as stroke volume variation (SVV), pulse pressure variation (PPV), or systolic pressure variation (SPV), is that mechanical ventilation induces cyclic alterations in ventricular filling and, in consequence, in stroke volume and cardiac output. This phenomenon is most easily recognized in clinical practice as periodical variations in the arterial pressure signal. Based on the understanding of the Frank-Starling-relationship, i.e., the relation of cardiac preload and stroke volume, the ventilation-synchronous variations of cardiac output, or the indices named above, which serve as surrogates, allow assessment of left ventricular (LV) filling, and, more importantly the evaluation of the steepness of the patient-individual LV function curve [1]. The usefulness of these functional preload indices in assessing cardiac preload and in predicting whether a patient will respond to fluid administration with an increase in cardiac output (fluid responsiveness) has been demonstrated in many studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Michard F, Reuter DA (2003) Assessing cardiac preload or volume responsiveness? It depends on the question we want to answer. Intensive Care Med 29:1396

    Article  PubMed  Google Scholar 

  2. Pinsky MR (1984) Instantaneous venous return curves in an intact canine preparation. J Appl Physiol 56:765–771

    PubMed  CAS  Google Scholar 

  3. Vieillard-Baron A, Augarde R, Prin S, Page B, Beauchet A, Jardin F (2001) Influence of superior vena caval zone conditions on cyclic changes in right ventricular outflow during respiratory support. Anesthesiology 95:1083–1088

    Article  PubMed  CAS  Google Scholar 

  4. Reuter DA, Bayerlein J, Goepfer MS, et al (2003) Influence of tidal volume on left ventricular stroke volume vaiation measured by pulse contour analysis in mechanically ventilated patients. Intensive Care Med 29:476–480

    PubMed  Google Scholar 

  5. De Backer D, Heenen S, Piagnerelli, Koch M, Vincent JL (2005) Pulse pressure variation to predict fluid responsiveness: influence of tidal volume. Intensive Care Med 31:517–523

    Article  PubMed  Google Scholar 

  6. Pizov R, Cohen M, Weiss Y, Segal E, Cotev S, Perel A (1996) Positive end-expiratory pressure-induced hemodynamic changes are reflected in the arterial pressure wave form. Crit Care Med 24:1381–1387

    Article  PubMed  CAS  Google Scholar 

  7. Michard F (2005) Changes in arterial pressure during mechanical ventilation. Anesthesiology 103:419–428

    Article  PubMed  Google Scholar 

  8. Michard F, Chemla D, Richard C, et al (1999) Clinical use of respiratory changes in arterial pulse pressure to monitor the hemodynamic effects of PEEP. Am J Respir Crit Care Med 159: 935–939

    PubMed  CAS  Google Scholar 

  9. Kubitz JC, Annecke T, Kemming GI, et al (2006) The influence of positive end-expiratory pressure on stroke volume variation and central blood volume during open and closed chest conditions. Eur J Cardiothorac Surg 30:90–95

    Article  PubMed  Google Scholar 

  10. Tournadre JP, Allaouchiche B, Cayrel V, Mathon L, Chassard D (2000) Estimation of cardiac preload changes by systolic pressure variation in pigs undergoing pneumoperitoneum. Acta Anaesthesiol Scand 44:231–235

    Article  PubMed  CAS  Google Scholar 

  11. Reuter DA, Goresch T, Goepfert MS, Wildhirt SM, Kilger E, Goetz AE (2004) Effects of midline thoracotomy on the interaction between mechanical ventilation and cardiac filling during cardiac surgery. Br J Anaesth 92:808–813

    Article  PubMed  CAS  Google Scholar 

  12. Jardin F, Genevray B, Brun-Ney D, Bourdarias JP (1985) Influence of lung and chest wall compliances on transmission of airway pressures to the pleural space in critically ill patients. Chest 88:653–658

    PubMed  CAS  Google Scholar 

  13. Lai HY, Yang CCH, Cheng CF, et al (2004) Effect of esmolol on positive pressure ventilation induced variations of arterial pressure in anaesthetized humans. Clin Sci 107:303–308

    Article  PubMed  CAS  Google Scholar 

  14. Monnet X, Rienzo M, Osman D, et al (2006) Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med 34:1402–1407

    Article  PubMed  Google Scholar 

  15. Murphy BA, Durbin Jr CG (2005) Using ventilator and cardiovascular graphics in the patient who is hemodynamically unstable. Respir Care 50:262–273

    PubMed  Google Scholar 

  16. Jardin F (2004) Cyclic changes in arterial pressure during mechanical ventilation. Intensive Care Med 30:1047–1050

    Article  PubMed  Google Scholar 

  17. Reuter DA, Kirchner A, Felbinger TW et al (2003) Usefulness of left ventricular stroke volume variation to assess fluid responsiveness in patients with reduced cardiac function. Crit Care Med 31:1399–1404

    Article  PubMed  Google Scholar 

  18. Pinsky MR (2005) Cardiovascular issues in respiratory care. Chest 128:592–597

    Article  Google Scholar 

  19. Nouira S, Elatrous S, Dimassi S, et al. (2005) Effects of norepinephrine on static and dynamic preload indicators in experimental hemorrhagic shock. Crit Care Med 33:2339–2343

    Article  PubMed  CAS  Google Scholar 

  20. Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P (1998) Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89:1313–1321

    Article  PubMed  CAS  Google Scholar 

  21. Chemla D, Hébert JL, Coirault C, et al (1998) Total arterial compliance estimated by stroke volume-to-pulse pressure ratio in humans. Am J Physiol 274:H500–H505

    PubMed  CAS  Google Scholar 

  22. Michard F, Boussat S, Chemla D, et al (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162:134–138

    PubMed  CAS  Google Scholar 

  23. Marx G, Cope T, McCrossan L, et al (2004) Assessing fluid responiveness by stroke volume variation in mechanically ventilated patients with severe sepsis. Eur J Anaesthesiol 21: 132–138

    Article  PubMed  CAS  Google Scholar 

  24. Michard F, Alaya S, Zarka V, Bahloul M, Richard C, Teboul JL (2003) Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest 124:1900–1908

    Article  PubMed  Google Scholar 

  25. Perel A, Minkovich L, Preisman S, Abiad M, Segal E, Coriat P (2005) Assessing fluid-responsiveness by a standardized ventilatory maneuver: the respiratory systolic variation test. Anesth Anlag 100:942–945

    Article  Google Scholar 

  26. Preisman S, Kogan S, Berkenstadt H, Perel A (2005) Predicting fluid responsiveness in patients undergoing cardiac surgery: functional haemodynamic parameters including the Respiratory Systolic Variation Test and static preload indicators. Br J Anaesth 95:746–755

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science + Business Media Inc.

About this paper

Cite this paper

Kubitz, J.C., Reuter, D.A. (2007). Using Heart-Lung Interactions for Functional Hemodynamic Monitoring: Important Factors beyond Preload. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49518-7_46

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-49518-7_46

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-49517-0

  • Online ISBN: 978-0-387-49518-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics