Skip to main content

The Role of Protective Ventilation in Cardiac Surgery Patients

  • Conference paper
Intensive Care Medicine

Abstract

Cardiac surgery is associated with a pulmonary and systemic inflammatory response. The pulmonary effects of this inflammatory reaction are often modest: decreased lung compliance, pulmonary edema, increased intrapulmonary shunt fraction and decreased functional residual capacity (FRC) [1], Less than 2% of patients undergoing cardiac surgery develop full blown respiratory failure, the acute respiratory distress syndrome (ARDS) [1]. For example, after cardiac surgery, FRC is reduced up to 40–50% during the first 24 hours after extubation [2]. However, after general anesthesia, FRC is only decreased by 20–30% [3]. This exaggerated disturbance of pulmonary function is not yet fully understood. It has been suggested that this impaired pulmonary function is the result of pulmonary inflammation, triggered by cardiopulmonary bypass (CPB), ischemia-reperfusion injury, the surgical procedure itself, or by mechanical ventilation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ng CS, Wan S, Yim AP, et al (2002) Pulmonary dysfunction after cardiac surgery. Chest 121:1269–1277

    Article  PubMed  Google Scholar 

  2. Nicholson DJ, Kowalski SE, Hamilton GA, et al (2002) Postoperative pulmonary function in coronary artery bypass graft surgery patients undergoing early tracheal extubation: A comparison between short-term mechanical ventilation and early extubation. J Cardiothorac Vasc Anesth 16:27–31

    Article  PubMed  Google Scholar 

  3. Hedenstierna G, Rothen HU (2000) Atelectasis formation during anesthesia: causes and measures to prevent it. J Clin Monit Comput 16:329–335

    Article  PubMed  CAS  Google Scholar 

  4. The ARDS Network group (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308

    Article  Google Scholar 

  5. Pinhu L, Whitehead T, Evans T, et al (2003) Ventilator-associated lung injury. Lancet 361:332–340

    Article  PubMed  Google Scholar 

  6. Zupancich E, Paparella D, Turani F, et al (2005) Mechanical ventilation affects inflammatory mediators in patients undergoing cardiopulmonary bypass for cardiac surgery: A randomized clinical trial. J Thorac Cardiovasc Surg 130:378–383

    Article  PubMed  Google Scholar 

  7. Koner O, Celebi S, Balci H, et al (2004) Effects of protective and conventional mechanical ventilation on pulmonary function and systemic cytokine release after cardiopulmonary bypass. Intensive Care Med 30:620–626

    Article  PubMed  Google Scholar 

  8. Wrigge H, Uhlig U, Baumgarten G, et al (2005) Mechanical ventilation strategies and inflammatory responses to cardiac surgery: a prospective randomized clinical trial. Intensive Care Med 31:1379–1387

    Article  PubMed  Google Scholar 

  9. Paparella D, Yau TM, Young E (2002) Cardiopulmonary bypass induced inflammation: pathophysiology and treatment. An update. Eur J Cardiothorac Surg 21:232–244

    Article  CAS  Google Scholar 

  10. Ascione R, Lloyd CT, Underwood MJ, et al (2000) Inflammatory response after coronary revascularization with or without cardiopulmonary bypass. Ann Thorac Surg 69:1198–1204

    Article  PubMed  CAS  Google Scholar 

  11. Diegeler A, Doll N, Rauch T, et al (2000) Humoral immune response during coronary artery bypass grafting: A comparison of limited approach, “off-pump” technique, and conventional cardiopulmonary bypass. Circulation 102: III95–100

    PubMed  CAS  Google Scholar 

  12. Loer SA, Kalweit G, Tarnow J (2000) Effects of ventilation and nonventilation on pulmonary venous blood gases and markers of lung hypoxia in humans undergoing total cardiopulmonary bypass. Crit Care Med 28:1336–1340

    Article  PubMed  CAS  Google Scholar 

  13. Gu YJ, Mariani MA, Boonstra PW, et al (1999) Complement activation in coronary artery bypass grafting patients without cardiopulmonary bypass: the role of tissue injury by surgical incision. Chest 116:892–898

    Article  PubMed  CAS  Google Scholar 

  14. Uhlig U, Haitsma JJ, Goldmann T, et al (2002) Ventilation-induced activation of the mitogen-activated protein kinase pathway. Eur Respir J 20:946–956

    Article  PubMed  CAS  Google Scholar 

  15. Haitsma JJ, Uhlig S, Goggel R, et al (2000) Ventilator-induced lung injury leads to loss of alveolar and systemic compartmentalization of tumor necrosis factor-alpha. Intensive Care Med 26:1515–1522

    Article  PubMed  CAS  Google Scholar 

  16. Taskar V, John J, Evander E, et al (1997) Surfactant dysfunction makes lungs vulnerable to repetitive collapse and reexpansion. Am J Respir Crit Care Med 155:313–320

    PubMed  CAS  Google Scholar 

  17. Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 28:596–608

    PubMed  CAS  Google Scholar 

  18. Dreyfuss D, Soler P, Basset G, et al (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137:1159–1164

    PubMed  CAS  Google Scholar 

  19. Dos Santos CC and Slutsky AS (2000) Invited review: mechanisms of ventilator-induced lung injury: a perspective. J Appl Physiol 89:1645–1655

    PubMed  Google Scholar 

  20. Kyriakis JM and Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81:807–869

    PubMed  CAS  Google Scholar 

  21. Ranieri VM, Suter PM, Tortorella C, et al (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282:54–61

    Article  PubMed  CAS  Google Scholar 

  22. Stuber F, Wrigge H, Schroeder S, et al (2002) Kinetic and reversibility of mechanical ventilation-associated pulmonary and systemic inflammatory response in patients with acute lung injury. Intensive Care Med 28:834–841

    Article  PubMed  CAS  Google Scholar 

  23. Imai Y, Parodo J, Kajikawa O, et al (2003) Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. JAMA 289:2104–2112

    Article  PubMed  Google Scholar 

  24. Wrigge H, Zinserling J, Stuber F, et al (2000) Effects of mechanical ventilation on release of cytokines into systemic circulation in patients with normal pulmonary function. Anesthesiolgy 93:1413–1417

    Article  CAS  Google Scholar 

  25. Wrigge H, Uhlig U, Zinserling J, et al (2004) The effects of different ventilatory settings on pulmonary and systemic inflammatory responses during major surgery. Anesth Analg 98:775–781

    Article  PubMed  Google Scholar 

  26. Lachmann B (1992) Open up the lung and keep the lung open. Intensive Care Med 18:319–321

    Article  PubMed  CAS  Google Scholar 

  27. Reis Miranda D, Gommers D, Struijs A, et al (2005) Ventilation according the open lung concept attenuates pulmonary inflammatory response in cardiac surgery. Eur J Cardiothorac Surg 28:889–895

    Article  PubMed  Google Scholar 

  28. Reis Miranda D, Gommers D, Struijs A, et al (2004) The open lung concept: effects on right ventricular afterload after cardiac surgery. Br J Anaesth 93:327–332

    Article  PubMed  CAS  Google Scholar 

  29. Reis Miranda D, Struijs A, Koetsier P et al (2005) Open lung ventilation improves functional residual capacity after extubation in cardiac surgery. Crit Care Med 33: 2253–2258

    Article  PubMed  Google Scholar 

  30. Kogan A, Cohen J, Raanani E, et al (2003) Readmission to the intensive care unit after fast track cardiac surgery: risk factors and outcomes. Ann Thorac Surg 76: 503–507

    Article  PubMed  Google Scholar 

  31. Bardell T, Legare JF, Buth KJ, et al (2003) ICU admission after cardiac surgery. Eur J Cardiothorac Surg 23:354–359

    Article  PubMed  CAS  Google Scholar 

  32. Chung DA, Sharpies LD, Nashef SA (2002) A case-control analysis of readmissions to the cardiac surgical intensive care unit. Eur J Cardiothorac Surg 22:282–286

    Article  PubMed  Google Scholar 

  33. Biondi JW, Schulman DS, Soufer R, et al (1988) The effect of incremental positive end-expiratory pressure on right ventricular hemodynamics and ejection fraction. Anesth Analg 67:144–151

    Article  PubMed  CAS  Google Scholar 

  34. Spackman DR, Kellow N, White SA, Seed PT, Feneck RO (1999) High frequency jet ventilation and gas trapping. Br J Anaesth 83:708–714

    PubMed  CAS  Google Scholar 

  35. Dambrosio M, Fiore G, Brienza N, et al (1996) Right ventricular myocardial function in ARF patients. PEEP as a challenge for the right heart. Intensive Care Med 22:772–780

    Article  PubMed  CAS  Google Scholar 

  36. Schmitt JM, Vieillard-Baron A, Augarde R, et al (2001) Positive end-expiratory pressure titration in acute respiratory distress syndrome patients: impact on right ventricular outflow impedance evaluated by pulmonary artery Doppler flow velocity measurements. Crit Care Med 29:1154–1158

    Article  PubMed  CAS  Google Scholar 

  37. Vieillard-Baron A, Loubieres Y, Schmitt JM, et al (1999) Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol 87:1644–1650

    PubMed  CAS  Google Scholar 

  38. Dyhr T, Laursen N, Larsson A (2002) Effects of lung recruitment maneuver and positive end-expiratory pressure on lung volume, respiratory mechanics and alveolar gas mixing in patients ventilated after cardiac surgery. Acta Anaesthesiol Scand 46:717–725

    Article  PubMed  Google Scholar 

  39. Reis Miranda D, Klompe L, Mekel J, et al (2006) Open lung ventilation does not increase right ventricular outflow impedance: an echo-Doppler study. Crit Care Med 34:2555–2560

    Article  PubMed  Google Scholar 

  40. Huemer G, Kolev N, Kurz A, Zimpfer M (1994) Influence of positive end-expiratory pressure on right and left ventricular performance assessed by Doppler two-dimensional echocardiography. Chest 106:67–73

    PubMed  CAS  Google Scholar 

  41. Poelaert JI, Visser CA, Everaert JA, et al (1994) Doppler evaluation of right ventricular outflow impedance during positive-pressure ventilation. J Cardiothorac Vasc Anesth 8:392–397

    Article  PubMed  CAS  Google Scholar 

  42. De Matos GFJ, Borges J.B.S, Stanzani F, et al (2004) Tidal recruitment decreases after stepwise recruitment maneuver: Multislice thoracic CT analysis. Am J Respir Crit Care Med 169:A720 (abst)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science + Business Media Inc.

About this paper

Cite this paper

Gommers, D., dos Reis Miranda, D. (2007). The Role of Protective Ventilation in Cardiac Surgery Patients. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49518-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-49518-7_36

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-49517-0

  • Online ISBN: 978-0-387-49518-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics