Skip to main content

Acid Mine (or Acid Rock) Drainage

Reference Chapters: 5, 8

  • Chapter

Abstract

After performing this experiment, the student shall be able to:

  • Understand key interactions between metal sulfides and their natural surroundings.

  • Mimic mine tailings and observe their oxidation by different species.

  • Test the role of Fe(III) as a natural oxidizer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature References

  • August, E. E.; McNight, D. M.; Hrncir, D. C.; Garhart, K. S. “Seasonal Variability of Metals Transport Through a Wetland Impacted by Mine Drainage in the Rocky Mountains,” Environ. Sci. Technol. 2002, 36, 3779–3786.

    Article  CAS  Google Scholar 

  • Batty, L. C.; Younger, P. L. “Critical Role of Macrophytes in Achieving Low Iron Concentrations in Mine Water Treatment Wetlands,” Environ. Sci. Technol. 2002, 36, 3997–4002.

    Article  CAS  Google Scholar 

  • Bonnissel-Gissinger, P.; Alnot, M.; Ehrhardt, J.-J.; Behra, P. “Surface Oxidation of Pyrite as a Function of pH,” Environ. Sci. Technol. 1998, 32, 2839–2845.

    Article  CAS  Google Scholar 

  • Chernyshova, I. V. “An in Situ FTIR Study of Galena and Pyrite Oxidation in Aqueous Solution,” J. Electroanal Chem. 2003, 558, 83–98.

    Article  CAS  Google Scholar 

  • Hansen, J. P.; Jensen, L. S.; Bedel, S.; Dam-Johansen, K. “Decomposition and Oxidation of Pyrite in a Fixed-Bed Reactor,” Ind. Eng. Chem. Res. 2003, 42, 4290–4295.

    Article  CAS  Google Scholar 

  • Hao, Y.; Dick, W. A. “Potential Inhibition of Acid Formation in Pyritic Environments Using Calcium Sulfite Byproduct,” Environ. Sci. Technol. 2000, 34, 2288–2292.

    Article  CAS  Google Scholar 

  • Horan, J. H.; Wildeman, T. R. Dept. of Chemistry and Geochemistry, Colorado School of Mines. “Environmental Chemistry in Colorado Toxic Mine Drainage: Chemistry and Treatment,” 2005, http://www.mines.edu/fs_home/jhoran/ch126/index.htm

    Google Scholar 

  • Horan, J. H.; Wildeman, T. R.; Ernst, R. “Acid Mine Drainage Laboratory Experiments,” 214th. Am. Chem. Soc. Nat. Meet., Chem. Ed. Division Paper # 005. Las Vegas, NV, Sept. 7–11, 1997.

    Google Scholar 

  • Howard, A. G. Aquatic Environmental Chemistry; Oxford Chemistry Primers. Oxford Science Publications: Oxford, 1998. Chapter 5.

    Google Scholar 

  • Ibanez, J. G. “Microscale Environmental Chemistry. Part 6. Water Acidification by Oxidation of Mineral Sulfides (Acid Mine Drainage),” Chem. Educ. 2006, 11, 251–253.

    CAS  Google Scholar 

  • Kargbo, D. M.; Atallah, G.; Chatterjee, S. “Inhibition of Pyrite Oxidation by a Phospholipid in the Presence of Silicate,” Environ. Sci. Technol. 2004, 38, 3432–3441.

    Article  CAS  Google Scholar 

  • Kuslu, S.; Bayramoglu, M. “Microwave-Assisted Dissolution of Pyrite in Acidic Ferric Sulfate Solution,” Ind. Eng. Chem. Res. 2002, 41, 5145–5150.

    Article  CAS  Google Scholar 

  • McNeil, M. B.; Little, B. J. “The Use of Mineralogical Data in Interpretation of Long-Term Microbiological Corrosion Processes: Sulfiding Reactions,” J. Am. Inst. Conserv. 1999, 38, 186–199.

    Google Scholar 

  • Naicker, K.; Cukrowska, E.; McCarthy, T. S. “Acid Mine Drainage Arising from Gold Mining Activity in Johannesburg, South Africa and Environs,” Environ. Poll. 2003, 122, 29–40.

    Article  CAS  Google Scholar 

  • News of the Week. Chem. & Eng. News. Nov. 10, 2003, p. 16.

    Google Scholar 

  • Nordstrom, D. K.; Alpers, C. N.; Ptacek, C. J.; Blowers, D. W. “Negative pH and Extremely Acidic Mine Waters from Iron Mountain, California,” Environ. Sci. Technol. 2000, 34, 254–258.

    Article  CAS  Google Scholar 

  • Rawls, R. “Some Like it Hot”, Chem. Eng. News Dec. 21, 1998. p. 35–39.

    Google Scholar 

  • Singer P. C.; Stumm, W. “Acidic Mine Drainage: The Rate Determining Step,” Science 1970, 167, 1121–1123.

    Article  CAS  Google Scholar 

  • Sundstrom, R.; Astrom, M.; Osterholm, P. “Comparison of the Metal Content in Acid Sulfate Soil Runoff and Industrial Effluents in Finland,” Environ. Sci. Technol. 2002,36, 4269–4272.

    Article  Google Scholar 

  • Usher, C. R.; Cleveland, C. A. Jr.; Strongin, D. R.; Schoonen, M. A. “Origin of Oxygen in Sulfate during Pyrite Oxidation with Water and Dissolved Oxygen: An In Situ Horizontal Attenuated Total Reflectance Infrared Spectroscopy Isotope Study,” Environ. Sci. Technol. 2004, 38, 5604–5606.

    Article  CAS  Google Scholar 

  • Wildeman, T. R.; Schmiermund, R. “Mining-Influenced Waters: Their Chemistry and Methods of Treatment,” 2004 National Meeting of the American Society of Mining and Reclamation and The 25th West Virginia Surface Mine Drainage Task Force, April 18–24, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ibanez, J.G., Hernandez-Esparza, M., Doria-Serrano, C., Fregoso-Infante, A., Singh, M.M. (2008). Acid Mine (or Acid Rock) Drainage. In: Environmental Chemistry. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49493-7_11

Download citation

Publish with us

Policies and ethics