A 20-Year Perspective on Listeria monocytogenes Pathogenesis

  • Daniel A. Portnoy


Listeria Monocytogenes Human Epithelial Cell Shigella Flexneri Intracellular Growth Actin Nucleation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agaisse, H., Burrack, L.S., Philips, J.A., Rubin, E.J., Perrimon, N., Higgins, D.E.: Genome-wide RNAi screen for host factors required for intracellular bacterial infection. Science 309, 1248–51 (2005)PubMedCrossRefGoogle Scholar
  2. Auerbuch, V., Loureiro, J.J., Gertler, F.B., Theriot, J.A., Portnoy, D.A.: Ena/VASP proteins contribute to Listeria monocytogenes pathogenesis by controlling temporal and spatial persistence of bacterial actin-based motility. Mol Microbiol 49, 1361–75 (2003)PubMedCrossRefGoogle Scholar
  3. Bakardjiev, A.I., Stacy, B.A., Fisher, S.J., Portnoy, D.A.: Listeriosis in the pregnant guinea pig: a model of vertical transmission. Infect Immun 72, 489–97 (2004)PubMedCrossRefGoogle Scholar
  4. Bakardjiev, A.I., Stacy, B.A., Portnoy, D.A.: Growth of Listeria monocytogenes in the guinea pig placenta and role of cell-to-cell spread in fetal infection. J Infect Dis 191, 1889–97 (2005)PubMedCrossRefGoogle Scholar
  5. Bakardjiev, A.I., Theriot, J.A., Portnoy, D.A.: Listeria monocytogenes traffics from maternal organs to the placenta and back. PLoS Pathog 2, e66 (2006)PubMedCrossRefGoogle Scholar
  6. Berche, P., Gaillard, J., Sansonetti, P.J.: Intracellular growth of Listeria monocytogenes as a prerequisite for in vivo induction of T cell-mediated immunity. J Immunol 138, 2266–71 (1987)PubMedGoogle Scholar
  7. Bernardini, M.L., Mounier, J., d’Hauterville, H., Coquis-Rondon, M., Sansonetti, P.J.: icsA, a plasmid locus of Shigella flexneri, governs bacterial intra- and intercellular spread through interaction with F-actin. Proc Natl Acad Sci USA 86, 3867–71 (1989)PubMedCrossRefGoogle Scholar
  8. Bielecki, J., Youngman, P., Connelly, P., Portnoy, D.A.: Bacillus subtilis expressing a haemolysin gene from Listeria monocytogenes can grow in mammalian cells. Nature 345, 175–6 (1990)PubMedCrossRefGoogle Scholar
  9. Brockstedt, D.G., Giedlin, M.A., Leong, M.L., Bahjat, K.S., Gao, Y., Luckett, W., Liu, W., Cook, D.N., Portnoy, D.A., Dubensky, T.W., Jr.: Listeria-based cancer vaccines that segregate immunogenicity from toxicity. Proc Natl Acad Sci USA 101, 13832–7 (2004)Google Scholar
  10. Brundage, R.A., Smith, G.A., Camilli, A., Theriot, J.A., Portnoy, D.A.: Expression and phosphorylation of the Listeria monocytogenes ActA protein in mammalian cells. Proc Natl Acad Sci 90, 11890–4 (1993)Google Scholar
  11. Chatterjee, S.S., Hossain, H., Otten, S., Kuenne, C., Kuchmina, K., Machata, S., Domann, E., Chakraborty, T., Hain, T.: Intracellular gene expression profile of Listeria monocytogenes. Infect Immun 74, 1323–38 (2006)PubMedCrossRefGoogle Scholar
  12. Cheng, L.W., Viala, J.P., Stuurman, N., Wiedemann, U., Vale, R.D., Portnoy, D.A.: Use of RNA interference in Drosophila S2 cells to identify host pathways controlling compartmentalization of an intracellular pathogen. Proc Natl Acad Sci USA 102, 13646–51 (2005)Google Scholar
  13. Dabiri, G.A., Sanger, J.M., Portnoy, D.A., Southwick, F.S.: Listeria monocytogenes moves rapidly through the host-cell cytoplasm by inducing directional actin assembly. Proc Natl Acad Sci USA 87, 6068–72 (1990)PubMedCrossRefGoogle Scholar
  14. Dancz, C.E., Haraga, A., Portnoy, D.A., Higgins, D.E.: Inducible control of virulence gene expression in Listeria monocytogenes: temporal requirement of listeriolysin O during intracellular infection. J Bacteriol 184, 5935–45 (2002)PubMedCrossRefGoogle Scholar
  15. Domann, E., Wehland, J., Rohde, M., Pistor, S., Hartl, M., Goebel, W., Leimeister-Wachter, M., Wuenscher, M., Chakraborty, T.: A novel bacterial virulence gene in Listeria monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin. EMBO J 11, 1981–90 (1992)PubMedGoogle Scholar
  16. Friederich, E., Gouin, E., Hellio, R., Kocks, C., Cossart, P., Louvard, D.: Targeting of Listeria monocytogenes ActA protein to the plasma membrane as a tool to dissect both actin-based cell morphogenesis and ActA function. Embo J 14, 2731–44 (1995)PubMedGoogle Scholar
  17. Gaillard, J.L., Berche, P., Sansonetti, P.: Transposon mutagenesis as a tool to study the role of hemolysin in the virulence of Listeria monocytogenes. Infect Immun 52, 50–55 (1986)PubMedGoogle Scholar
  18. Glomski, I.J., Decatur, A.L., Portnoy, D.A.: Listeria monocytogenes mutants that fail to compartmentalize listerolysin O activity are cytotoxic, avirulent, and unable to evade host extracellular defenses. Infect Immun 71, 6754–65 (2003)PubMedCrossRefGoogle Scholar
  19. Goossens, P.L., Milon, G., Cossart, P., Saron, M.F.: Attenuated Listeria monocytogenes as a live vector for induction of CD8+ T cells in vivo: a study with the nucleoprotein of the lymphocytic choriomeningitis virus. International Immunology 7, 797–805 (1995)PubMedCrossRefGoogle Scholar
  20. Grundling, A., Gonzalez, M.D., Higgins, D.E.: Requirement of the Listeria monocytogenes broad-range phospholipase PC-PLC during infection of human epithelial cells. J Bacteriol 185, 6295–307 (2003)PubMedCrossRefGoogle Scholar
  21. Hain, T., Steinweg, C., Chakraborty, T.: Comparative and functional genomics of Listeria spp. J Biotechnol 126, 37–51 (2006)PubMedCrossRefGoogle Scholar
  22. Hamrick, T.S., Horton, J.R., Spears, P.A., Havell, E.A., Smoak, I.W., Orndorff, P.E.: Influence of pregnancy on the pathogenesis of listeriosis in mice inoculated intragastrically. Infect Immun 71, 5202–9 (2003)PubMedCrossRefGoogle Scholar
  23. Hardy, J., Francis, K.P., DeBoer, M., Chu, P., Gibbs, K., Contag, C.H.: Extracellular replication of Listeria monocytogenes in the murine gall bladder. Science 303, 851–3 (2004)PubMedCrossRefGoogle Scholar
  24. Havell, E.A.: Synthesis and secretion of interferon by murine fibroblasts in response to intracellular Listeria monocytogenes. Infect Immun 54, 787–92 (1986)PubMedGoogle Scholar
  25. Henry, R., Shaughnessy, L., Loessner, M.J., Alberti-Segui, C., Higgins, D.E., Swanson, J.A.: Cytolysin-dependent delay of vacuole maturation in macrophages infected with Listeria monocytogenes. Cell Microbiol 8, 107–19 (2006)PubMedCrossRefGoogle Scholar
  26. Hodgson, D.A.: Generalized transduction of serotype 1/2 and serotype 4b strains of Listeria monocytogenes. Mol Microbiol 35, 312–23 (2000)PubMedCrossRefGoogle Scholar
  27. Ikonomidis, G., Paterson, Y., Kos, F.J., Portnoy, D.A.: Delivery of a viral antigen to the class I processing and presentation pathway by Listeria monocytogenes. J Exp Med 180, 2209–18 (1994)PubMedCrossRefGoogle Scholar
  28. Kathariou, S., Metz, P., Hof, H., Goebel, W.: Tn916-induced mutations in the hemolysin determinant affecting virulence of Listeria monocytogenes. J Bacteriol 169, 1291–7 (1987)PubMedGoogle Scholar
  29. Kocks, C., Gouin, E., Tabouret, M., Berche, P., Ohayon, H., Cossart, P.: L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68, 521–31 (1992)PubMedCrossRefGoogle Scholar
  30. Lauer, P., Chow, M.Y.N., Loessner, M.J., Portnoy, D.A., Calendar, R.: Construction, characterization and use of two Listeria monocytogenes site-specific integration vectors. J Bacteriol 184, 4177–4186 (2002)PubMedCrossRefGoogle Scholar
  31. Lauvau, G., Vijh, S., Kong, P., Horng, T., Kerksiek, K., Serbina, N., Tuma, R.A., Pamer, E.G.: Priming of memory but not effector CD8 T cells by a killed bacterial vaccine. Science 294, 1735–9 (2001)PubMedCrossRefGoogle Scholar
  32. Lecuit, M., Nelson, D.M., Smith, S.D., Khun, H., Huerre, M., Vacher-Lavenu, M.C., Gordon, J.I., Cossart, P.: Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes: role of internalin interaction with trophoblast E-cadherin. Proc Natl Acad Sci USA 101, 6152–7 (2004)PubMedCrossRefGoogle Scholar
  33. Lecuit, M., Vandormael-Pournin, S., Lefort, J., Huerre, M., Gounon, P., Dupuy, C., Babinet, C., Cossart, P.: A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292, 1722–5 (2001)PubMedCrossRefGoogle Scholar
  34. Lett, M., Sasakawa, C., Okada, N., Sakai, T., Makino, S., Yamada, M., Komatsu, K., Yoshikawa, M.: virG, a plasmid-coded virulence gene of Shigella flexneri: identification of the virG protein and determination of the complete coding sequence. J Bacteriol 171, 353–9 (1989)PubMedGoogle Scholar
  35. Loisel, T.P., Boujemaa, R., Pantaloni, D., Carlier, M.F.: Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613–6 (1999)PubMedCrossRefGoogle Scholar
  36. Mackaness, M.: Cellular resistance to infection. J Exp Med 116, 381 (1962)PubMedCrossRefGoogle Scholar
  37. Marquis, H., Doshi, V., Portnoy, D.A.: The broad-range phospholipase C and a metalloprotease mediate listeriolysin O-independent escape of Listeria monocytogenes from a primary vacuole in human epithelial cells. Infect Immun 63, 4531–4 (1995)PubMedGoogle Scholar
  38. Marquis, H., Goldfine, H., Portnoy, D.A.: Proteolytic pathways of activation and degradation of a bacterial phospholipase C during intracellular infection by Listeria monocytogenes. J Cell Biol 137, 1381–92 (1997)PubMedCrossRefGoogle Scholar
  39. Marquis, H., Hager, E.J.: pH-regulated activation and release of a bacteria-associated phospholipase C during intracellular infection by Listeria monocytogenes. Mol Microbiol 35, 289–98 (2000).PubMedCrossRefGoogle Scholar
  40. McCaffrey, R.L., Fawcett, P., O’Riordan, M., Lee, K.D., Havell, E.A., Brown, P.O., Portnoy, D.A.: A specific gene expression program triggered by Gram-positive bacteria in the cytosol. Proc Natl Acad Sci USA 101, 11386–91 (2004)PubMedCrossRefGoogle Scholar
  41. Mengaud, J., Chenevert, J., Geoffroy, C., Gaillard, J.L., Cossart, P.: Identification of the structural gene encoding the SH-activated hemolysin of Listeria monocytogenes: listeriolysin O is homologous to streptolysin O and pneumolysin. Infect Immun 55, 3225–7 (1987)PubMedGoogle Scholar
  42. Mounier, J., Ryter, A., Coquis-Rondon, M., Sansonetti, P.J.: Intracellular and cell-to-cell spread of Listeria monocytogenes involves interaction with F-actin in the enterocytelike cell line Caco-2. Infect Immun 58, 1048–58 (1990)PubMedGoogle Scholar
  43. O’Connell, R.M., Saha, S.K., Vaidya, S.A., Bruhn, K.W., Miranda, G.A., Zarnegar, B., Perry, A.K., Nguyen, B.O., Lane, T.F., Taniguchi, T., Miller, J.F., Cheng, G.: Type I interferon production enhances susceptibility to Listeria monocytogenes infection. J Exp Med 200, 437–45 (2004)PubMedCrossRefGoogle Scholar
  44. Ogawa, M., Sasakawa, C.: Bacterial evasion of the autophagic defense system. Curr Opin Microbiol 9, 62–8 (2006)PubMedCrossRefGoogle Scholar
  45. O’Riordan, M., Yi, C.H., Gonzales, R., Lee, K.D., Portnoy, D.A.: Innate recognition of bacteria by a macrophage cytosolic surveillance pathway. Proc Natl Acad Sci USA 99, 13861–6 (2002)CrossRefGoogle Scholar
  46. Pal, T., Newland, J.W., Tall, B.D., Formal, S.B., Hale, T.L.: Intracellular spread of Shigella flexneri associated with the kcpA locus and a 140-kilodalton protein. Infect Immun 57, 477–86 (1989)PubMedGoogle Scholar
  47. Pan, Z.K., Ikonomidis, G., Lazenby, A., Pardoll, D., Paterson, Y.: A recombinant Listeria monocytogenes vaccine expressing a model tumour antigen protects mice against lethal tumour cell challenge and causes regression of established tumours. Nature Med 1, 471–7 (1995)PubMedCrossRefGoogle Scholar
  48. Paterson, Y., Johnson, R.S.: Progress towards the use of Listeria monocytogenes as a live bacterial vaccine vector for the delivery of HIV antigens. Expert Rev Vaccines 3, S119–34 (2004)CrossRefGoogle Scholar
  49. Pistor, S., Chakraborty, T., Niebuhr, K., Domann, E., Wehland, J.: The ActA protein of Listeria monocytogenes acts as a nucleator inducing reorganization of the actin cytoskeleton. EMBO J 13, 758–63 (1994)PubMedGoogle Scholar
  50. Pistor, S., Chakraborty, T., Walter, U., Wehland, J.: The bacterial actin nucleator protein ActA of Listeria monocytogenes contains multiple binding sites for host microfilament proteins. Curr Biol 5, 517–25 (1995)PubMedCrossRefGoogle Scholar
  51. Portnoy, D.A., Auerbuch, V., Glomski, I.J.: The cell biology of Listeria monocytogenes infection: the intersection of bacterial pathogenesis and cell-mediated immunity. J Cell Biol 158, 409–14 (2002)PubMedCrossRefGoogle Scholar
  52. Portnoy, D.A., Chakraborty, T., Goebel, W., Cossart, P.: Molecular determinants of Listeria monocytogenes pathogenesis. Infect Immun 60, 1263–67 (1992)PubMedGoogle Scholar
  53. Portnoy, D.A., Jacks, P.S., Hinrichs, D.J.: Role of hemolysin for the intracellular growth of Listeria monocytogenes. J Exp Med 167, 1459–71 (1988)PubMedCrossRefGoogle Scholar
  54. Rich, K.A., Burkett, C., Webster, P.: Cytoplasmic bacteria can be targets for autophagy. Cell Microbiol 5, 455–68 (2003)PubMedCrossRefGoogle Scholar
  55. Robbins, J.R., Barth, A.I., Marquis, H., de Hostos, E.L., Nelson, W.J., Theriot, J.A.: Listeria monocytogenes exploits normal host cell processes to spread from cell to cell. J Cell Biol 146, 1333–50 (1999)PubMedCrossRefGoogle Scholar
  56. Sassetti, C.M., Rubin, E.J.: Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA 100, 12989–94 (2003)Google Scholar
  57. Schnupf, P., Hofmann, J., Norseen, J., Glomski, I.J., Schwartzstein, H., Decatur, A.L.: Regulated translation of listeriolysin O controls virulence of Listeria monocytogenes. Mol Microbiol 61, 999–1012 (2006)PubMedCrossRefGoogle Scholar
  58. Shaughnessy, L.M., Hoppe, A.D., Christensen, K.A., Swanson, J.A.: Membrane perforations inhibit lysosome fusion by altering pH and calcium in Listeria monocytogenes vacuoles. Cell Microbiol 8, 781–92 (2006)PubMedCrossRefGoogle Scholar
  59. Shen, A., Higgins, D.E.: The MogR transcriptional repressor regulates nonhierarchal expression of flagellar motility genes and virulence in Listeria monocytogenes. PLoS Pathog 2, e30 (2006)PubMedCrossRefGoogle Scholar
  60. Shen, H., Miller, J.F., Fan, X., Kolwyck, D., Ahmed, R., Harty, J.T.: Compartmentalization of bacterial antigens: differential effects on priming of CD8 T cells and protective immunity. Cell 92, 535–45 (1998)PubMedCrossRefGoogle Scholar
  61. Shen, H., Slifka, M.K., Matloubian, M., Jensen, E.R., Ahmed, R., Miller, J.F.: Recombinant Listeria monocytogenes as a live vaccine vehicle for the induction of protective anti-viral cell-mediated immunity. Proc Natl Acad Sci USA92, 3987–91 (1995)PubMedCrossRefGoogle Scholar
  62. Smith, G.A., Portnoy, D.A., Theriot, J.A.: Asymmetric distribution of the Listeria monocytogenes ActA protein is required and sufficient to direct actin-based motility. Mol Microbiol 17, 945–51 (1995)PubMedCrossRefGoogle Scholar
  63. Stockinger, S., Reutterer, B., Schaljo, B., Schellack, C., Brunner, S., Materna, T., Yamamoto, M., Akira, S., Taniguchi, T., Murray, P.J., Muller, M., Decker, T.: IFN regulatory factor 3-dependent induction of type I IFNs by intracellular bacteria is mediated by a TLR- and Nod2-independent mechanism. J Immunol 173, 7416–25 (2004)PubMedGoogle Scholar
  64. Theriot, J.A., Rosenblatt, J., Portnoy, D.A., Goldschmidt-Clermont, P.J., Mitchison, T.J.: Involvement of profilin in the actin-based motility of L. monocytogenes in cells and in cell-free extracts. Cell 76, 505–17 (1994)PubMedCrossRefGoogle Scholar
  65. Tilney, L.G., Connelly, P.S., Portnoy, D.A.: The nucleation of actin filaments by the bacterial intracellular pathogen, Listeria monocytogenes. J Cell Biol 111: 2979–88 (1990)PubMedCrossRefGoogle Scholar
  66. Tilney, L.G., Portnoy, D.A.: Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol 109, 1597–1608 (1989)PubMedCrossRefGoogle Scholar
  67. von Koenig, C.H.W., Finger, H., Hof, H.: Failure of killed Listeria monocytogenes vaccine to produce protective immunity. Nature 297, 233–4 (1982)CrossRefGoogle Scholar
  68. Wadsworth, S.J., Goldfine, H.: Mobilization of protein kinase C in macrophages induced by Listeria monocytogenes affects its internalization and escape from the phagosome. Infect Immun 70, 4650–60 (2002)PubMedCrossRefGoogle Scholar
  69. Welch, M.D., Mullins, R.D.: Cellular control of actin nucleation. Annu Rev Cell Dev Biol 18, 247–88 (2002)PubMedCrossRefGoogle Scholar
  70. Welch, M.D., Rosenblatt, J., Skoble, J., Portnoy, D.A., Mitchison, T.J.: Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 281, 105–108 (1998)PubMedCrossRefGoogle Scholar
  71. Yeung, P.S., Zagorski, N., Marquis, H.: The metalloprotease of Listeria monocytogenes controls cell wall translocation of the broad-range phospholipase C. J Bacteriol 187, 2601–8 (2005)PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Daniel A. Portnoy
    • 1
  1. 1.Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations