Skip to main content

Deformation Behavior

  • Chapter
Bulk Metallic Glasses

Although metallic glasses synthesized by rapid quenching from the melt were first discovered in 1960 by Duwez and coworkers at Caltech, the study of the mechanical behavior of metallic glasses only started in the early 1970s. Metallic glasses were found to deform elastically and exhibit negligible plasticity in uniaxial tension. Despite a limited macroscopic tensile plastic strain (<0.5%), exceptionally high strain (~100) was observed to take place within localized shear bands. One of the scientific questions naturally arises: how does a shear band nucleate and propagate in a medium presumably consisting of randomly packed atoms? Several theories, including the freevolume model and the dislocation model, were subsequently proposed to address the shear band formation and propagation. It was impossible to carry out irrevocable experiments to prove these theories at that time due to the limited size of the samples, and thus a poorly defined stress state during mechanical testing, and the lack of advanced analytical tools. However, the situation changed after the successful development of bulk metallic glasses (BMGs) in many alloy systems, e.g., Zr-, Mg-, Pd-, La-, Cu-, Ti-, and Febased. As a result of this development, research of BMGs has been very active, especially in the area of mechanical deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. T. Liu, L. Heatherly, D. S. Easton, C. A. Carmichael, J. H. Schneibel, C. H. Chen, J. L. Wright, M. H. Yoo, J. A. Horton, and A. Inoue, Test environment and mechanical properties of Zr-base bulk amorphous alloys, Metall. Mater. Trans. A 29(7), 1811-1820 (1998).

    Article  Google Scholar 

  2. T. Mukai, T. G. Nieh, Y. Kawamura, A. Inoue, and K. Higashi, Influence of strain rate on compressive mechanical behavior of Pd40Ni40P20 bulk metallic glass, Intermetallics 10 (11-12), 1071-1077 (2002).

    Article  CAS  Google Scholar 

  3. T. Masumoto and R. Maddin, Structural stability and mechanical properties of amorphous metals, Mater. Sci. Eng. 19(1), 1-24 (1975).

    Article  CAS  Google Scholar 

  4. E. Pekarskaya, C. P. Kim, and W. L. Johnson, In situ transmission electron microscopy studies of shear bands in a bulk metallic glass based composite, J. Mater. Res. 16(9), 2513-2518 (2001).

    Article  CAS  ADS  Google Scholar 

  5. F. Spaepen, A microscopic mechanism for steady state inhomogeneous flow in metallic glasses, Acta Metall. 25(4), 407-415 (1977).

    Article  CAS  Google Scholar 

  6. A. S. Argon, Plastic deformation in metallic glasses, Acta Metall. 27, 47-58 (1979).

    Article  CAS  Google Scholar 

  7. Z. F. Zhang, J. Eckert, and L. Schultz, Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass, Acta Mater. 51(4), 1167-1179 (2003).

    Article  CAS  Google Scholar 

  8. P. E. Donovan, A yield criterion for Pd40Ni40P20 metallic glass, Acta Mater. 37(2), 445-456 (1989).

    Article  CAS  Google Scholar 

  9. C. A. Schuh and A. C. Lund, Atomistic basis for the plastic yield criterion of metallic glass, Nat. Mater. 2(7), 449-452 (2003).

    Article  CAS  PubMed  ADS  Google Scholar 

  10. H. A. Bruck, A. J. Rosakis, and W. L. Johnson, The dynamic compressive behavior of beryllium bearing bulk metallic glasses, J. Mater. Res. 11(2), 503-511 (1996).

    Article  CAS  ADS  Google Scholar 

  11. W. J. Wright, R. Saha, and W. D. Nix, Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass, Mater. Trans. JIM 42(4), 642-649 (2001).

    Article  CAS  Google Scholar 

  12. P. Lowhaphandu, S. L. Montgomery, and J. J. Lewandowski, Effects of superimposed hydrostatic pressure on flow and fracture of a Zr-Ti-Ni-Cu-Be bulk amorphous alloy, Scripta Mater. 41(1), 19-24 (1999).

    Article  CAS  Google Scholar 

  13. T. Mukai, T. G. Nieh, Y. Kawamura, A. Inoue, and K. Higashi, Dynamic response of a Pd40Ni40P20 bulk metallic glass in tension, Scripta Mater. 46(1), 43-47 (2002).

    Article  CAS  Google Scholar 

  14. R. Maddin and T. Masumoto, Deformation of amorphous palladium-20 at% silicon, Mater. Sci. Eng. 9, 153-162 (1972).

    Article  CAS  Google Scholar 

  15. Y. Kawamura, T. Shibata, A. Inoue, and T. Masumoto, Deformation behavior of Zr65Al10Ni10Cu15 glassy alloy with wide supercooled liquid region, Appl. Phys. Lett. 69 (9), 1208-1210 (1996).

    Article  CAS  ADS  Google Scholar 

  16. J. Das, M. B. Tang, K. B. Kim, R. Theissmann, F. Baier, W. H. Wang, and J. Eckert, Work-hardenable ductile bulk metallic glass, Phys. Rev. Lett. 94, 205501 (2005).

    Article  PubMed  ADS  CAS  Google Scholar 

  17. B. Yang, L. Riester, and T. G. Nieh, Strain hardening in a bulk metallic glass under nanoindentation, Scripta Mater. 54, 1277-1280 (2006).

    Article  CAS  Google Scholar 

  18. T. C. Hufnagel, T. Jiao, Y. Li, L. Q. Xing, and K. T. Ramesh, Deformation and failure of Zr57Ti5Cu20Ni8Al10 bulk metallic glass under quasi-static and dynamic compression, J. Mater. Res. 17(6), 1441-1445 (2002).

    Article  CAS  ADS  Google Scholar 

  19. H. Bei, S. Xie, and E. P. George, Softening caused by profuse shear banding in a bulk metallic glass, Phys. Rev. Lett. 96, 105503 (2006).

    Article  CAS  PubMed  ADS  Google Scholar 

  20. H. Kimura and T. Masumoto, A model of the mechanics of serrated flow in an amorphous alloy, Acta Metall. 31(2), 231-240 (1983).

    Article  Google Scholar 

  21. C. A. Schuh, T. G. Nieh, and Y. Kawamura, Rate dependence of serrated flow during nanoindentation of a bulk metallic glass, J. Mater. Res. 17(7), 1651-1654 (2002).

    Article  CAS  ADS  Google Scholar 

  22. C. A. Schuh and T. G. Nieh, A nanoindentation study of serrated flow in bulk metallic glasses, Acta Mater. 51(1), 87-99 (2003).

    Article  CAS  Google Scholar 

  23. C. A. Schuh, A. S. Argon, T. G. Nieh, and J. Wadsworth, The transition from localized to homogeneous plasticity during nanoindentation of an amorphous metal, Philos. Mag. A 83 (22), 2585-2597 (2003).

    Article  CAS  ADS  Google Scholar 

  24. C. A. Schuh, A. C. Lund, and T. G. Nieh, New regime of homogeneous flow in the deformation map of metallic glasses: Elevated temperature nanoindentation experiments and mechanistic modeling, Acta Mater. 52(20), 5879-5891 (2004).

    Article  CAS  Google Scholar 

  25. P. Wesseling, T. G. Nieh, W. H. Wang, and J. J. Lewandowski, Preliminary assessment of flow, notch toughness, and high temperature behavior of Cu60Zr20Hf10Ti10 bulk metallic glass, Scripta Mater. 51(2), 151-154 (2004).

    Article  CAS  Google Scholar 

  26. J. J. Lewandowski, M. Shazly, and A. S. Nouri, Intrinsic and extrinsic toughening of metallic glasses, Scripta Mater. 54(3), 337-341 (2006).

    Article  CAS  Google Scholar 

  27. B. Yang, C. T. Liu, T. G. Nieh, M. Morrison, P. K. Liaw, and R. A. Buchanan, Localized heating and fracture criterion for bulk metallic glasses, J. Mater. Res. 21(4), 915-922 (2006).

    Article  ADS  Google Scholar 

  28. W. L. Johnson and K. Samwer, A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence, Phys. Rev. Lett. 95, 195501 (2006).

    Article  ADS  CAS  Google Scholar 

  29. A. Inoue, B. L. Shen, H. Koshiba, H. Kato, and A. R. Yavari, Ultra-high strength above 5000 MPa and soft magnetic properties of Co-Fe-Ta-B bulk glassy alloys, Acta Mater. 52, 1631-1637 (2004).

    Article  CAS  Google Scholar 

  30. H. S. Chen, Glassy metals, Rep. Prog. Phys. 43, 353-432 (1980).

    Article  ADS  Google Scholar 

  31. Z. P. Lu and C. T. Liu, A new approach to understanding and measuring glass formation in bulk amorphous materials, Intermetallics 12, 1035-1043 (2004).

    CAS  Google Scholar 

  32. B. Yang, C. T. Liu, and T. G. Nieh, Unified equation for the strength of bulk metallic glasses, Appl. Phys. Lett. 88(22), 221911 (2006).

    Article  ADS  CAS  Google Scholar 

  33. H. Chen, Y. He, G. J. Shiflet, and S. J. Poon, Deformation-induced nanocrystal formation in shear bands of amorphous alloys, Nature 367, 541-543 (1994).

    Article  CAS  ADS  Google Scholar 

  34. W. H. Jiang, F. E. Pinkerton, and M. Atzmon, Deformation-induced nanocrystallization in an Al-based amorphous alloy at a subambient temperature, Scripta Mater. 48(8), 1195- 1200 (2003).

    Article  CAS  Google Scholar 

  35. W. H. Jiang and M. Atzmon, Mechanically-assisted nanocrystallization and defects in amorphous alloys: A high-resolution transmission electron microscopy study, Scripta Mater. 54, 333-336 (2006).

    Article  CAS  Google Scholar 

  36. J. J. Kim, Y. Choi, S. Suresh, and A. S. Argon, Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature, Science 295, 654-657 (2002).

    CAS  PubMed  ADS  Google Scholar 

  37. M. Chen, A. Inoue, W. Zhang, and T. Sakurai, Extraordinary plasticity of ductile bulk metallic glasses, Phys. Rev. Lett. 96, 245502 (2006).

    Article  PubMed  ADS  CAS  Google Scholar 

  38. J. Li, X. Gu, and T. C. Hufnagel, Using fluctuation microscopy to characterize structural order in metallic glasses, Microsc. Microanal. 6, 509-515 (2003).

    ADS  Google Scholar 

  39. J. Li, F. Spaepen, and T. C. Hufnagel, Nanometre-scale defects in shear bands in a metallic glass, Philos. Mag. A 82(13), 2623-2630 (2002).

    Article  CAS  ADS  Google Scholar 

  40. K. M. Flores, Structural changes and stress state effects during inhomogeneous flow of metallic glasses, Scripta Mater. 54, 327-332 (2006).

    Article  CAS  Google Scholar 

  41. B. P. Kanungo, S. C. Glade, P. Asoka-Kumar, and K. M. Flores, Characterization of free volume changes associated with shear band formation in Zr- and Cu-based bulk metallic glasses, Intermetallics 12, 1073-1080 (2004).

    CAS  Google Scholar 

  42. . Y. Hirotsu, T. G. Nieh, A. Hirata, T. Ohkubo, and N. Tanaka, Local atomic ordering and nanoscale phase separation in a Pd-Ni-P bulk metallic glass, Phys. Rev. B 73, 012205 (2006). http://link.aps.org/abstract/PRB/v73/e012205

    Google Scholar 

  43. K. Zhang, J. R. Weertman, and J. A. Eastman, Rapid stress-driven grain coarsening in nanocrystalline Cu at ambient and cryogenic temperatures, Appl. Phys. Lett. 87, 061921 (2005).

    Article  ADS  CAS  Google Scholar 

  44. D. Pan, T. G. Nieh, and M. W. Chen, Strengthening and softening of nanocrystalline nickel during multi-step nanoindentation, Appl. Phys. Lett. 88(16), 161922 (2006).

    Article  ADS  CAS  Google Scholar 

  45. S. F. Pugh, Relations between the elastic moduli and plastic properties of polycrystalline pure metals, Philos. Mag. 45, 823-843 (1954).

    CAS  Google Scholar 

  46. J. J. Gilman, B. J. Cunningham, and A. C. Holt, Method for monitoring the mechanical state of a material, Mater. Sci. Eng. A 125, 39-42 (1990).

    Article  Google Scholar 

  47. A. H. Cottrell, The art of simplification in materials science, MRS Bull. 22(5), 15 (1997).

    CAS  Google Scholar 

  48. V. N. Novikov and A. P. Sokolov, Poissons ratio and the fragility of glass-forming liquids, Nature 431, 961-963 (2004).

    Article  CAS  PubMed  ADS  Google Scholar 

  49. J. J. Lewandowski, W. H. Wang, and A. L. Greer, Intrinsic plasticity or brittleness of metallic glasses, Philos. Mag. Lett. 85(2), 77-87 (2005).

    Article  CAS  ADS  Google Scholar 

  50. J. Schroers and W. L. Johnson, Ductile bulk metallic glass, Phys. Rev. Lett. 93, 255506 (2004).

    Article  PubMed  ADS  CAS  Google Scholar 

  51. X. J. Gu, A. G. McDermott, and S. J. Poon, Critical Poisson’s ratio for plasticity in FeMo-C-B-Ln bulk amorphous steel, Appl. Phys. Lett. 88, 211905 (2006).

    Article  ADS  CAS  Google Scholar 

  52. J. J. Lewandowski, M. Shazly, and A. S. Nouri, Intrinsic and extrinsic toughening of metallic glasses, Scripta Mater. 54(3), 337-341 (2006).

    Article  CAS  Google Scholar 

  53. J. J. Brennan and K. M. Prewo, Silicon carbide fiber reinforced glass-ceramic matrix composites exhibiting high strength and toughness, J. Mater. Sci. 17, 2371-2383 (1982).

    Article  CAS  ADS  Google Scholar 

  54. R. D. Conner, R. B. Dandliker, and W. L. Johnson, Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites, Acta Mater. 46(17), 6089-6102 (1998).

    Article  CAS  Google Scholar 

  55. C. C. Hays, C. P. Kim, and W. L. Johnson, Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions, Phys. Rev. Lett. 84(13), 2901-2904 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  56. C. Fan, H. Li, L. J. Kecskes, K. Tao, H. Choo, P. K. Liaw, and C. T. Liu, Mechanical behavior of bulk amorphous alloys reinforced by ductile particles at cryogenic temperatures, Phys. Rev. Lett. 96, 145506 (2006).

    Article  PubMed  ADS  CAS  Google Scholar 

  57. G. He, J. Eckert, and W. Loser, Stability, phase transformation and deformation behavior of Ti-base metallic glass and composite, Acta Mater. 51, 1621-1631 (2003).

    Article  CAS  Google Scholar 

  58. Y. Kawamura, T. Nakamura, and A. Inoue, Superplasticity in Pd40Ni40P20 metallic glass, Scripta Mater. 39(3), 301-306 (1998).

    Article  CAS  Google Scholar 

  59. . A. L. Mulder, R. J. A. Derksen, J. W. Drijver, and S. Radelaar, Presented at the Procee- dings of 4th International Conference on Rapidly Quenched Metals, Sendai, 1982 (unpublished).

    Google Scholar 

  60. T. G. Nieh, T. Mukai, C. T. Liu, and J. Wadsworth, Superplastic behavior of a Zr-10Al5Ti-17.9Cu-14.6Ni metallic glass in the supercooled liquid region, Scripta Mater. 40(9), 1021-1027 (1999).

    Article  CAS  Google Scholar 

  61. M. Bletry, P. Guyot, Y. Brechet, J. J. Blandin, and J. L. Soubeyroux, Homogeneous deformation of bulk metallic glasses in the super-cooled liquid state, Mater. Sci. Eng. A 387-389, 1005-1011 (2004).

    Article  CAS  Google Scholar 

  62. A. Reger-Leonhard, M. Heilmaier, and J. Eckert, Newtonian flow of Zr55Cu30Al10Ni5 bulk metallic glassy alloys, Scripta Mater. 43, 459-464 (2000).

    Article  CAS  Google Scholar 

  63. J. P. Chu, C. L. Chiang, T. Mahalingam, and T. G. Nieh, Plastic flow and tensile ductility of a bulk amorphous Zr55Al10Cu30Ni5 alloy at 700 K, Scripta Mater. 49(5), 435-440 (2003).

    Article  CAS  Google Scholar 

  64. C. L. Chiang, J. P. Chu, C. T. Lo, Z. X. Wang, W. H. Wang, J. G. Wang, and T. G. Nieh, Homogeneous plastic deformation in bulk amorphous Cu60Zr20Hf10Ti10 alloy, Intermetallics 12, 1057-1061 (2004).

    CAS  Google Scholar 

  65. D. H. Bae, J. M. Park, J. H. Na, D. H. Kim, Y. C. Kim, and J. K. Lee, Deformation behavior of Ti-Zr-Ni-Cu-Be metallic glass and composite in the supercooled liquid region, J. Mater. Res. 19(3), 937-942 (2004).

    Article  CAS  ADS  Google Scholar 

  66. F. Spaepen, Homogeneous flow of metallic glasses: A free volume perspective, Scripta Mater. 54(3), 363-367 (2006).

    Article  CAS  Google Scholar 

  67. T. G. Nieh, J. Wadsworth, C. T. Liu, G. E. Ice, and K.-S. Chung, Extended plasticity in the supercooled liquid region of bulk metallic glasses, Mater. Trans. JIM 42(4), 613-618 (2001).

    Article  CAS  Google Scholar 

  68. T. G. Nieh, J. Wadsworth, C. T. Liu, Y. Ohkubo, and Y. Hirotsu, Plasticity and structure instability in a bulk metallic glass deformed in the supercooled liquid region, Acta Mater. 49 (15), 2887-2896 (2001).

    Article  CAS  Google Scholar 

  69. J. P. Chu, C. L. Chiang, T. G. Nieh, and Y. Kawamura, Superplasticity in a bulk amorphous Pd-40Ni-20P alloy: A compression study, Intermetallics 10(11-12), 1191- 1195 (2002).

    Article  CAS  Google Scholar 

  70. W. J. Kim, D. S. Ma, and H. G. Jeong, Superplastic flow in a Zr65Al10Ni10Cu15 metallic glass crystallized during deformation in a supercooled liquid region, Scripta Mater. 49 (11), 1067-1073 (2003).

    Article  CAS  Google Scholar 

  71. G. Wang, J. Shen, J. F. Sun, Y. J. Huang, J. Zou, Z. P. Lu, Z. H. Stachurski, and B. D. Zhou, Superplasticity and superplastic forming ability of a Zr-Ti-Ni-Cu-Be bulk metallic glass in the supercooled liquid region, J. Non-Cryst. Solids 351(3), 209-217 (2005).

    Article  CAS  ADS  Google Scholar 

  72. Y. Saotome, K. Itoh, T. Zhang, and A. Inoue, Superplastic nanoforming of Pd-based amorphous alloy, Scripta Mater. 44(8-9), 1541-1545 (2001).

    Article  CAS  Google Scholar 

  73. Y. Saotome, T. Hatori, T. Zhang, and A. Inoue, Superplastic micro/nano-formability of La60Al20Ni10Co5Cu5 amorphous alloy in supercooled liquid state, Mater. Sci. Eng. A 304, 716-720 (2001).

    Article  Google Scholar 

  74. J. P. Chu, C. L. Chiang, H. Wijaya, R. T. Huang, C. W. Wu, B. Zhang, W. H. Wang, and T. G. Nieh, Compressive deformation of a bulk Ce-based metallic glass, Scripta Mater. 55, 227-230 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nieh, T.G. (2008). Deformation Behavior. In: Miller, M., Liaw, P. (eds) Bulk Metallic Glasses. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-48921-6_6

Download citation

Publish with us

Policies and ethics