Advertisement

PET-CT of Bone Metastases

  • James A. ScottEmail author
  • Edwin L. Palmer
Chapter

Abstract

PET-CT is a step forward in the imaging evaluation of osseous metastatic disease. PET imaging alone improves the depiction of bone marrow using 18F-FDG and of bone cortex using 18F-fluoride, as compared with traditional imaging methods, particularly the standard bone scan. The additional of registered CT information on the PET-CT study improves specificity by correlating specific anatomic structures with fluoride or FDG accumulation, and thus establishing a more precise diagnosis. Many benign tracer accumulations, such as those related to osteoarthritic changes and muscle artifact, are readily identifiable on correlative CT images.

Keywords

Bone Metastasis Osteoblastic Response Standard Bone Osteolytic Tumor Single Photon Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kakonen S-M, Mundy GR. Mechanisms of osteolytic bone metastases in breast carcinoma. Cancer 2003;97:834–839.CrossRefPubMedGoogle Scholar
  2. 2.
    Roodman GD. Mechanisms of disease: mechanisms of bone metastasis. N Engl J Med 2004;50:1655–1664.CrossRefGoogle Scholar
  3. 3.
    Rodan GA. The development and function of the skeleton and bone metastases. Cancer 2003;97:726–732.CrossRefPubMedGoogle Scholar
  4. 4.
    Hamaoka T, Madewell JE, Podoloff DA, Hortobagyi GN, Uemo NT. Bone imaging in metastatic breast cancer. J Clin Oncol 2004;22:2942–2953.CrossRefPubMedGoogle Scholar
  5. 5.
    Rybak LD, Rosenthal DI. Radiological imaging for the diagnosis of bone metastases. Q J Nucl Med 2001;45:53–64.PubMedGoogle Scholar
  6. 6.
    Arslandemir HM, Konig HH, Buck AK, Nussle K, Glatting G, Gabelmann A, Hetzel J, Hombach V, Schirrmeister H. F-18 NaF PET for detection of bone metastases in lung cancer: accuracy, cost effectiveness and impact on patient management. J Bone Miner Res 2003;18:2206–2014.CrossRefPubMedGoogle Scholar
  7. 7.
    Moog F, Kotzerke J, Reske SN. FDG-PET can replace bone scintigraphy in the staging of malignant lymphoma. J Nucl Med 1999;40: 1407–1413.PubMedGoogle Scholar
  8. 8.
    Daldrup-Link HE, Franzius C, Link TM, Laukamp D, Sciuk J, Jürgens H, Schober O, Rummeny EJ. Whole-body MR imaging for detection of bone metastases in children and young adults. Am J Roentgenol 2001;177:229–236.Google Scholar
  9. 9.
    Ohta M, Tokuda Y, Suzuki Y, Kubota M, Makuuchi H, Tajima T, Nasu S, Suzuki Y, Yasuda S, Shohtsu A. Whole body PET for the evaluation of bony metastases in patients with breast cancer: comparison with 99mTc-bone scintigraphy. Nucl Med Commun 2001;22:875–879.CrossRefPubMedGoogle Scholar
  10. 10.
    Gayed I, Vu T, Johnson M, Macapinlac H, Podoloff D. Comparison of bone and 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography in the evaluation of bony metastases in lung cancer. Mol Imaging Biol 2003;5:26–31.CrossRefPubMedGoogle Scholar
  11. 11.
    Schirrmeister H, Arslandemir C, Glatting G, Mayer-Steinacker R, Bommer M, Dreinhofer K, Buck A, Hetzel M. Omission of bone scanning according to staging guidelines leads to futile therapy in non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2004;31: 964–968.CrossRefPubMedGoogle Scholar
  12. 12.
    Schirrmesiter H, Buck A, Guhlmann A, Reske SN. Anatomical distribution and sclerotic activity of bone metastases from thyroid carcinoma associated with F-18 sodium fluoride positron emission computed tomography. Thyroid 2001;11:677–683.CrossRefGoogle Scholar
  13. 13.
    Wu HC, Yen RF, Shen YY, Kao CH, Lin CC, Lee CC. Comparing whole body 18F-2-deoxyglucose positron emission tomography and technetium 99 m methylene diphosphonate bone scan to detect bone metastases in patients with renal cell carcinomas: a preliminary report. J Cancer Res Clin Oncol 2002;128:503–506.CrossRefPubMedGoogle Scholar
  14. 14.
    Shreve PD, Grossman HB, Gross MD, Wahl RL. Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18] fluoro-D-glucose. Radiology 1996;199:751–755.PubMedGoogle Scholar
  15. 15.
    Morris MJ, AkhurstT, Osman I, Nunez R, Macapinlac H, Siedlecki K, Verbel D, Schwartz L, Larson SM, Scher HI. Fluorinated deoxyglucose positron emission tomography imaging in progressive metastatic prostate cancer. Urology 2002;59:913–918.CrossRefPubMedGoogle Scholar
  16. 16.
    Schirrmeister H, Bommer M, Buck AK, Muller S, Messer P, Bunjes D, Dohner H, Bergmann L, Reske SN. Initial results in the assessment of multiple myeloma using 18F-FDG PET. Eur J Nucl Med Mol Imaging 2002; 29:361–366.CrossRefPubMedGoogle Scholar
  17. 17.
    Higashi T, Fisher SJ, Brown RS, Nakada K,, Walter GL, Wahl RL. Evaluation of the early effect of local radiation on normal rodent bone marrow metabolism using FDG: preclinical PET studies. J Nucl Med 2000;41:2026–2035.PubMedGoogle Scholar
  18. 18.
    Schmitz A, Risse JH, Textor J, Zander D, Biersack HJ, Schmitt O, Palmedo H. FDG-PET findings of vertebral compression fractures in osteoporosis: preliminary results. Osteoporos Int 2002;13:755–761.CrossRefPubMedGoogle Scholar
  19. 19.
    Kato K, Aoki J, Endo K. Utility of FDG-PET in differential diagnosis of benign and malignant fractures in acute to subacute phase. Ann Nucl Med 2003;17:41–46.CrossRefPubMedGoogle Scholar
  20. 20.
    Shon IH, Fogelman I. F-18 FDG positron emission tomography and benign fractures. Clin Nucl Med 2003;28:171–175.CrossRefPubMedGoogle Scholar
  21. 21.
    Aoki J, Watanabe H, Shinozaki T, Takagishi K, Ishijima H, Oya N, Sato N, Inoue T, Endo K. FDG PET of primary benign and malignant bone tumors: standardized uptake value in 52 lesions. Radiology 2001;219:774–777.PubMedGoogle Scholar
  22. 22.
    Stafford SE, Gralow JR, Schubert EK, Rinn KJ, Dunnwald LK, Livingston RB, Manakoff DA. Use of serial FDG PET to measure the response of bone-dominant breast cancer to therapy. Acad Radiol 2002;9:913–921.CrossRefPubMedGoogle Scholar
  23. 23.
    Thie JA. Understanding the standardized uptake value, its methods, and implications for usage. J Nucl Med 2004;45:1431–1434.PubMedGoogle Scholar
  24. 24.
    Keyes JW Jr. SUV: standard uptake or silly useless value? J Nucl Med 1995;36:1836–1839.PubMedGoogle Scholar
  25. 25.
    Hunter GJ, Hamberg LM, Alpert NM, Choi NC, Fischman AJ. Simplified measurement of deoxyglucose utilization rate. J Nucl Med 1996;37:950–955.PubMedGoogle Scholar
  26. 26.
    Dimitrakopoulou-Strauss A, Strauss LG, Heichel T, Wu H, Burger C, Bernd L, Ewerbeck V. The role of quantitative (18) F-FDG PET studies for the differentiation of malignant and benign bone lesions. J Nucl Med 2002;43:510–518.PubMedGoogle Scholar
  27. 27.
    Cook GJ, Blake GM, Marsden PK, Cronin B, Fogelman I. Quantification of skeletal kinetic indices in Paget’s disease using dynamic 18F-fluoride positron emission tomography. J Bone Miner Res 2002;17:854–859.CrossRefPubMedGoogle Scholar
  28. 28.
    Even-Sapir E, Metser U, Flusser G, Zuriel L, Kollender Y, Lerman H, Lievshitz G, Ron I, Mishani E. Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET-CT and comparison between 18F-fluoride PET and 18F-fluoride PET-CT. J Nucl Med 2004;45:272–278.PubMedGoogle Scholar
  29. 29.
    Metser U, Lerman H, Blank A Lkievshitz G, Bokstein F, Evan-Sapir E. Malignant involvement of the spine: Assessment by 18F-FDG PET-CT. J Nucl Med 2004;45:279–284.PubMedGoogle Scholar
  30. 30.
    Hoegerle S, Juengling F, Otte A, Altehoefer C, Moser EA, Nitzsche EU. Combined FDG and [F-18] fluoride whole body PET: a feasible two-in-one approach to cancer imaging. Radiology 1998;209: 253–258.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of RadiologyMassachusetts General HospitalBostonUSA

Personalised recommendations