Skip to main content

Relativistic Optics: A new Route to Attosecond Physics and Relativistic Engineering

  • Chapter
Ultrafast Optics V

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 132))

  • 1629 Accesses

Abstract

The advent of ultraintense lasers capable of producing intensities such that laser-matter interaction is governed by the electron relativistic behavior is the gateway to a new type of nonlinear optics where the electron in the laser field has a relativistic character. In contrast to the nonrelativistic regime, the laser field is capable of moving matter much more effectively. Contrary to the bound electron optics, which is producing radiation typically in the eV range, relativistic optics is producing radiation and particles with much higher characteristic energies in the keV to the GeV. This energy is bound to go up when higher power will become available. Because these radiations/particles are produced over length of tens of micrometers, relativistic optics opens the field of relativistic microelectronics/photonics engineering. One of the unpredicted surprise is the possibility to produce attosecond pulses of radiations/particles efficiently and well synchronized with the laser pulse. This is opening the possibility to produce intensity at the level close to the Schwinger intensity thus getting access to the nonlinear QED regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Agostini, G. Barjot, J. F. Bonnal, G. Mainfray, and C. Manus: IEEE J. Quantum. Electron. QE-4, 667 (1968).

    Article  ADS  Google Scholar 

  2. C. J. Joshi, and P. B. Corkum: Phys. Today 48, 36 (1995).

    Article  ADS  Google Scholar 

  3. Popov, V. S., V. D. Mur, and B. M. Karnakov: JETP Lett. 66, 229 (1997).

    Article  ADS  Google Scholar 

  4. C. J. Joachain, N. J. Kylstra, and R. M. Potvliege: In Proceedings of the 2nd International Conference on Superstrong Fields in Plasmas, Varenna (2002), 2001. M. Lontano, G. Mourou, O. Svelto, and T. Tajima (eds). (Am. Inst, of Physics, New York, 2002), AIP Conf. Proa, 611, 9.

    Chapter  Google Scholar 

  5. C. H. Keitel: Contemp. Phys. 42, 353 (2001).

    Article  ADS  Google Scholar 

  6. A. Maquet, and R. Grobe: J. Mod. Opt. 49, 2001 (2002).

    Article  MATH  ADS  Google Scholar 

  7. G. R. Mocken, and C. H. Keitel: Phys. Rev. Lett. 91, 173202 (2003).

    Article  ADS  Google Scholar 

  8. J. C. Kieffer, J. P. Matte, H. Pepin, et al.: Phys. Rev. Lett. 68, 480 (1992).

    Article  ADS  Google Scholar 

  9. J. D. Kmetec, C. L. Gordon III, J. J. Macklin, et al.: Phys. Rev. Lett. 68, 1527 (1992).

    Article  ADS  Google Scholar 

  10. F. Beg, A. R. Bell, A. E. Dangor, et al.: Phys. Plasmas 4, 447 (1997).

    Article  ADS  Google Scholar 

  11. P. A. Norreys, M. Santala, E. Clark, et al.: Phys. Plasmas 6, 2150 (1999).

    Article  ADS  Google Scholar 

  12. C. Max, J. Arons, and B. Langdon: Phys. Rev. Lett. 33, 209 (1974).

    Article  ADS  Google Scholar 

  13. P. Sprangle, C. M. Tang, and E. Esarey: IEEE Trans. Plasma Sci. PS-15, 145 (1987).

    Article  ADS  Google Scholar 

  14. A. B. Borisov, A. V. Borovskiy, O. B. Shiryaev, et al.: Phys. Rev. A 45, 5830 (1992).

    Article  ADS  Google Scholar 

  15. P. Monot, T. Auguste, P. Gibbon, F. Jakober, and G. Mainfray: Phys. Rev. Lett. 74, 2953 (1995).

    Article  ADS  Google Scholar 

  16. P. Gibbon, P. Monot, T. August, and G. Mainfray: Phys. Plasmas 2, 1304 (1995).

    Article  ADS  Google Scholar 

  17. S.-Y. Chen, G. S. Sarkisov, A. Maksimchuk, et al.: Phys. Rev. Lett. 80, 2610 (1998).

    Article  ADS  Google Scholar 

  18. J. Fuchs, G. Malka, J. C. Adam, et al.: Phys. Rev. Lett. 80, 1658 (1998).

    Article  ADS  Google Scholar 

  19. S. V. Bulanov, N. M. Naumova, and F. Pegoraro: Interaction of an ultrashort, relativistically strong laser-pulse with an overdense plasma. Phys. Plasmas 1, 745–757 (1994).

    Article  ADS  Google Scholar 

  20. R. Lichters, J. Meyerter Vehn, and A. Pukhov: Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity. Phy. Plasmas 3, 3425–3437 (1996).

    Article  ADS  Google Scholar 

  21. D. Von der Linde: AIP Conf. Proc. 426, 221 (1997).

    Google Scholar 

  22. A. Tarasevitch, A. Orisch, D. von der Linde, et al.: Phys. Rev. E 62, 023816 (2000).

    ADS  Google Scholar 

  23. C. E. Clayton, C. Joshi, C. Darrow, and D. Umstadter: Phys. Rev. Lett. 54, 2343 (1985).

    Article  ADS  Google Scholar 

  24. A. Modena, Z. Najimudin, A. E. Dangor, et al.: Nature 337, 606 (1995).

    Article  ADS  Google Scholar 

  25. K. Nakajima, D. Fisher, T. Kawakubo, et al.: Phys. Rev. Lett. 74, 4428 (1995).

    Article  ADS  Google Scholar 

  26. D. Umstadter, J. K. Kim, and E. Dodd: Phys. Rev. Lett. 76, 2073 (1996).

    Article  ADS  Google Scholar 

  27. R. Wagner, S.-Y. Chen, A. Maksimchuk, and D. Umstadter: Phys. Rev. Lett. 78, 3125 (1997).

    Article  ADS  Google Scholar 

  28. D. Gordon, K. C. Tzeng, C. E. Clayton, et al.: Phys. Rev. Lett. 80, 2133 (1998).

    Article  ADS  Google Scholar 

  29. S.-Y. Chen, A. Maksimchuk, E. Esarey, and D. Umstadter: Phys. Rev. Lett. 84, 5528 (2000).

    Article  ADS  Google Scholar 

  30. R. Bingham, J. T. Mendonca, and P. K. Shukla: Plasma Phys. and Controll. Fus. 46, R1 (2004).

    Article  ADS  Google Scholar 

  31. S. Y. Tochitsky, R. Narang, C. V. Filip, et al.: Phys. Rev. Lett. 92, 095004 (2004).

    Article  ADS  Google Scholar 

  32. S. P. D. Mangles, C. D. Murphy, Z. Najmudin, et al.: Nature 431, 535 (2004).

    Article  ADS  Google Scholar 

  33. C. G. R. Geddes, C. Toth, J. van Tilborg, et al.: Nature 431, 538 (2004).

    Article  ADS  Google Scholar 

  34. J. Faure, Y. Glinec, A. Pukhov, et al.: Nature 431, 541 (2004).

    Article  ADS  Google Scholar 

  35. K. Krushelnick, E. L. Clark, Z. Najmudin, et al.: Phys. Rev. Lett. 83, 737–740 (1999).

    Article  ADS  Google Scholar 

  36. M., Dangor, A. E., Malka, V., Neely, D., Allott, R.,, and C. Danson, et al.: Phys. Rev. Lett. 83, 737 (1999).

    Article  ADS  Google Scholar 

  37. G. S. Sarkisov, V. Yu, Bychenkov, V. N. Novikov, et al.: Phys. Rev. E 59, 7042 (1999).

    Article  ADS  Google Scholar 

  38. A. Zhidkov, A. Sasaki, and T. Tajima: Phys. Rev. E 61, R2224 (1999).

    Article  ADS  Google Scholar 

  39. T. Zh. Esirkepov, F. Sentoku, F. Califano, et al.: JETP Lett. 70, 82 (1999).

    Article  ADS  Google Scholar 

  40. S. V. Bulanov, T. Zh. Esirkepov, F. Califano, et al.: JETP Lett. 71, 407 (2000).

    Article  ADS  Google Scholar 

  41. A. Maksimchuk, S. Gu, K. Flippo, D. Umstadter, et al.: Phys. Rev. Lett. 84, 4108 (2000).

    Article  ADS  Google Scholar 

  42. R. Snavely, M.H. Key, S.P. Hatchett, et al.: Phys. Rev. Lett. 85, 2945 (2000).

    Article  ADS  Google Scholar 

  43. D. Umstadter: J. Phy. D: Appl. Phys. 36, R151 (2003).

    Article  ADS  Google Scholar 

  44. R. Bingham, J. T. Mendoncza, and P. K. Shukla: Plasma Phys. and Controll. Fus. 46, R1 (2004).

    Article  ADS  Google Scholar 

  45. A. Maksimchuk, S. Gu, K. Flippo, D. Umstadter, et al.: Phys. Rev. Lett. 84, 4108 (2004).

    Article  ADS  Google Scholar 

  46. G. Pretzler, A. Saemann, A. Pukhov, A. et al.: Phys. Rev. E 58, 1165 (1998).

    Article  ADS  Google Scholar 

  47. L. Disdier, J. P. Garconnet, G. Malka, and J. L. Miquel: Phys. Rev. Lett. 82, 1454 (1999).

    Article  ADS  Google Scholar 

  48. C. Gahn, G. D. Tsakiris, G. Pretzler, et al: Appl. Phys. Lett. 77, 2662 (2000).

    Article  ADS  Google Scholar 

  49. C. Bula, K. T. McDonald, E. I. Prebys, et al.: Phys. Rev. Lett. 76, 3116 (1996).

    Article  ADS  Google Scholar 

  50. D. L. Burke, R. C. Field, G. Horton-Smith, et al.: Phys. Rev. Lett. 79, 1626 (1997).

    Article  ADS  Google Scholar 

  51. A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt: Appl. Phys. B 77, 25 (2003).

    Article  Google Scholar 

  52. L. D. Landau, and E. M. Lifshitz: The Classical Theory of Fields. Oxford Pergamon Press. (1980).

    Google Scholar 

  53. T. Tajima, and J. M. Dawson: Phys. Rev. Lett. 43, 267 (1979).

    Article  ADS  Google Scholar 

  54. L. M. Gorbunov, and V. I. Kirsanov: JETP 93, 509 (1987).

    Google Scholar 

  55. P. Sprangle, E. Esarey, A. Ting, and G. Joyce: Appl. Phys. Lett. 53, 2146 (1988).

    Article  ADS  Google Scholar 

  56. S. V. Bulanov, V. I. Kirsanov, and A. S. Sakharov: JETP Lett. 50, 176 (1989).

    Google Scholar 

  57. V. I. Berezhiani, and I. G. Murusidze: Phys. Lett. A 148, 338 (1990).

    Article  ADS  Google Scholar 

  58. L. Schaechter: Phys. Rev. Lett. 83, 92 (1999).

    Article  ADS  Google Scholar 

  59. L. Schaechter, R. L. Byer, and R. H. Siemann: In Advanced Accelerator Concepts: Tenth Workshop. AIP Conference Proceedings, Vol. 647, p. 310 (2002). (American Institute of Physics Conference Series).

    ADS  Google Scholar 

  60. V. V. Apollonov, A. I. Artem’ev, Y. L. Kalachev, A. M. Prokhorov, and M. V. Fedorov: JETP Lett. 47, 91 (1998).

    ADS  Google Scholar 

  61. A. Pukhov and J. Meyer-ter-Vehn: Appl. Phys. B, 74, 355 (2002).

    Article  ADS  Google Scholar 

  62. A. Rousse, K. Ta Phuoc, R. Shah, et al.: Phys. Rev. Lett. 93, 135005 (2004).

    Article  ADS  Google Scholar 

  63. A. Rousse, C. Rischel, S. Fourmaux, et al: Nature (London) 410, 65 (2001).

    Article  ADS  Google Scholar 

  64. K. Sokolovski-Tinten, C. Blome, J. Blums, et al.: Nature (London) 422, 287 (2003).

    Article  ADS  Google Scholar 

  65. M. Manclossi, J. J. Santos, D. Batani, et al.: Phys. Rev. Lett. 96, 125002 (2006).

    Article  ADS  Google Scholar 

  66. G. Shvets, N. J. Fish, A. Pukhov, et al.: Phys. Rev. Lett. 81, 4879 (1998).

    Article  ADS  Google Scholar 

  67. W. B. Mori: Phys. Rev. A 44, 5118 (1991).

    Article  ADS  Google Scholar 

  68. S. V. Bulanov, T. Esirkepov, and T. Tajima: Phys. Rev. Lett. 91, 85001 (2003).

    Article  ADS  Google Scholar 

  69. M. Dreher, E. Takahashi, J. Meyer-ter-Vehn, et al.: Phys. Rev. Lett. 93, 95001 (2004).

    Article  ADS  Google Scholar 

  70. S. V. Bulanov, T. Esirkepov, and T. Tajima: Phys. Rev. Lett. 91, 85001 (2003).

    Article  ADS  Google Scholar 

  71. F. S. Tsung, C. Ren, L. O. Silva, et al.: Proc. Nat. Acad. Sci. USA 99, 29 (2002).

    Article  ADS  Google Scholar 

  72. N. M. Naumova, J. A. Nees, I. V. Sokolov, B. Hou, and G. A. Mourou: Phys. Rev. Lett. 92, 063902 (2004).

    Article  ADS  Google Scholar 

  73. N. Naumova, I. Sokolov, J. Nees, A. Maksimchuk, V. Yanovsky, and G. Mourou: Phys. Rev. Lett. 93, 195003 (2004).

    Article  ADS  Google Scholar 

  74. N. Naumova, J. A. Nees, and G. A. Mourou: Phys. Of Plasmas 12, 056707 (2005).

    Article  ADS  Google Scholar 

  75. P. Gordienko, and B. Shorokhov: Phys. Rev. Lett. 93, 115002 (2004); and Phys. Rev. Lett. 94, 103903 (2005).

    Article  ADS  Google Scholar 

  76. A. Baltuska, M. Uiberacker, E. Goulielmakis, et al.: IEEE J. Sel. Top. Quantum Electron. 9, 972–989 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mourou, G. (2007). Relativistic Optics: A new Route to Attosecond Physics and Relativistic Engineering. In: Watanabe, S., Midorikawa, K. (eds) Ultrafast Optics V. Springer Series in Optical Sciences, vol 132. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49119-6_17

Download citation

Publish with us

Policies and ethics