Advanced ESR Spectroscopy in Membrane Biophysics

  • Janez Štrancar
Part of the Biological Magnetic Resonance book series (BIMR, volume 27)

Abstract

Our current knowledge about biological membranes shows that they belong to the most important cell structures. Mass transport and signal transduction obviously appear to be vital to physiological functions of biomembranes as they enable cellular compartmentalization and control over it at the same time. Many experiments and theoretical considerations in the past decades have shown that membranes consist of a laterally heterogeneous lipid bilayer with a large number of different protein molecules embedded in the lipid bilayer. Heterogeneity exists at any level — from the biochemical to the physical level, meaning that different constituents and supramolecular structures in membranes interact via different interactions and exhibit different motional characteristics. This complexity — as the most striking property of any biological system — remains a tough problem also for the up-to-date experimental and theoretical approaches.

Keywords

Spin Label Spin Probe Local Magnetic Field Phase Space Volume Resonant Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. Interesting References and Further Reading

Spin-Labeling ESR Spectroscopy

  1. Arsov Z, Schara MV, Zorko M, Štrancar J. 2004. The membrane lateral domain approach in the studies of lipid-protein interaction of GPI-anchored bovine erythrocyte acetylcholinesterase. Eur Biophys J 33:715–725.PubMedCrossRefGoogle Scholar
  2. Borbat PP, Costa-Filho AJ, Earle KA, Moscicki JK, Freed JH. 2001. Electron spin resonance in studies of membranes and proteins. Science 291:266–269.PubMedCrossRefGoogle Scholar
  3. Chiang YW, Shimoyama Y, Feigenson GW, Freed JH. 2004. Dynamic molecular structure of DPPC-DLPC-cholesterol ternary lipid system by spin-label electron spin resonance. Biophys J 87:2483–2496.PubMedCrossRefGoogle Scholar
  4. Griffith OH, Jost PC. 1976. Lipid spin labels in biological membranes. In Spin labeling, theory and application, pp. 453–523. Ed LJ Berliner. New York: Academic Press.Google Scholar
  5. Kurad D, Jeschke G, Marsh D. 2003. Lipid membrane polarity profiles by high-field EPR. Biophys J 85:1025–1033.PubMedGoogle Scholar
  6. Marsh D. 2002. Membrane water-penetration profiles from spin labels. Eur Biophys J 31:559–562.PubMedCrossRefGoogle Scholar
  7. Rappolt M, Amenitsch H, Štrancar J, Teixeira CV, Kriechbaum M, Pabst G, Majerowicz M, Laggner P. 2004. Phospholipid mesophases at solid interfaces: in-situ X-ray diffraction and spin-label studies. Adv Colloid Interface Sci 111:63–77.PubMedCrossRefGoogle Scholar
  8. Shin YK, Freed JH. 1989. Dynamic imaging of lateral diffusion by electron spin resonance and study of rotational dynamics in model membranes: effect of cholesterol. Biophys J 55:537–550.PubMedGoogle Scholar

Simulation of ESR Spectra

  1. Della Lunga G, Pezzato M, Baratto MC, Pogni R, Basosi R. 2003. A new program based on stochastic Liouville equation for the analysis of superhyperfine interaction in CW-ESR spectroscopy. J Magn Reson 164:71–77.PubMedCrossRefGoogle Scholar
  2. Eviatar H, van der Heide UA, Levine YK. 1995. Computer simulations of the electron spin resonance spectra of steroid and fatty acid nitroxide probes in bilayer systems. J Chem Phys 102:3135–3145.CrossRefGoogle Scholar
  3. Hemminga MA. 1983. Interpretation of ESR and saturation transfer ESR spectra of spin labeled lipids and membranes. Chem Phys Lipids 32:323–383.CrossRefGoogle Scholar
  4. Marsh D. 1981. Electron spin resonance: spin labels. In Membrane spectroscopy, pp. 51–142. Ed E Grell. Berlin: Springer.Google Scholar
  5. Schneider DJ, Freed JH. 1989. Calculating slow motional magnetic resonance spectra: a user’s guide. In Biological magnetic resonance: spin labeling, theory and applications, pp. 1–76. Ed LJ Berliner, J Reuben. New York: Plenum.Google Scholar
  6. Steinhoff HJ, Hubbell WL. 1996. Calculation of electron paramagnetic resonance spectra from Brownian dynamics trajectories: application to nitroxide side chains in proteins. Biophys J 71:2201–2212.PubMedCrossRefGoogle Scholar
  7. Štrancar J, Sentjurc M, Schara MV. 2000. Fast and accurate characterization of biological membranes by EPR spectra. J Magn Reson 142:254–265.PubMedCrossRefGoogle Scholar
  8. Van SP, Birrell GB, Griffith OH. 1974. Rapid anisotropic motion of spin labels: models for motion averaging of the ESR parameters. J Magn Reson 15:444–459.Google Scholar

Optimization Methods of ESR Spectral Parameters

  1. Budil DE, Lee S, Saxena S, Freed JH. 1996. Nonlinear-least-squares analysis of slow-motion EPR spectra in one and two dimensions using a modified Levenberg-Marquardt algorithm. J Magn Reson A 120:155–189.CrossRefGoogle Scholar
  2. Della Lunga G, Pogni R, Basosi R. 1998. Global versus local minimization procedures for the determination of spin Hamiltonian parameters from electron spin resonance spectra. Mol Phys 95:1275–1281.CrossRefGoogle Scholar
  3. Filipič B, Štrancar J. 2003. Evolutionary computational support for the characterization of biological systems. In Evolutionary computation in bioinformatics, pp. 279–294. Ed GB Fogel, D Corne. Amsterdam: Elsevier Science.Google Scholar
  4. Filipič B, Štrancar J. 2001. Tuning EPR spectral parameters with a genetic algorithm. Appl Soft Comp 1:83–90.CrossRefGoogle Scholar
  5. Kavalenka AA, Filipič B, Hemminga MA, and Štrancar J. 2005. Speeding up a genetic algorithm for EPR-based spin label characterization of biosystem complexity. J Chem Inf Model 45:1628–1635.PubMedCrossRefGoogle Scholar
  6. Moens P, De Volder P, Hoogewijs R, Callens F, Verbeeck R. 1993. Maximum-likelihood common-factor analysis as a powerful tool in decomposing multicomponent EPR powder spectra. J Magn Reson A 101:1–15.CrossRefGoogle Scholar

Evolutionary Optimizations

  1. Eiben AE, Smith JE. 2003. Introduction to evolutionary computing. Berlin: Springer.Google Scholar
  2. Goldberg DE. 1989. Genetic algorithms in search, optimization and machine learning. Reading, MA: Addison-Wesley.Google Scholar

Complexity Determination

  1. Stopar D, Štrancar J, Spruijt RB, Hemminga MA. 2005. Exploring the local conformational space of a membrane protein by site-directed spin labeling. J Chem Inf Model 45:1621–1627.PubMedCrossRefGoogle Scholar
  2. Štrancar J, Koklič T, Arsov Z. 2003. Soft picture of lateral heterogeneity in biomembranes. J Membr Biol 196:135–146.PubMedCrossRefGoogle Scholar
  3. Štrancar J, Schara MV, Pečar S. 2003. New EPR method for cellular surface characterization. J Membr Biol 193:15–22.PubMedCrossRefGoogle Scholar
  4. Štrancar J, Koklič T, Arsov Z, Filipič B, Stopar D, Hemminga MA. 2005. Spin label EPR-based characterization of biosystem complexity. J Chem Inf Model 45:394–406.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Janez Štrancar
    • 1
  1. 1.EPR Center, Laboratory of Biophysics“Jožef Stefan” InstituteLjubljanaSlovenia

Personalised recommendations