Skip to main content

Optical Synchronization for OPCPA Chains

  • Chapter
Ultrafast Optics V

Abstract

We demonstrate two types of all-optical synchronization of two lasers based on dissimilar gain materials, that significantly simplify the scheme for optical parametric chirped-pulse amplification (OPCPA). Both methods lead to negligible timing jitter between the OPCPA seed and pump and eliminate one master oscillator and all synchronization electronics. In the first approach, a fraction of a broadband Ti:sapphire seed oscillator centered at 760 nm is frequency shifted in a photonic crystal fiber to enable synchronized seeding of a picosecond Nd:YAG pump laser. The seed radiation at 1064 nm is produced in the soliton regime which makes it inherently more intense and stable in comparison with other methods of frequency conversion. In the second approach, we further simplify the setup by employing direct optical seeding of a Nd: YLF amplifier from the NIR wing of our Ti: sapphire oscillator. Our work opens up the exciting possibility to use sub-picosecond pump pulse from highly efficient Yb-based amplifiers for jitterless parametric amplification of carrier-envelope phase stabilized pulses from Ti:sapphire oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. T. Brabec and F. Krausz: Rev. Mod. Phys 72, 545–591 (2000).

    Article  ADS  Google Scholar 

  2. A. Dubietis, G. Jonušauskas, and A. Piskarskas: Opt. Commun. 88, 437–440 (1992).

    Article  ADS  Google Scholar 

  3. I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier: Opt. Commun. 144, 125–133 (1997).

    Article  ADS  Google Scholar 

  4. X. Yang, Z. Xu, Y. Leng, et al.: Opt. Lett. 27, 1135 (2002).

    Article  ADS  Google Scholar 

  5. R. Butkus, R. Danielius, R. Dubietis, A. Piskarskas, and A. Stabinis: Appl. Phys. B 79, 693–700 (2004).

    Article  ADS  Google Scholar 

  6. C. P. Hauri, P. Schlup, G. Arisholm, J. Biegert, and U. Keller: Opt. Lett. 29, 1369 (2004).

    Article  ADS  Google Scholar 

  7. R. T. Zinkstok, S. Witte, W. Hogervorst, and K. S. E. Eikema: Opt. Lett. 30, 78 (2004).

    Article  ADS  Google Scholar 

  8. N. Ishii, L. Turi, V. S. Yakovlev, et al.: Opt. Lett. 30, 567–569 (2005).

    Article  ADS  Google Scholar 

  9. S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema: Opt. Exp. 13, 4903 (2005).

    Article  ADS  Google Scholar 

  10. G. Banfi, P. Di Trapani, R. Danielius, A. Piskarskas, R. Righini, and I. Santa: Opt. Lett. 18, 1547–1579 (1993).

    Article  ADS  Google Scholar 

  11. T. Sosnowski, P. B. Stephens, and T. B. Norris: Opt. Lett. 21, 140–142 (1996).

    Article  ADS  Google Scholar 

  12. G. Cerullo, M. Nisoli, S. Stagira, and S. De Silvestri: Opt. Lett. 23, 1283 (1998).

    Article  ADS  Google Scholar 

  13. A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi: Appl. Phys. Lett. 74, 2268 (1999).

    Article  ADS  Google Scholar 

  14. E. Riedle, M. Beutter, S. Lochbrunner, et al.: Appl. Phys. B. 71, 457–465 (2000).

    ADS  Google Scholar 

  15. Fully integrated broadly tunable femtosecond Ytterbium system. Available at: www.lightcon.com.

    Google Scholar 

  16. A. Baltuuska, T. Fuji, and T. Kobayashi: Phys. Rev. Lett. 88, 133901 (2002).

    Article  ADS  Google Scholar 

  17. C. Manzoni, G. Cerullo, and S. De Silvestri: Opt. Lett. 29, 2668–2670 (2004).

    Article  ADS  Google Scholar 

  18. A. Baltuška, T. Udem, M. Uiberacker, et al.: Nature 412, 611–615 (2003).

    Article  ADS  Google Scholar 

  19. D. J. Jones, S. A. Diddams, J. K. Ranka, et al.: Science 288, 635–639 (2000).

    Article  ADS  Google Scholar 

  20. A. Apolonski, A. Poppe, G. Tempea, et al.: Phys. Rev. Lett. 85, 740–743 (2000).

    Article  ADS  Google Scholar 

  21. M. J. W. Rodwell, D. M. Bloom, and K. J. Weingarten: IEEE J. Quantum Electron. 25, 817 (1989).

    Article  ADS  Google Scholar 

  22. W. F. Krupke: IEEE J. Sel. Topics Quantum Electron. 6, 1287–1296 (2000).

    Article  Google Scholar 

  23. A. Baltuška, T. Fuji, and T. Kobayashi, Opt. Lett. 27, 306–308 (2002).

    Article  ADS  Google Scholar 

  24. Z. Y. Wei, Y Kobayashi, Z. G. Zhang, and K. Torizuka: Opt. Lett. 26, 1806–1808 (2001).

    Article  ADS  Google Scholar 

  25. H. Zheng, J. Wu, H. Xu, K. Wu, and E. Wu: Appl. Phys. B 79, 837–839 (2004).

    Article  ADS  Google Scholar 

  26. T. Fuji, A. Unterhuber, V. S. Yakovlev, et al.: Appl. Phys. B 77, 125 (2003).

    Article  Google Scholar 

  27. G. P. Agrawal: Nonlinear Fiber Optics. San Diego: Academic Press (2001).

    Google Scholar 

  28. F. M. Mitschke and L. F. Mollenauer: Opt. Lett. 11, 659–661 (1986).

    Article  ADS  Google Scholar 

  29. E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, et al.: JETP Lett. 41, 294–297 (1985).

    ADS  Google Scholar 

  30. Russell: Science 299, 358–362 (2003).

    Article  ADS  Google Scholar 

  31. X. Liu, C. Xu, W. H. Knox, et al.: Opt. Lett. 26, 358–360 (2001).

    Article  ADS  Google Scholar 

  32. W. H. Reeves, D. V. Skryabin, F. Biancalana, et al.: Nature 424, 511–515 (2003).

    Article  ADS  Google Scholar 

  33. E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, et al.: Appl. Phys. B 81, 579–584. (2005).

    Article  ADS  Google Scholar 

  34. T. M. Fortier, D. J. Jones, and S. T. Cundiff: Opt. Lett. 28, 2198–2200 (2003).

    Article  ADS  Google Scholar 

  35. O. D. Mücke, R. Ell, A. Winter, et al.: Opt. Exp. 13, 5163 (2005).

    Article  ADS  Google Scholar 

  36. A. Poppe, L. Xu, F. Krausz, and C. Spielmann: IEEE J. Sel. Topics Quantum Electron. 4, 179–184 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Teisset, C.Y. et al. (2007). Optical Synchronization for OPCPA Chains. In: Watanabe, S., Midorikawa, K. (eds) Ultrafast Optics V. Springer Series in Optical Sciences, vol 132. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49119-6_69

Download citation

Publish with us

Policies and ethics