Membrane Protein Structure and Dynamics Studied by Site-Directed Spin-Labeling ESR

  • Enrica Bordignon
  • Heinz-Jürgen Steinhoff
Part of the Biological Magnetic Resonance book series (BIMR, volume 27)

Abstract

ESR spectroscopy of site-directed spin-labeled biomolecules (Site-Directed Spin Labeling, SDSL) has emerged as a powerful method for studying the structure and conformational dynamics of proteins and nucleic acids under conditions relevant to function (for reviews see, e.g., Feix and Klug 1998; Hubbell et al. 1996; Hubbell et al. 1998, 2002). In this technique a spin-label side chain is introduced at a selected site via cysteine substitution mutagenesis followed by modification of the unique sulfhydryl group with a specific paramagnetic nitroxide reagent. The continuous wave (cw) ESR spectrum yields information about the nitroxide side chain mobility, solvent accessibility, the polarity of its immediate environment, and the distance between the nitroxide and another paramagnetic center in the protein. Hence, ESR data analysis of a series of spin-labeled variants of a given protein allows defining elements of secondary structure, including their solvent exposure, to characterize protein topography and to determine orientations of individual segments of the protein. A complete analysis allows modeling of protein structures with a spatial resolution at the level of the backbone fold (Hubbell et al. 1998, 2000; Koteiche and Mchaourab 1999; Mchaourab and Perozo 2000; Perozo et al. 1998; Wegener et al. 2001a). This method is applicable to any protein with a cloned gene that can be expressed. In particular, it has been shown to be very useful in studying large membrane proteins or protein complexes that are not amenable to NMR methods or do not crystallize.

Keywords

Spin Label Purple Membrane Membrane Protein Structure Interspin Distance Sensory Rhodopsin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. Altenbach C, Flitsch SL, Khorana HG, Hubbell WL. 1989a. Structural studies on transmembrane proteins, 2: spin labeling of bacteriorhodopsin mutants at unique cysteines. Biochemistry 28:7806–7812.PubMedGoogle Scholar
  2. Altenbach C, Froncisz W, Hyde JS, Hubbell WL. 1989b. Conformation of spin-labeled melittin at membrane surfaces investigated by pulse saturation recovery and continuous wave power saturation electron-paramagnetic resonance. Biophys J 56:1183–1191.PubMedGoogle Scholar
  3. Altenbach C, Greenhalgh DA, Khorana HG, Hubbell WL. 1994. A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spin-labeled mutants of bacteriorhodopsin. Proc Natl Acad Sci USA 91:1667–1671.PubMedGoogle Scholar
  4. Altenbach C, Yang K, Farrens DL, Farahbakhsh ZT, Khorana HG, Hubbell WL. 1996. Structural features and light-dependent changes in the cytoplasmic interhelical E-F loop region of rhodopsin: a site-directed spin-labeling study. Biochemistry 35:12470–12478.PubMedGoogle Scholar
  5. Altenbach C, Oh KJ, Trabanino RJ, Hideg K, Hubbell WL. 2001. Estimation of inter-residue distances in spin labeled proteins at physiological temperatures: experimental strategies and practical limitations. Biochemistry 40:15471–15482.PubMedGoogle Scholar
  6. Altenbach C, Froncisz W, Hemker R, Mchaourab H, Hubbell WL. 2005. Accessibility of nitroxide side chains: absolute Heisenberg exchange rates from power saturation EPR. Biophys J 89:2103–2112.PubMedGoogle Scholar
  7. Anderson DJ, Hanson P, McNulty J, Millhauser G, Monaco V, Formaggio F, Crisma M, Toniolo C. 1999. Solution structures of TOAC-labeled trichogin GA IV peptides from allowed (g approximate to 2) and half-field electron spin resonance. J Am Chem Soc 121:6919–6927.Google Scholar
  8. Appleman JA, Chen LL, Stewart V. 2003. Probing conservation of HAMP linker structure and signal transduction mechanism through analysis of hybrid sensor kinases. J Bacteriol 185:4872–4882.PubMedGoogle Scholar
  9. Ayers B, Blaschke UK, Camarero JA, Cotton GJ, Holford M, Muir TW. 1999. Introduction of unnatural amino acids into proteins using expressed protein ligation. Biopolymers 51:343–354.PubMedGoogle Scholar
  10. Balog M, Kalai T, Jeko J, Berente Z, Steinhoff HJ, Engelhard M, Hideg K. 2003. Synthesis of new conformationally rigid paramagnetic alpha-amino acids. Tetrahedron Lett 44:9213–9217.Google Scholar
  11. Balog MR, Kalai TK, Jeko J, Steinhoff HJ, Engelhard M, Hideg K. 2004. Synthesis of new 2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-1-yloxyl radicals and 2-substituted-2,5,5-trimethylpyrrolidin-1-yloxyl radicals based alpha-amino acids. Synlett 14:2591–2593.Google Scholar
  12. Barbosa SR, Cilli EM, Lamy-Freund MT, Castrucci AML, Nakaie CR. 1999. First synthesis of a fully active spin-labeled peptide hormone. FEBS Lett 446:45–48.PubMedGoogle Scholar
  13. Barnes JP, Liang ZC, Mchaourab HS, Freed JH, Hubbell WL. 1999. A multifrequency electron spin resonance study of T4 lysozyme dynamics. Biophys J 76:3298–3306.PubMedGoogle Scholar
  14. Becker CFW, Hunter CL, Seidel R, Kent SBH, Goody RS, Engelhard M. 2003. Total chemical synthesis of a functional interacting protein pair: the protooncogene H-Ras and the Ras-binding domain of its effector c-Raf1. Proc Natl Acad Sci USA 100:5075–5080.PubMedGoogle Scholar
  15. Becker CFW, Lausecker K, Balog M, Kalai T, Hideg K, Steinhoff HJ, Engelhard M. 2005. Incorporation of spin-labelled amino acids into proteins. Magn Reson Chem 43:S34–S39.PubMedGoogle Scholar
  16. Berliner LJ, ed. 1976. Spin labeling: theory and applications. New York: Academic Press.Google Scholar
  17. Berliner LJ, ed. 1979. Spin labeling II: theory and applications. New York: Academic Press.Google Scholar
  18. Berliner LJ, Reuben J, eds. 1989. Spin labeling theory and applications, Vol. 8: Biological magnetic resonance. New York: Plenum Press.Google Scholar
  19. Berliner LJ, Grunwald J, Hankovszky HO, Hideg K. 1982. A novel reversible thiol-specific spin label: papain active-site labeling and inhibition. Anal Biochem 119:450–455.PubMedGoogle Scholar
  20. Berliner LJ, Eaton SS, Eaton GR, eds. 2000. Distance measurements in biological systems by EPR: biological magnetic resonance. New York: Kluwer Academic/Plenum.Google Scholar
  21. Bolin KA, Anderson DJ, Trulson JA, Thompson DA, Wilken J, Kent SBH, Gantz I, Millhauser GL. 1999. NMR structure of a minimized human agouti related protein prepared by total chemical synthesis. FEBS Lett 451:125–131.PubMedGoogle Scholar
  22. Borbat PP, Freed JH. 1999. Multiple-quantum ESR and distance measurements. Chem Phys Lett 313:145–154.Google Scholar
  23. Borbat PP, Costa-Filho AJ, Earle KA, Moscicki JK, Freed JH. 2001. Electron spin resonance in studies of membranes and proteins. Science 291:266–269.PubMedGoogle Scholar
  24. Bordignon E, Klare JP, Doebber M, Wegener AA, Martell S, Engelhard M, Steinhoff HJ. 2005. Structural analysis of a HAMP domain: the linker region of the phototransducer in complex with sensory rhodopsin II. J Biol Chem 280:38767–38775.PubMedGoogle Scholar
  25. Burghaus O, Rohrer M, Gotzinger T, Plato M, Möbius K. 1992. A novel high-field high-frequency EPR and ENDOR spectrometer operating at 3 mm wavelength. Meas Sci Technol 33:765–774.Google Scholar
  26. Cai KW, Langen R, Hubbell WL, Khorana HG. 1997. Structure and function in rhodopsin: topology of the C-terminal polypeptide chain in relation to the cytoplasmic loops. Proc Natl Acad Sci USA 94:14267–14272.PubMedGoogle Scholar
  27. Chin JW, Cropp TA, Anderson JC, Mukherji M, Zhang ZW, Schultz PG. 2003. An expanded eukaryotic genetic code. Science 301:964–967.PubMedGoogle Scholar
  28. Closs GL, Forbes MDE, Piotrowiak P. 1992. Spin and reaction dynamics in flexible polymethylene biradicals as studied by EPR, NMR, and optical spectroscopy and magneticfield effects: measurements and mechanisms of scalar electron-spin spin coupling. J Am Chem Soc 114:3285–3294.Google Scholar
  29. Cornish VW, Benson DR, Altenbach CA, Hideg K, Hubbell WL, Schultz PG. 1994. Sitespecific incorporation of biophysical probes into proteins. Proc Natl Acad Sci USA 91:2910–2914.PubMedGoogle Scholar
  30. Cuello LG, Cortes DM, Perozo E. 2004. Molecular architecture of the KvAP voltage-dependent K+ channel in a lipid bilayer. Science 306:491–495.PubMedGoogle Scholar
  31. Dawson PE, Kent SBH. 2000. Synthesis of native proteins by chemical ligation. Annu Rev Biochem 69:923–960.PubMedGoogle Scholar
  32. Elsaber C, Monien B, Haehnel W, Bittl R. 2005. Orientation of spin labels in de novo peptides. Magn Reson Chem 43:S26–S33.Google Scholar
  33. Essen LO, Siegert R, Lehmann WD, Oesterhelt D. 1998. Lipid patches in membrane protein oligomers: crystal structure of the bacteriorhodopsin-lipid complex. Proc Natl Acad Sci USA 95:11673–11678.PubMedGoogle Scholar
  34. Farahbakhsh ZT, Altenbach C, Hubbell WL. 1992. Spin labeled cysteines as sensors for protein lipid interaction and conformation in rhodopsin. Photochem Photobiol 56:1019–1033.PubMedGoogle Scholar
  35. Farahbakhsh ZT, Hideg K, Hubbell WL. 1993. Photoactivated conformational changes in rhodopsin: a time-resolved spin-label study. Science 262:1416–1419.PubMedGoogle Scholar
  36. Farrens DL, Altenbach C, Yang K, Hubbell WL, Khorana HG. 1996. Requirement of rigidbody motion of transmembrane helices for light activation of rhodopsin. Science 274:768–770.PubMedGoogle Scholar
  37. Feix JB, Klug CS. 1998. Site directed spin labeling of membrane proteins and pepti-demembrane interactions. In Spin labeling: the next millennium, Vol. 14, pp. 251–281. Ed LJ Berliner. New York: Plenum.Google Scholar
  38. Feix JB, Popp CA, Venkataramu SD, Beth AH, Park JH, Hyde JS. 1984. An electron-electron double-resonance study of interactions between [N-14]stearic and [N-15]stearic acid spin-label pairs: lateral diffusion and vertical fluctuations in dimyristoylphosphatidylcholine. Biochemistry 23:2293–2299.PubMedGoogle Scholar
  39. Fiori WR, Millhauser GL. 1995. Exploring the peptide 3(10)-helix-reversible-arrow-alphahelix equilibrium with double-label electron-spin-resonance. Biopolymers 37:243–250.PubMedGoogle Scholar
  40. Freed JH. 1976. Theory of slow tumbing ESR spectra for nitroxides. In Spin labeling: theory and applications, pp. 53–132. Ed LJ Berliner. New York: Academic Press.Google Scholar
  41. Gordeliy VI, Labahn J, Moukhametzianov R, Efremov R, Granzin J, Schlesinger R, Büldt G, Savopol T, Scheidig AJ, Klare JP, Engelhard M. 2002. Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature 419:484–487.PubMedGoogle Scholar
  42. Griffith OH, Dehlinger PJ, Van SP. 1974. Shape of hydrophobic barrier of phospholipid bilayers (evidence for water penetration in biological-membranes). J Membr Biol 15:159–192.PubMedGoogle Scholar
  43. Gross A, Columbus L, Hideg K, Altenbach C, Hubbell WL. 1999. Structure of the KcsA potassium channel from Streptomyces lividans: a site-directed spin labeling study of the second transmembrane segment. Biochemistry 38:10324–10335.PubMedGoogle Scholar
  44. Hahn ME, Muir TW. 2005. Manipulating proteins with chemistry: a cross-section of chemical biology. Trends Biochem Sci 30:26–34.PubMedGoogle Scholar
  45. Hanson P, Martinez G, Millhauser G, Formaggio F, Crisma M, Toniolo C, Vita C. 1996a. Distinguishing helix conformations in alanine-rich peptides using the unnatural amino acid TOAC and electron spin resonance. J Am Chem Soc 118:271–272.Google Scholar
  46. Hanson P, Millhauser G, Formaggio F, Crisma M, Toniolo C. 1996b. ESR characterization of hexameric, helical peptides using double TOAC spin labeling. J Am Chem Soc 118:7618–7625.Google Scholar
  47. Hubbell WL, Mchaourab HS, Altenbach C, Lietzow MA. 1996. Watching proteins move using site-directed spin labeling. Structure 4:779–783.PubMedGoogle Scholar
  48. Hubbell WL, Gross A, Langen R, Lietzow MA. 1998. Recent advances in site-directed spin labeling of proteins. Curr Opin Struct Biol 8:649–656.PubMedGoogle Scholar
  49. Hubbell WL, Cafiso DS, Altenbach C. 2000. Identifying conformational changes with sitedirected spin labeling. Nat Struct Biol 7:735–739.PubMedGoogle Scholar
  50. Huber M, Törring JT. 1995. High-field EPR on the primary electron-donor cation-radical in single-crystals of heterodimer mutant reaction centers of photosynthetic bacteria: first characterization of the g-tensor. Chem Phys 194:379–385.Google Scholar
  51. Hustedt EJ, Beth AH. 1999. Nitroxide spin-spin interactions: applications to protein structure and dynamics. Ann Rev Biophys Biomol Struct 28:129–153.Google Scholar
  52. Hustedt EJ, Smirnov AI, Laub CF, Cobb CE, Beth AH. 1997. Molecular distances from dipolar coupled spin-labels: the global analysis of multifrequency continuous wave electron paramagnetic resonance data. Biophys J 72:1861–1877.PubMedGoogle Scholar
  53. Isas JM, Langen R, Haigler HT, Hubbell WL. 2002. Structure and dynamics of a helical hairpin and loop region in annexin 12: a site-directed spin labeling study. Biochemistry 41:1464–1473.PubMedGoogle Scholar
  54. Jeschke G. 2002. Distance measurements in the nanometer range by pulse EPR. Chem Phys Chem 3:927–932.PubMedGoogle Scholar
  55. Kim KK, Yokota H, Kim SH. 1999. Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor. Nature 400:787–792.PubMedGoogle Scholar
  56. Klare JP, Bordignon E, Engelhard M, Steinhoff HJ. 2004a. Sensory rhodopsin II and bacteriorhodopsin: light activated helix F movement. Photochem Photobiol Sci 3:543–547.PubMedGoogle Scholar
  57. Klare JP, Gordeliy VI, Labahn J, Büldt G, Steinhoff HJ, Engelhard M. 2004b. The archaeal sensory rhodopsin II/transducer complex: a model for transmembrane signal transfer. FEBS Lett 564:219–224.PubMedGoogle Scholar
  58. Kochendoerfer GG, Chen SY, Mao F, Cressman S, Traviglia S, Shao HY, Hunter CL, Low DW, Cagle EN, Carnevali M, Gueriguian V, Keogh PJ, Porter H, Stratton SM, Wiedeke MC, Wilken J, Tang J, Levy JJ, Miranda LP, Crnogorac MM, Kalbag S, Botti P, Schindler-Horvat J, Savatski L, Adamson JW, Kung A, Kent SBH, Bradburne JA. 2003. Design and chemical synthesis of a homogeneous polymer-modified erythropoiesis protein. Science 299:884–887.PubMedGoogle Scholar
  59. Kochendoerfer GG, Jones DH, Lee S, Oblatt-Montal M, Opella SJ, Montal M. 2004. Functional characterization and NMR Spectroscopy on full-length Vpu from HIV-1 prepared by total chemical synthesis. J Am Chem Soc 126:2439–2446.PubMedGoogle Scholar
  60. Koteiche HA, Mchaourab HS. 1999. Folding pattern of the alpha-crystallin domain in alpha A-crystallin determined by site-directed spin labeling. J Mol Biol 294:561–577.PubMedGoogle Scholar
  61. Koteiche HA, Berengian AR, Mchaourab HS. 1998. Identification of protein folding patterns using site-directed spin labeling: structural characterization of a beta-sheet and putative substrate binding regions in the conserved domain of alpha A-crystallin. Biochemistry 37:12681–12688.PubMedGoogle Scholar
  62. LaConte LEW, Voelz V, Nelson W, Enz M, Thomas DD. 2002. Molecular dynamics simulation of site-directed spin labeling: experimental validation in muscle fibers. Biophys J 83:1854–1866.PubMedGoogle Scholar
  63. Likhtenshtein GI. 1976. Spin labeling methods in molecular biology. New York: John Wiley & Sons.Google Scholar
  64. Luecke H, Richter HT, Lanyi JK. 1998. Proton transfer pathways in bacteriorhodopsin at 2.3 Å resolution. Science 280:1934–1937.PubMedGoogle Scholar
  65. Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK. 1999. Structure of bacteriorhodopsin at 1.55 Å resolution. J Mol Biol 291:899–911.PubMedGoogle Scholar
  66. Marchetto R, Schreier S, Nakaie CR. 1993. A novel spin-labeled amino-acid derivative for use in peptide-synthesis: (9-Fluorenylmethyloxycarbonyl)-2,2,6,6-tetramethylpiperi-dine-N-oxyl-4-amino-4-carboxylic acid. J Am Chem Soc 115:11042–11043.Google Scholar
  67. Marsh D, Dzikovski BG, Livshits VA. 2006. Oxygen profile in membranes. Biophys J 90:L49–L51.PubMedGoogle Scholar
  68. Mchaourab HS, Hyde JS. 1993. Dependence of the multiple-quantum EPR signal on the spin-lattice relaxation-time: effect of oxygen in spin-labeled membranes. J Magn Reson Ser B 101:178–184.Google Scholar
  69. Mchaourab HS, Perozo E. 2000. Determination of protein folds and conformational dynamics using spin labeling EPR spectroscopy. In Distance measurements in biological systems by EPR, pp. 155–218. Ed LJ Berliner, SS Eaton, GR Eaton. New York: Kluwer.Google Scholar
  70. Mchaourab HS, Lietzow MA, Hideg K, Hubbell WL. 1996. Motion of spin-labeled side chains in T4 lysozyme, correlation with protein structure and dynamics. Biochemistry 35:7692–7704.PubMedGoogle Scholar
  71. Mendel D, Cornish VW, Schultz PG. 1995. Site-directed mutagenesis with an expanded genetic-code. Ann Rev Biophys Biomol Struct 24:435–462.Google Scholar
  72. Merrifield RB. 1963. Solid phase peptide synthesis, 1: synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154.Google Scholar
  73. Möbius K, Savitsky A, Wegener C, Plato M, Fuchs M, Schnegg A, Dubinskii AA, Grishin YA, Grigor’ev IA, Kühn M, Duché D, Zimmermann H, Steinhoff HJ. 2005. Combining high-field EPR with site-directed spin labeling reveals unique information on proteins in action. Magn Reson Chem 43:S4–S19.PubMedGoogle Scholar
  74. Monaco V, Formaggio F, Crisma M, Toniolo C, Hanson P, Millhauser G, George C, Deschamps JR, Flippen-Anderson JL. 1999. Determining the occurrence of a 3(10)-helix and an alpha-helix in two different segments of a lipopeptaibol antibiotic using TOAC, a nitroxide spin-labeled C-alpha-tetrasubstituted alpha-amino acid. Bioorg Med Chem 7:119–131.PubMedGoogle Scholar
  75. Moukhametzianov R, Klare JP, Efremov R, Baeken C, Göppner A, Labahn J, Engelhard M, Büldt G, Gordeliy VI. 2006. Development of the signal in sensory rhodopsin and its transfer to the cognate transducer. Nature 440:115–119.PubMedGoogle Scholar
  76. Nielsen RD, Canaan S, Gladden JA, Gelb MH, Mailer C, Robinson BH. 2004. Comparing continuous wave progressive saturation EPR and time domain saturation recovery EPR over the entire motional range of nitroxide spin labels. J Magn Reson 169:129–163.PubMedGoogle Scholar
  77. O’Donnell MJ, Bennett WD, Wu SD. 1989. The stereoselective synthesis of alpha-aminoacids by phase-transfer catalysis. J Am Chem Soc 111:2353–2355.Google Scholar
  78. Pannier M, Veit S, Godt A, Jeschke G, Spiess HW. 2000. Dead-time free measurement of dipole-dipole interactions between electron spins. J Magn Reson 142:331–340.PubMedGoogle Scholar
  79. Pebay-Peyroula E, Rummel G, Rosenbusch JP, Landau EM. 1997. X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science 277:1676–1681.PubMedGoogle Scholar
  80. Percival PW, Hyde JS. 1975. Pulsed EPR spectrometer, 2. Rev Sci Instrum 46:1522–1529.Google Scholar
  81. Perozo E, Cortes DM, Cuello LG. 1998. Three-dimensional architecture and gating mechanism of a K+ channel studied by EPR spectroscopy. Nat Struct Biol 5:459–469.PubMedGoogle Scholar
  82. Pfeiffer M, Rink T, Gerwert K, Oesterhelt D, Steinhoff HJ. 1999. Site-directed spin-labeling reveals the orientation of the amino acid side-chains in the E-F loop of bacteriorhodopsin. J Mol Biol 287:163–171.PubMedGoogle Scholar
  83. Plato M, Steinhoff HJ, Wegener C, Törring JT, Savitsky A, Möbius K. 2002. Molecular orbital study of polarity and hydrogen bonding effects on the g and hyperfine tensors of site directed NO spin labelled bacteriorhodopsin. Mol Phys 100:3711–3721.Google Scholar
  84. Poole CP. 1983. Electron spin resonance. New York: Wiley.Google Scholar
  85. Prisner TF, Vanderest A, Bittl R, Lubitz W, Stehlik D, Möbius K. 1995. Time-resolved W-band (95 GHz) EPR spectroscopy of Zn-substituted reaction centers of rhodobacter-sphaeroides R-26. Chem Phys 194:361–370.Google Scholar
  86. Pyka J, Ilnicki J, Altenbach C, Hubbell WL, Froncisz W. 2005. Accessibility and dynamics of nitroxide side chains in T4 lysozyme measured by saturation recovery EPR. Biophys J 89:2059–2068.PubMedGoogle Scholar
  87. Qin PZ, Hideg K, Feigon J, Hubbell WL. 2003. Monitoring RNA base structure and dynamics using site-directed spin labeling. Biochemistry 42:6772–6783.PubMedGoogle Scholar
  88. Rabenstein MD, Shin YK. 1995. Determination of the distance between 2 spin labels attached to a macromolecule. Proc Natl Acad Sci USA 92:8239–8243.PubMedGoogle Scholar
  89. Radzwill N, Gerwert K, Steinhoff HJ. 2001. Time-resolved detection of transient movement of helices F and G in doubly spin-labeled bacteriorhodopsin. Biophys J 80:2856–2866.PubMedGoogle Scholar
  90. Rassat A, Rey P. 1967. Nitroxides, 23: preparation of amino-acid free radicals and their complex salts. Bull Soc Chim Fr 3:815–818.PubMedGoogle Scholar
  91. Sale K, Song LK, Liu YS, Perozo E, Fajer P. 2005. Explicit treatment of spin labels in modeling of distance constraints from dipolar EPR and DEER. J Am Chem Soc 127:9334–9335.PubMedGoogle Scholar
  92. Shafer AM, Kalai T, Liu SQB, Hideg K, Voss JC. 2004. Site-specific insertion of spin-labeled L-amino acids in Xenopus oocytes. Biochemistry 43:8470–8482.PubMedGoogle Scholar
  93. Shin YK, Hubbell WL. 1992. Determination of electrostatic potentials at biological interfaces using electron electron double-resonance. Biophys J 61:1443–1453.PubMedGoogle Scholar
  94. Shin YK, Levinthal C, Levinthal F, Hubbell WL. 1993. Colicin-E1 binding to membranes: time-resolved studies of spin-labeled mutants. Science 259:960–963.PubMedGoogle Scholar
  95. Steinhoff HJ. 2002. Methods for study of protein dynamics and protein-protein interaction in protein ubiquitination by electron paramagnetic resonance spectroscopy. Front Biosci 7:C97–C110.PubMedGoogle Scholar
  96. Steinhoff HJ, Hubbell WL. 1996. Calculation of electron paramagnetic resonance spectra from Brownian dynamics trajectories: application to nitroxide side chains in proteins. Biophys J 71:2201–2212.PubMedGoogle Scholar
  97. Steinhoff HJ, Karim C. 1993. Protein dynamics and EPR-spectroscopy: comparison of molecular dynamic simulations with experiments. Ber Bunsenges Phys Chem 97:163–171.Google Scholar
  98. Steinhoff HJ, Lieutenant K, Schlitter J. 1989. Residual motion of hemoglobin-bound spin labels as a probe for protein dynamics. Z Naturforschung C: J Biosci 44:280–288.Google Scholar
  99. Steinhoff HJ, Dombrowsky O, Karim C, Schneiderhahn C. 1991. Two-dimensional diffusion of small molecules on protein surfaces: an EPR study of the restricted translational diffusion of protein-bound spin labels. Eur Biophys J Biophy Lett 20:293–303.Google Scholar
  100. Steinhoff HJ, Mollaaghababa R, Altenbach C, Hideg K, Krebs M, Khorana HG, Hubbell WL. 1994. Time-resolved detection of structural changes during the photocycle of spin-labeled bacteriorhodopsin. Science 266:105–107.PubMedGoogle Scholar
  101. Steinhoff HJ, Radzwill N, Thevis W, Lenz V, Brandenburg D, Antson A, Dodson G, Wollmer A. 1997. Determination of interspin distances between spin labels attached to insulin: Comparison of electron paramagnetic resonance data with the x-ray structure. Biophys J 73:3287–3298.PubMedGoogle Scholar
  102. Steinhoff HJ, Pfeiffer M, Rink T, Burlon O, Kurz M, Riesle J, Heuberger E, Gerwert K, Oesterhelt D. 1999. Azide reduces the hydrophobic barrier of the bacteriorhodopsin proton channel. Biophys J 76:2702–2710.PubMedGoogle Scholar
  103. Steinhoff HJ, Müller M, Beier C, Pfeiffer M. 2000a. Molecular dynamics simulation and EPR spectroscopy of nitroxide side chains in bacteriorhodopsin. J Mol Liq 84:17–27.Google Scholar
  104. Steinhoff HJ, Savitsky A, Wegener C, Pfeiffer M, Plato M, Möbius K. 2000b. High-field EPR studies of the structure and conformational changes of site-directed spin labeled bacteriorhodopsin. Biochim Biophys Acta Bioenerg 1457:253–262.Google Scholar
  105. Stone AJ. 1963. Gauge invariance of g tensor. Proc Roy Soc London A 271:424–434.Google Scholar
  106. Thorgeirsson TE, Xiao WZ, Brown LS, Needleman R, Lanyi JK, Shin YK. 1997. Transient channel-opening in bacteriorhodopsin: an EPR study. J Mol Biol 273:951–957.PubMedGoogle Scholar
  107. Voet D, Voet JG. 2004. Biochemistry, 3rd ed. New York: John Wiley & Sons.Google Scholar
  108. Voss J, Hubbell WL, Kaback HR. 1998. Helix packing in the lactose permease determined by metal-nitroxide interaction. Biochemistry 37:211–216.PubMedGoogle Scholar
  109. Wegener AA, Chizhov I, Engelhard M, Steinhoff HJ. 2000. Time-resolved detection of transient movement of helix F in spin-labelled pharaonis sensory rhodopsin II. J Mol Biol 301:881–891.PubMedGoogle Scholar
  110. Wegener AA, Klare JP, Engelhard M, Steinhoff HJ. 2001a. Structural insights into the early steps of receptor-transducer signal transfer in archaeal phototaxis. EMBO J 20:5312–5319.PubMedGoogle Scholar
  111. Wegener C, Savitsky A, Pfeiffer M, Möbius K, Steinhoff HJ. 2001b. High-field EPR-detected shifts of magnetic tensor components of spin label side chains reveal protein conformational changes: the proton entrance channel of bacteriorhodopsin. Appl Magn Reson 21:441–452.Google Scholar
  112. Yin JJ, Pasenkiewiczgierula M, Hyde JS. 1987. Lateral diffusion of lipids in membranes by pulse saturation recovery electron-spin-resonance. Proc Natl Acad Sci USA 84:964–968.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Enrica Bordignon
    • 1
  • Heinz-Jürgen Steinhoff
    • 1
  1. 1.Universität OsnabrückOsnabrückGermany

Personalised recommendations