Skip to main content

Impact of DCF properties on system design

  • Chapter
Fiber Based Dispersion Compensation

Part of the book series: Optical and Fiber Communications Reports ((OFCR,volume 5))

The dispersion-compensating fiber is an important optical element of current and future optical networks. In this paper, we review the impact that various properties of dispersion-compensating fibers has on the performance of optical communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Desurvire, Erbium-doped Fiber Amplifiers: Principles and Applications (John Wiley & Sons, 1994).

    Google Scholar 

  2. P.S. Henry, R.A. Linke, and A.H. Gnauck, Introduction to Lightwave Systems, in Optical Fiber Telecommunications II, edited by Stewart E. Miller and I.P. Kaminov (Academic Press, 1988), Chapter 21, pp. 781-831.

    Google Scholar 

  3. F.P. Kapron, D.B. Keck and R.D. Maurer, “Radiation losses in glass optical waveg-uides,” Appl. Phys. Lett. 17, 423-425 (1970).

    Article  ADS  Google Scholar 

  4. D. Marcuse, A.R. Chraplyvy, and R.W. Tkach, “Effect of fiber nonlinearity on longdistance transmission,” J. Lightwave Technol. 9, 121-128 (1991).

    Article  ADS  Google Scholar 

  5. D. Marcuse, “Single-channel operation in very long nonlinear fibers with optical amplifiers at zero dispersion,” J. Lightwave Technol. 9, 356-361 (1991).

    Article  ADS  Google Scholar 

  6. C. Lin, H. Kogelnik, and L.G. Cohen, ”Optical-pulse equalization of low-dispersion transmission in single-mode fibers in the 1.3-1.7-μ;m spectral region,” Opt. Lett. 5, 476-478 (1980).

    Article  ADS  Google Scholar 

  7. F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Opt. Lett. 12, 847-849 (1987).

    Article  ADS  Google Scholar 

  8. L.J. Cimini, L.J. Greenstein, and A.A.M. Saleh, “Optical Equalization to Combat the Effects of Laser Chirp and Fiber Dispersion,” J. Lightwave Technol. 8, 649-659 (1990).

    Article  ADS  Google Scholar 

  9. K. Iwashita and N. Takachio, “Chromatic dispersion compensation in coherent optical communications”, J. Lightwave Technol. 8, 367-375 (1990).

    Article  ADS  Google Scholar 

  10. A.R. Chraplyvy, A.H. Gnauck, R.W. Tkach, and R.M. Derosier, “8 × 10 Gb/s transmission through 280-km of dispersion-managed fiber,” IEEE Photon. Tech-nol. Lett. 5, 1233-1235 (1993).

    Article  ADS  Google Scholar 

  11. C. Kurtzke, “Suppression of fiber nonlinearities by appropriate dispersion man-agement,” IEEE Photon. Technol. Lett. 5, 1250-1253 (1993).

    Article  ADS  Google Scholar 

  12. A.H. Gnauck, R.M. Jopson, P.P. Iannone, and R.M. Derosier, “Transmission of two wavelength-multiplexed 10 Gbit/s channels over 560 km of dispersive fibre,” Electron. Lett. 30, 727-728 (1994).

    Article  ADS  Google Scholar 

  13. A. Naka, and S. Saito, “Transmission distance of in-line amplifier systems with groupvelocity- dispersion compensation,” J. Lightwave Technol. 13, 862-867 (1995).

    Article  ADS  Google Scholar 

  14. M. Suzuki, I. Morita, N. Edagawa, S. Yamamoto, H. Taga, and S. Akiba, “Reduc-tion of Gordon-Haus timing jitter by periodic dispersion compensation in soliton transmission,” Electron. Lett. 31, 2027-2029 (1995).

    Article  Google Scholar 

  15. R.A. Jensen, R.E. Tench, D.G. Duff, C.R. Davidson, C.D. Chen, O. Mizuhara, T.V. Nguyen, L.D. Tzeng, and P.D. Yeates, “Field Measurements of 10 Gb/s Line Rate Transmission on the Columbus-2B Submarine Lightwave System,” IEEE Photon. Technol. Lett. 7, 1366-1368 (1995).

    Article  ADS  Google Scholar 

  16. J.C. Feggeler, D.G. Duff, N.S. Bergano, C.C. Chen, Y.C. Chen, C.R. Davidson, D.G. Ehrenberg, S.J. Evangelides, G.A. Ferguson, F.L. Heismann, G.M. Homsey, H.D. Kidorf, T.M. Kissell, A.E. Meixner, R. Menges, J.L. Miller Jr., O. Mizuhara, T.V. Nguyen, B.M. Nyman, Y.K. Park, W.W. Patterson, and G.F. Valvo, “10 Gb/s WDM Transmission Measurements on an Installed Optical Amplifier Undersea Cable System,” Electron. Lett. 31, 1676-1678 (1995).

    Article  Google Scholar 

  17. A.R. Chraplyvy and R.W. Tkach, “Terabit/Second Transmission Experiments,” IEEE J. Quantum Electron. 34, 2103-2108 (1998).

    Article  ADS  Google Scholar 

  18. J. Bromage, P.J. Winzer, and R.-J. Essiambre, Multiple-path interference and its impact on system design, in Raman Amplifiers and Oscillators in Telecommuni-cations, edited by M.N. Islam (Springer Verlag, 2003).

    Google Scholar 

  19. P.B. Hansen, G. Jacobovitz-Veselka, L. Gr üner-Nielsen, and A.J. Stentz, “Raman amplification for loss compensation in dispersion compensating fibre modules,” Electron. Lett. 34, 1136-1137 (1998).

    Article  Google Scholar 

  20. P.B. Hansen, L. Eskildsen, A.J. Stentz, T.A. Strasser, J. Judkins, J.J. DeMarco, R. Pedrazzani, and D.J. DiGiovanni, “Rayleigh Scattering Limitations in Distributed Raman Pre-Amplifiers,” IEEE Photon. Technol. Lett. 10, 159-161 (1998).

    Article  ADS  Google Scholar 

  21. A. Altuncu, L. Noel, W.A. Pender, A.S. Siddiqui, T. Widdowson, A.D. Ellis, M.A. Newhouse, A.J. Antos, G. Kar, and P.W. Chu, “40 Gbit/s error free transmission over a 68-km distributed erbium-doped fibre amplifier,” Electron. Lett. 32, 233-234 (1996).

    Article  Google Scholar 

  22. L.F. Mollenauer, R.H. Stolen, and M.N. Islam, “Experimental demonstration of soliton propagation in long fibers: Loss compensated by Raman gain,” Opt. Lett. 10,229-231 (1985).

    Article  ADS  Google Scholar 

  23. L.F. Mollenauer and K. Smith, “Demonstration of soliton transmission over more than 4000 km in fiber with loss periodically compensated by Raman gain,” Opt. Lett. 13, 675-677 (1988).

    Article  ADS  Google Scholar 

  24. M.N. Islam (Ed.), Raman Amplifiers for Telecommunications 1: Physical Princi-ples and Raman Amplifiers for Telecommunications 2: Sub-Systems and Systems, Springer Series in Optical Sciences (Springer-Verlag, 2003).

    Google Scholar 

  25. H.J. Thiele, L. Molle, T. Eggert, F. Raub, and R. Freund, “S-band Erbium-Doped Fibre Amplifiers for 40 Gb/s WDM Transmission,” Proc. of the European Con-ference on Optical Communications (ECOC’04), paper Tu1.5.7 (2004).

    Google Scholar 

  26. R. Ohhira,Y. Yano, A. Noda, Y. Suzuki, C. Kurioka, M. Tachigori, S. Moribayashi, K. Fukuchi, T. Ono, and T. Suzuki, “40 Gbit/s × 8-ch NRZ WDM transmission experiment over 80 km × 5-span using distributed Raman amplification in RDF,” Proc. of the European Conference on Optical Communications (ECOC’99), pp. 176-177 (1999).

    Google Scholar 

  27. T. Okuno, T. Tsuzaki, and M. Nishimura, “Novel lossless optical transmission line with distributed Raman amplification,” Proc. of the European Conference on Optical Communications (ECOC’00), Vol. 2, pp. 7576 (2000).

    Google Scholar 

  28. I. Morita, K. Tanaka, N. Edagawa, and M. Suzuki, “40 Gbit/s × 16 WDM trans-mission over 2000 km using dispersion managed low-nonlinear fiber span,” Proc. of the European Conference on Optical Communications (ECOC’00), Vol. 4, pp. 2526 (2000).

    Google Scholar 

  29. H.S. Chung, H. Kim, S.E. Jin, E.S. Son, D.W. Kim, K.M. Lee, H.Y. Park, and Y.C. Chung, “320-Gb/s WDM Transmission with 50-GHz Channel Spacing Over 564 km of Short-Period Dispersion-Managed Fiber (Perfect Cable),” IEEE Photon. Technol. Lett. 12, 1397-1399 (2000).

    Article  ADS  Google Scholar 

  30. T. Yamamoto, E. Yoshida, K. R. Tamura, K. Yonenaga, and M. Nakazawa, “640-Gbit/s Optical TDMTransmission Over 92 km Through a Dispersion-Managed Fiber Consisting of Single-Mode Fiber and Reverse Dispersion Fiber,” IEEE Pho-ton. Technol. Lett. 12, 353-355 (2000).

    Article  ADS  Google Scholar 

  31. S.N. Knudsen, M.O. Pedersen, and L. Gr üner-Nielsen, “Optimisation of disper-sion compensating fibres for cabled long-haul applications,” Electron. Lett. 36, 2067-2068 (2000).

    Article  Google Scholar 

  32. S.N. Knudsen, B. Zhu, L. E. Nelson, M.O. Pedersen, D.W. Peckham, and S. Stulz, “420 Gbit/s (4210 Gbit/s) WDM transmission over 4000 km of UltraWave fibre with 100 km dispersion-managed spans and distributed Raman amplification,” Electron. Lett. 37, 965-967 (2001).

    Article  Google Scholar 

  33. B. Zhu, S.N. Knudsen, L.E. Nelson, D.W. Peckham, M.O. Pedersen, and S. Stulz, “800 Gbit/s (80 × 10.664 Gbit/s) WDM transmission over 5200 km of fibre employing 100km dispersion Managed spans,” Electron. Lett. 37, 1467-1469 (2001).

    Article  Google Scholar 

  34. R. Hainberger, T. Hoshida, T. Terahara, and H. Onaka, “Comparison of Span Configurations of Raman-Amplified Dispersion-Managed Fibers,” IEEE Photon. Technol. Lett. 14, 471-473 (2002).

    Article  ADS  Google Scholar 

  35. C. Rasmussen, T. Fjelde, J. Bennike, F. Liu, S. Dey, B. Mikkelsen, P. Mamyshev, P. Serbe, P. van der Wagt, Y. Akasaka, D. Harris, D. Gapontsev, V. Ivshin, and P. Reeves- Hall, “DWDM 40G Transmission Over Trans-Pacific Distance (10 000 km) Using CSRZDPSK, Enhanced FEC, and All-Raman-Amplified 100-km UltraWave Fiber Spans,” J. Lightwave Technol. 22, 203-207 (2004).

    Article  ADS  Google Scholar 

  36. T. Tsuritani, K. Ishida, A. Agata, K. Shimomura, I. Morita, T. Tokura, H. Taga, T. Mizuochi, N. Edagawa, and S. Akiba, “70-GHz-Spaced 40 42.7 Gb/s Transpacific Transmission Over 9400 km Using Prefiltered CSRZ-DPSK Signals, All-Raman Repeaters, and Symmetrically Dispersion-Managed Fiber Spans,” J. Lightwave Technol. 22, 215-223 (2004).

    Article  ADS  Google Scholar 

  37. D.F. Grosz, A. Agarwal, A.P. K üng, S. Banerjee, D.N. Maywar, and T.H. Wood, “Performance of a ULH Single Wide-Band All-Raman DWDM Transmission System Over Dispersion-Managed Spans,” IEEE Photon. Technol. Lett. 16, 1197-1199 (2004).

    Article  ADS  Google Scholar 

  38. M.M.E. Said, J. Sitch, and M.I. Elmasry, “An electrically pre-equalized 10-Gb/s duobinary transmission system,” J. Lightwave Technol. 23, 388-400 (2005).

    Article  ADS  Google Scholar 

  39. D. McGhan, C. Laperle, A. Savchenko, C. Li, G. Mak, and M. O’Sullivan, “5120 km RZ-DPSK transmission over G.652 fiber at 10 Gb/s with no optical disper-sion compensation,” Proc. of the Optical Fiber Communication (OFC’05), paper PDP27 (2005).

    Google Scholar 

  40. R.-J. Essiambre and P.J. Winzer, “Fibre Nonlinearities in Electronically Pre-Distorted Transmission,” Proc. of the European Conference on Optical Communi-cation (ECOC’05), invited paper Tu3.2.2 (2005).

    Google Scholar 

  41. P.J. Winzer and R.-J. Essiambre, “Electronic pre-distortion for advanced mod-ulation formats,” Proc. of the European Conference on Optical Communication (ECOC’05), paper Tu4.2.2 (2005).

    Google Scholar 

  42. H. Sugahara, “Analysis of power jitter induced by interchannel interactions in dispersion-managed optical soliton transmission systems,” IEEE Photon. Technol. Lett. 13, 963-965 (2001).

    Article  ADS  Google Scholar 

  43. S. Banerjee, A. Agarwal, D.F. Grosz, A.P. K üng, and D.N. Maywar, “Doubly pe-riodic Dispersion Maps for 10 Gb/s and 40 Gb/s Ultra-Long-Haul Transmission,” Electron. Lett. 40, 1287-1288 (2004).

    Article  Google Scholar 

  44. C. Xie, “A doubly periodic dispersion map for ultralong-haul 10- and 40-Gb/s hybrid DWDM optical mesh networks,” IEEE Photon. Technol. Lett. 17, 1091-1093 (2005).

    ADS  Google Scholar 

  45. F. Forghieri, R.W. Tkach, A.R. Chraplyvy, and A.M. Vengsarkar, “Dispersion Compensating Fiber: Is There Merit in the Figure of Merit?” Proc. of the Optical Fiber Communications Conference (OFC’96), paper ThM5 (1996).

    Google Scholar 

  46. F. Forghieri, R.W. Tkach, and A.R. Chraplyvy, “Dispersion Compensating Fiber: Is There Merit in the Figure of Merit?” IEEE Photon. Technol. Lett. 9, 970-972 (1997).

    Article  ADS  Google Scholar 

  47. P. Sillard, B. Dany,A. Bertaina, L. Curinckx, C. Bastide, O. Courtois, J.-C.Antona, and S. Bigo, “Simple criterion of quality to evaluate DCM impact onWDM system performance,” Proc. of the Optical Fiber Communications Conference (OFC’04), paper FA3 (2004).

    Google Scholar 

  48. N.S. Bergano, Undersea communication systems, in Optical Fiber Telecommuni-cations IV B, edited by I. Kaminow and T. Li (Academic Press, 2002).

    Google Scholar 

  49. S.D. Personick, “Receiver design for digital fiber optic communication systems, I,” Bell. Syst. Technol. J. 52, 843-874 (1973).

    Google Scholar 

  50. G. Einarsson, Principles of Lightwave Communications (John Wiley & Sons, 1996).

    Google Scholar 

  51. G. P. Agrawal, Fiber-optic communication systems (John Wiley & Sons, 3rd edi- tion, 2002).

    Google Scholar 

  52. L. Kazovsky, S. Benedetto, andA. Willner, Optical Fiber Communication Systems (Artech House, Inc., 1996).

    Google Scholar 

  53. P.J. Winzer, “Receiver noise modeling in the presence of optical amplification,” Proc. of the Optical Amplifiers and their Applications (OAA’01), OTuE16 (2001); P.J. Winzer, Performance estimation of receivers corrupted by optical noise, in OSA Trends in Optics and Photonics (TOPS), vol. 60, (N. Jolley, J.D. Minelly, and Y. Nakano, eds.), pp 268-273, (2001).

    Google Scholar 

  54. P.J. Winzer, S. Chandrasekhar, and H. Kim, “Impact of filtering on RZ-DPSK reception,” IEEE Photon. Technol. Lett. 15, 840-842 (2003).

    Article  ADS  Google Scholar 

  55. R.D. Gitlin, J. F. Hayes, and S. B. Weinstein, Data Communications Principles, Plenum Press (1992).

    Google Scholar 

  56. P.J. Winzer and A. Kalmar, “Sensitivity Enhancement of Optical Receivers by Impulsive Coding,” J. Lightwave Technol. 17, 171-177 (1999).

    Article  ADS  Google Scholar 

  57. P.J.Winzer, R.-J. Essiambre, and J. Bromage, “Combined Impact of Double-Rayleigh Backscatter and Amplified Spontaneous Emission on Receiver Noise,” Proc. of the Optical Fiber Communications Conference (OFC’02), PaperThGG87, pp. 734-735 (2002).

    Google Scholar 

  58. N.A. Olsson, “Lightwave Systems with Optical Amplifiers,” J. Lightwave Tech- nol. 7, 1071-1082 (1989).

    Article  ADS  Google Scholar 

  59. P. Wan and J. Conradi, “Impact of Double Rayleigh Backscatter Noise on Digital and Analog Fiber Systems,” J. Lightwave Technol. 14, 288-297 (1996).

    Article  ADS  Google Scholar 

  60. B.E.A. Saleh and M.C. Teich, Fundamentals of Photonics (John Wiley & Sons, Inc., 1991).

    Google Scholar 

  61. P.J. Winzer, R.-J. Essiambre, and S. Chandrasekhar, “Dispersion-tolerant optical communication systems,” Proc. of the European Conference on Optical Commu- nications (ECOC’04), paper We2.4.1 (2004).

    Google Scholar 

  62. R.G. Smith, “Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by Stimulated Raman and Brillouin Scattering,” Appl. Opt. 11, 2489-2494 (1972).

    Article  ADS  Google Scholar 

  63. M. Nissov, K. Rottwitt, H.D. Kidorf, and M.X. Ma, “Rayleigh Crosstalk in Long Cascades of Distributed Unsaturated Raman Amplifiers,” Electron. Lett. 35, 997-998 (1999).

    Article  Google Scholar 

  64. M. Oskar van Deventer, “Polarization Properties of Rayleigh Backscattering in Single- Mode Fibers,” J. Lightwave Technol. 11, 1895-1899 (1993).

    Article  ADS  Google Scholar 

  65. H.A. Haus, Electromagnetic noise and quantum optical measurements (Springer Verlag, 2000).

    Google Scholar 

  66. E. Desurvire, D. Bayart, B. Desthieux, and S. Bigo, Erbium-Doped Fiber Ampli-fiers, Device and System Developments (John Wiley & Sons, 2002).

    Google Scholar 

  67. R.I. Laming, M.N. Zervas, and D.N. Payne, “Erbium-doped fiber amplifier with 54 dB gain and 3.1 dB noise figure,” IEEE Photon. Technol. Lett. 4, 1345-1347 (1992).

    Article  ADS  Google Scholar 

  68. P.C. Becker, N.A. Olsson, and J.R. Simpson, Erbium-Doped Fiber Amplifiers Fundamentals and Technology (Academic Press, San Diego, 1999).

    Google Scholar 

  69. A. Yariv, H. Blauvelt, and S.-W. Wu, “A Reduction of Interferometric Phase-to-Intensity Conversion Noise in Fiber Links by Large Index Phase Modulation of the Optical Beam,” J. Lightwave Technol. 10, 978-981 (1992).

    Article  ADS  Google Scholar 

  70. K. Shimizu, T. Horiguchi, andY. Koyamada, “Charateristics and Reduction of Co-herent Fading Noise in Rayleigh Backscattering Measurement for Optical Fibers and Components,” J. Lightwave Technol. 10, 982-987 (1992).

    Article  ADS  Google Scholar 

  71. B. Wedding, “New method for optical transmission beyond dispersion limit,” Electron. Lett. 28, 1298-1300 (1992).

    Article  Google Scholar 

  72. R.S. Vodhanel, A.F. Elrefaie, M.Z. Iqbal, R.E. Wagner, J.L. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/sASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol. 8, 1379-1386 (1990).

    Article  ADS  Google Scholar 

  73. F.N. Timofeev, P. Bayvel, V. Mikhailov, O.A. Lavrova, R. Wyatt, R. Kashyap, M. Robertson, and J.E. Midwinter, “2.5 Gbit/s directly-modulated fibre grating laser for WDM networks,” Electron. Lett. 33, 1406-1407 (1997)

    Article  Google Scholar 

  74. L. Nelson, I. Woods, and J. K. White, “Transmission over 560 km at 2.5 Gb/s using a directly modulated buried heterostructure gain-coupled DFB semiconductor laser,” Proc. of the Optical Fiber Communication Conference (OFC’02), pp. 422-423(2002).

    Google Scholar 

  75. P.J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. of the European Conference on Optical Communications (ECOC’03), paperTh2.6.1, pp. 1002-1003 (2003).

    Google Scholar 

  76. P.J. Winzer and R.-J. Essiambre, “System trade-offs for different optical modula-tion formats,” Proc. of the Optical Amplifiers and Their Applications (OAA”04), OTuC4 (2004).

    Google Scholar 

  77. P.J. Winzer, C. Dorrer, R.-J. Essiambre, and I. Kang, “Chirped return-to-zero modulation by imbalanced pulse carver driving signals,” IEEE Photon. Technol. Lett. 16, 1379-1381 (2004).

    Article  ADS  Google Scholar 

  78. H. Kim and R.-J. Essiambre, “Transmission of 8×20 Gb/s DQPSK signals over 310-km SMF with 0.8-b/s/Hz spectral efficiency,” IEEE Photon. Technol. Lett. 15,769-771 (2003).

    Article  ADS  Google Scholar 

  79. R. Griffin, R. Johnstone, R. Walker, S. Wadsworth, A. Carter, and M. Wale, “Integrated DQPSK transmitter for dispersion-tolerant and dispersion-managed DWDM transmission,” Proc. of the Optical Fiber Communications Conference (OFC’03), pp. 770-771 (2003).

    Google Scholar 

  80. S. Walklin and J. Conradi, “On the relationship between chromatic dispersion and transmitter filter response in duobinary optical communication systems,” IEEE Photon. Technol. Lett. 9, 1005-1007 (1997); [comments by D. Penninckx: IEEE Photon. Technol. Lett. 10, 902 (1998).]

    Article  ADS  Google Scholar 

  81. J.H. Winters and R.D. Gitlin, “Electrical signal processing techniques in long-haul fiber-optic systems”, IEEE Trans. Commun. 38, 1439-1453 (1990).

    Article  Google Scholar 

  82. F. Buchali, H. Bulow, and W. Kuebart, “Adaptive decision feedback equalizer for 10 Gbit/s dispersion mitigation,” Proc. of the European Conference on Optical Communications (ECOC’00), Vol. 2, pp. 101-102 (2001).

    Google Scholar 

  83. D. Castagnozzi, “Digital signal processing and electronic equalization (EE) of ISI,” Proc. of the Optical Fiber Communications Conference (OFC’04), paper WM6 (2004).

    Google Scholar 

  84. H.F. Haunstein, K. Sticht, A. Dittrich, M. Lorang, W. Sauer-Greff, and R. Urban-sky, “Implementation of near optimum electrical equalization at 10 Gbit/s,” Proc. of the European Conference on Optical Communications (ECOC’00), Vol. 3, pp. 223-224 (2000).

    Google Scholar 

  85. F. Buchali and H. Bulow, “Adaptive PMD compensation by electrical and optical techniques,” J. Lightwave Technol. 22, 1116-1126 (2004).

    Article  ADS  Google Scholar 

  86. G.S. Kanter, A.K. Samal, O. Coskun, and A. Gandhi,“Electronic equalization for enabling communications at OC-192 rates using OC-48 components,” Optics Express 11, 2019-2029 (2003).

    Article  ADS  Google Scholar 

  87. C.R. Doerr, A.H. Gnauck, L.W. Stulz, and D.M. Gill, “Using an optical equalizer to transmit a 43-Gb/s signal with an 8-GHz bandwidth modulator,” IEEE Photon. Technol. Lett. 15, 1624-1626 (2003).

    Article  ADS  Google Scholar 

  88. C.R. Doerr, S. Chandrasekhar, P.J. Winzer, A.R. Chraplyvy, A.H. Gnauck, L.W. Stulz, R. Pafchek, and E. Burrows, “Simple multichannel optical equalizer mitigat-ing intersymbol interference for 40-Gb/s nonreturn-to-zero signals,” J. Lightwave Technol. 22, 249-256 (2004).

    Article  ADS  Google Scholar 

  89. P.J. Winzer and R.-J. Essiambre, “Receivers for advanced optical modulation formats,” Proc. of the 16th annual meeting of IEEE/LEOS (LEOS”03), paper ThA1 (2003).

    Google Scholar 

  90. A.J. Weiss, “On the performance of electrical equalization in optical fiber trans-mission systems,” IEEE Photon. Technol. Lett. 15, 1225-1227 (2003).

    Article  ADS  Google Scholar 

  91. S.L. Woodward, S.-Y. Huang, M.D. Feuer, and M. Boroditsky, “Demonstration of an electronic dispersion compensator in a 100-km 10-Gb/s ring network,” IEEE Photon. Technol. Lett. 15, 867-869 (2003).

    Article  ADS  Google Scholar 

  92. M.D. Feuer, S.-Y. Huang, S.L. Woodward, O. Coskun, and M. Boroditsky, “Elec-tronic dispersion compensation for a 10-Gb/s link using a directly modulated laser,” IEEE Photon. Technol. Lett. 15, 1788-1790 (2003).

    Article  ADS  Google Scholar 

  93. P.J. Winzer, F. Fidler, M.J. Matthews, L.E. Nelson, S. Chandrasekhar, L.L. Buhl, M. Winter, and D. Castagnozzi, “Electronic equalization and FEC enable bidirectional CWDM capacities of 9.6 Tb/s-km,” Proc. of the Optical Fiber Communications Conference (OFC’04), paper PDP7 (2004).

    Google Scholar 

  94. C.R.S. Fludger, J.E.A. Whiteaway, and P.J. Anslow, “Electronic Equalisation for Low Cost 10 Gbit/s Directly Modulated Systems,” Proc. of the Optical Fiber Communications Conference (OFC’04), paper WM7 (2004).

    Google Scholar 

  95. M. Cavallari, C.R.S. Fludger, and P.J. Anslow, “Electronic Signal Processing for Differential Phase Modulation Formats,” Proc. of the Optical Fiber Communica-tions Conference (OFC’04), paper TuG2 (2004).

    Google Scholar 

  96. A. Faerbert, S. Langenbach, N. Stojanovic, C. Dorschky, T. Kupfer, C. Schulien, J.P. Elbers, H. Wernz, H. Griesser, and C. Glingener, “Performance of a 10.7 Gb/s receiver with digital equalizer using maximum likelihood sequence estimation,” Proc. of the European Conference on Optical Communication (ECOC’04), paper Th4.1.5 (2004).

    Google Scholar 

  97. T. Mizuochi, K. Kubo, H. Yoshida, H. Fujita, H. Tagami, M. Akita, and K. Mo-toshima, “Next generation FEC for optical transmission systems,” Proc. of the Optical Fiber Communications Conference (OFC’03), paper ThN1 (2003).

    Google Scholar 

  98. S. Chandrasekhar and L. L. Buhl, “Performance of forward error correction coding in the presence of in-band crosstalk,” Proc. of the Optical Fiber Communications Conference (OFC’02), paper WP1 (2002).

    Google Scholar 

  99. G.P. Agrawal, Nonlinear Fiber Optics, 3rd Edition (Academic Press, San Diego, 2001).

    Google Scholar 

  100. R.-J. Essiambre, B. Mikkelsen, and G. Raybon, “Intra-channel cross-phase mod-ulation and four-wave mixing in high-speed TDM systems,” Electron. Lett. 35, 1576-1578 (1999).

    Article  Google Scholar 

  101. P.V. Mamyshev and N.A. Mamysheva, “Pulse-overlapped dispersion-managed data transmission and intra-channel four-wave mixing,” Opt. Lett. 24, 1454-1456 (1999).

    Article  ADS  Google Scholar 

  102. R.-J. Essiambre, G. Raybon, and B. Mikkelsen, Pseudo-linear transmission of highspeed TDM signals: 40 and 160 Gb/s, in Optical Fiber Telecommunications IV B, edited by I. Kaminov and T. Li, pp. 232-304 (Academic Press, 2002).

    Google Scholar 

  103. R.-J. Essiambre, P. Winzer, J. Bromage, and C.H. Kim , “Design of Bidirectionally Pumped Fiber Amplifiers Generating Double Rayleigh Backscattering,” IEEE Photon. Technol. Lett. 14, 914-916 (2002).

    Article  ADS  Google Scholar 

  104. C. Fukai, K. Nakajima, J. Zhou, K. Tajima, K. Kurokawa, and I. Sankawa, “A Study of the Optimum Fiber Design for a Distributed RamanAmplification Transmission System, “ IEEE Photon. Technol. Lett. 15, 1642-1644 (2003).

    Article  ADS  Google Scholar 

  105. H.S. Seo, Y.G. Choi, and K.H. Kim, “Design of Transmission Optical Fiber With a High Raman Gain, Large Effective Area, Low Nonlinearity, and Low Double Rayleigh Backscattering,” IEEE Photon. Technol. Lett. 16, 72-74 (2004).

    Article  ADS  Google Scholar 

  106. P. Pecci, S. Lanne,Y. Frignac, J-C. Antona, G. Charlet and S. Bigo, “Tolerance to dispersion compensation parameters of six modulation formats in systems oper-ating at 43Gbit/s,” Proc. of the European Conference on Optical Communications (ECOC’03), paper We3.5.5 (2003).

    Google Scholar 

  107. H. Kogelnik, L.E. Nelson, and R.M. Jopson, Polarization-mode dispersion, in Op-tical Fiber Telecommunications IV B, edited by I. Kaminow and T. Li (Academic Press, 2002).

    Google Scholar 

  108. P.J. Winzer, H. Kogelnik, C.-H. Kim, H. Kim, R.M. Jopson, L.E. Nelson, and K. Ramanan, “Receiver Impact on first-order PMD Outage,” IEEE Photon. Technol. Lett. 15, 1482-1484 (2003).

    Article  ADS  Google Scholar 

  109. S.R. Chinn, “Analysis of counter-pumped small-signal fibre Raman amplifiers,” Electron. Lett. 33, 607-608 (1997).

    Article  Google Scholar 

  110. A. Kobyakov, M. Vasilyev, S. Tsuda, G. Giudice, and S. Ten, “Analytical model for Raman noise figure in dispersion-managed fibers,” IEEE Photon. Technol. Lett. 15, 30-32 (2003).

    Article  ADS  Google Scholar 

  111. A. Carena, V. Curri, and P. Poggiolini, “On the Optimization of Hybrid Raman/ Erbium-Doped Fiber Amplifiers,” IEEE Photon. Technol. Lett. 13, 1170-1172 (2001).

    Article  ADS  Google Scholar 

  112. E.M. Dianov, “Advances in Raman fibers,” J. Lightwave Technol. 20, 1457-1462 (2002).

    Article  ADS  Google Scholar 

  113. W. Hatton and M. Nishimura, “Temperature dependence of chromatic dispersion in single mode fibers,” J. Lightwave Technol. 4, 1552-1555 (1986).

    Article  ADS  Google Scholar 

  114. K.S. Kim and M.E. Lines, “Temperature dependence of chromatic dispersion in dispersion-shifted fibers: Experiment and analysis,” Appl. Phys. Lett. 73, 2069-2074 (1993).

    Google Scholar 

  115. K. Yonenaga, A. Hirano, S. Kuwahara, Y. Miyamoto, H. Toba, K. Sato, and H. Miyazawa, “Temperature-independent 80 Gbit/s OTDM transmission experiment using zero-dispersion-flattened transmission line,” Electron. Lett. 36, 343-345 (2000).

    Article  Google Scholar 

  116. M.J. Hamp, J. Wright, M. Hubbard, and B. Brimacombe, “Investigation into the temperature dependence of chromatic dispersion in optical fiber,” IEEE Photon. Technol. Lett. 14, 1524-1526 (2002).

    Article  ADS  Google Scholar 

  117. H.C. Ji, J.H. Lee, and Y.C. Chung, “Evaluation on system outage probability due to temperature variation and statistically distributed chromatic dispersion of optical fiber,” J. Lightwave Technol. 22, 1893-1898 (2004).

    Article  ADS  Google Scholar 

  118. A. Walter, G.S. Schaefer, “Chromatic dispersion variations in ultra-long-haul transmission systems arising from seasonal soil temperature variations,” Proc. of the Optical Fiber Communication Conference (OFC’02), paper WU4, 332-333 (2002).

    Google Scholar 

  119. R. Kashyap, Fiber Bragg Gratings (Harcourt Brace & Company, 1999).

    Google Scholar 

  120. L.E. Nelson, R.M. Jopson, A.H. Gnauck, and A.R. Chraplyvy, “Resonances in cross-phase modulation impairment in wavelength-division-multiplexed light-wave transmission,” IEEE Photon. Technol. Lett. 11, 907-909 (1999).

    Article  ADS  Google Scholar 

  121. G. Bellotti and S. Bigo, “Cross-phase modulation suppressor for multispan dis-persionmanaged WDM transmissions,” IEEE Photon. Technol. Lett. 12, 726-728 (2000).

    Article  ADS  Google Scholar 

  122. M.H. Eiselt, “Does spectrally periodic dispersion compensation reduce nonlin-ear effects?,” Proc. of the European Conference on Optical Communications (ECOC’99), paper TuC1.2 (1999).

    Google Scholar 

  123. G. Bellotti, S. Bigo, P.-Y. Cortes, S. Gauchard, and S. LaRochelle, “10/spl times/10 Gb/s cross-phase modulation suppressor for multispan transmissions using WDM narrow-band fiber Bragg gratings,” IEEE Photon. Technol. Lett. 12, 1403-1405 (2000).

    Article  ADS  Google Scholar 

  124. M.H. Eiselt, C.B. Clausen, and R.W. Tkach, “Performance Characterization of Components With Group Delay Fluctuations,” IEEE Photon. Technol. Lett. 15, 1076-1078 (2003).

    Article  ADS  Google Scholar 

  125. International Standard IEC 60794-3, Part 3: “Optical fiber cables,” September 2001, Appendix A.

    Google Scholar 

  126. L. Gr üner-Nielsen, S.N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C.C. Larsen, and H. Damsgaard, “Dispersion Compensating Fibres,” Opt. Fiber Technol. 6, 164-180 (2000).

    Article  ADS  Google Scholar 

  127. Y. Painchaud, M. Lapointe, and M. Guy, “Slope-matched tunable dispersion com-pensation over the full C-band based on fiber Bragg gratings,” Proc. of the Euro-pean Conference on Optical Communication (ECOC’04), paper We3.3.4 (2004).

    Google Scholar 

  128. L.M. Lunardi, D.J. Moss, S. Chandrasekhar, L.L. Buhl, M. Lamont, S. McLaugh-lin, G. Randall, P. Colbourne, S. Kiran, and C.A. Hulse, “Tunable Dispersion Compensation at 40-Gb/s Using a Multicavity Etalon All-Pass Filter With NRZ, RZ, and CS-RZ Modulation,” J. Lightwave Technol. 20, 2136-2144 (2002).

    Article  ADS  Google Scholar 

  129. D.N. Maywar, S. Banerjee, A. Agarwal, D.F. Grosz, M. Movassaghi, A.P. K üng, and T.H. Wood, “Impact of relaxed dispersion map and gain ripple on ultra-wideband 10-Gb/s transmission,” Electron. Lett. 39, 1266-1267 (2003).

    Article  Google Scholar 

  130. A. Agarwal, S. Banerjee, D.F. Grosz, A.P. K üng, D.N. Maywar, T.H. Wood, “Ultralong- haul transmission of 40 Gb/s RZ-DPSK in a 10/40G hybrid system over 2500 km of NZ-DSF,” IEEE Photon. Technol. Lett. 15, 1779-1781 (2003).

    Article  ADS  Google Scholar 

  131. M. Vasilyev, I. Tomkos, J.-K. Rhee, M. Mehendale, B.S. Hallock, B.K. Szalabofka, M. Williams, S. Tsuda, M. Sharma, “Broadcast and Select OADM in 80 × 10.7 Gb/s ultra-longhaul network”, J. Lightwave Technol. 15, 332-334 (2003).

    Google Scholar 

  132. D.F. Grosz, A. Agarwal, S. Banerjee, D.N. Maywar, and A.P. K üng, “All-Raman Ultralong-Haul Single-Wideband DWDM Transmission Systems With OADM Capability,” J. Lightwave Technol. 22, 423-432 (2004).

    Article  ADS  Google Scholar 

  133. M. Morin, M. Poulin, A. Mailloux, F. Trepanier, and Y. Painchaud, “Full C-Band slope-matched dispersion compensation based on a phase sampled Bragg grating,” Proc. of the Optical Fiber Communication Conference (OFC’04), paper WK1 (2004).

    Google Scholar 

  134. X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, “Tunable Dispersion Compensator Based on Distributed Gires-Tournois Etalons,” IEEE Photon. Technol. Lett. 15, 1111-1113 (2003).

    Article  ADS  Google Scholar 

  135. S. Doucet, R. Slavk, and S. LaRochelle, “Tunable Dispersion and Dispersion Slope Compensator Using Novel Gires-Tournois Bragg Grating Coupled-Cavities,” IEEE Photon. Technol. Lett. 16, 2529-2531 (2004).

    Article  ADS  Google Scholar 

  136. D. Yang, C. Lin, W. Chen, and G. Barbarossa, “Fiber Dispersion and Dispersion Slope Compensation in a 4-Channel 10-Gb/s 3200-km Transmission Experiment Using Cascaded Single-Cavity Gires-Tournois Etalons,” IEEE Photon. Technol. Lett. 16, 299-301 (2004).

    Article  ADS  Google Scholar 

  137. C.-H. Hsieh, R. Wang, Z.J. Wen, I. McMichael, P. Yeh, C.-W. Lee, and W.-H. Chen, “Flat-Top Interleavers Using Two Gires-Tournois Etalons as Phase-Dispersive Mirrors in a Michelson Interferometer,” IEEE Photon. Technol. Lett. 15, 242-244 (2003).

    Article  ADS  Google Scholar 

  138. G. Lenz and C.K. Madsen, “General Optical All-Pass Filter Structures for Disper-sion Control in WDM Systems,” J. Lightwave Technol. 17, 1248-1254 (1999).

    Article  ADS  Google Scholar 

  139. C.K. Madsen and G. Lenz, “Optical All-Pass Filters for Phase Response Design with Applications for Dispersion Compensation,” IEEE Photon. Technol. Lett. 10, 994-996 (2003)

    Article  ADS  Google Scholar 

  140. C.K. Madsen, E.J. Laskowski, J. Bailey, M.A. Capuzzo, S. Chandrasekhar, L.T. Gomez, A. Griffin, P. Oswald, and L.W. Stulz, “The Application of Integrated Ring Resonators to Dynamic Dispersion Compensation,” Proc. of the Optical Fiber Communication Conference (OFC’02), Paper TuJ2, pp. 29-30 (2002).

    Google Scholar 

  141. S. Ramachandran, S. Ghalmi, S. Chandrasekhar, I. Ryazansky, M.F. Yan, F.V. Dimarcello, W.A. Reed, and P. Wisk, “Tunable Dispersion Compensators Utilizing Higher Order Mode Fibers,” IEEE Photon. Technol. Lett. 15, 727-729 (2003).

    Article  ADS  Google Scholar 

  142. H. Ooi, K. Nakamura, Y. Akiyama, T. Takahara, T. Terahara, Y. Kawahata, H. Isono, and G. Ishikawa, “40-Gb/s WDM Transmission With Virtually Imaged Phased Array (VIPA) Variable Dispersion Compensators,” J. Lightwave Technol. 20,2196-2203 (2002).

    Article  ADS  Google Scholar 

  143. T.A. Birks, D. Mogilevtsev, J.C. Knight, and P.St.J. Russell, “Dispersion Compen-sation Using Single-Material Fibers,” IEEE Photon. Technol. Lett. 11, 674-676 (1999).

    Article  ADS  Google Scholar 

  144. Y. Ni, L. Zhang, L. An, J. Peng, and C. Fan, “Dual-Core Photonic Crystal Fiber for Dispersion Compensation,” IEEE Photon. Technol. Lett. 16, 1516-1518 (2004).

    Article  ADS  Google Scholar 

  145. M. Yagi, S. Satomi, S. Tanaka, S. Ryu, and S. Asano, “Field Trial of Automatic Chromatic Dispersion Compensation for 40-Gb/s-Based Wavelength Path Protec-tion,” IEEE Photon. Technol. Lett. 17, 229-231 (2005).

    Article  ADS  Google Scholar 

  146. D.F. Grosz, A. K üng, D.N. Maywar, L. Altman, M. Movassaghi, H.C. Lin, D.A. Fishman, and T.H. Wood, “Demonstration of All-Raman Ultra-Wide-Band Trans-mission of 1.28 Tb/s (128 × 10 Gb/s) over 4000 km of NZ-DSF with Large BER Margins,” Proc. of the European Conference on Optical Communication (ECOC’01), Paper PD B.1.3, pp. 72-73 (2001).

    Google Scholar 

  147. D.F. Grosz, D.N. Maywar, A.P. K üng, A. Agarwal, and S. Banerjee, “Performance of Non-Fiber Based Dispersion Compensation for Long-haul 10.7 Gb/s DWDM Transmission,” Electron. Lett. 40, 825-827 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Essiambre, RJ., Winzer, P.J., Grosz, D.F. (2007). Impact of DCF properties on system design. In: Fiber Based Dispersion Compensation. Optical and Fiber Communications Reports, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48948-3_12

Download citation

Publish with us

Policies and ethics