Advertisement

Bibliography

Chapter
  • 2.9k Downloads
Part of the Problem Books in Mathematics book series (PBM)

Keywords

Functional Equation Eral Variable Functional Equa Mathematical Association Basis Aller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. 1.
    Abel, N. H. 1881: Détermination d’une fonction au moyen d’une équation qui ne contient qu’une seule variable. Oeuvres compléetes, vol. 2, Christiania (Oslo), 36–39.Google Scholar
  2. 2.
    Aczél, J.: 1966, Lectures on Functional Equations and Their Applications. New York, Birkhäuser.zbMATHGoogle Scholar
  3. 3.
    Aczél, J.: 1984, On history, applications and theory of functional equations. In Functional Equations: History, Applications and Theory, J. Aczél (ed.), Mathematics and Its Applications. Boston, Reidel.Google Scholar
  4. 4.
    Aczél, J. and Dhombres, J.: 1985, Functional Equations Containing Several Variables. Reading, Mass., Addison-Wesley.Google Scholar
  5. 5.
    d’Alembert, J.: 1769, Mémoire sur les principes de mécanique. Hist. Acad. Paris 1769, pp. 278–286.Google Scholar
  6. 6.
    Alexanderson, G. L., Klosinski, L. F., and Larson, L. C.: 1985, The William Lowell Putnam Mathematical Competition. Problems and Solutions: 1938–1964. Mathematical Association of America,Washington, DC.Google Scholar
  7. 7.
    Cauchy, A.-L.: 1821, Cours d’analyse de l’école Polytechnique, Vol. 1. Analyse algébrique. Chap. V, Paris (Oeuvres, Ser. 2, Vol. 3, Paris 1897, pp. 98–113, 220).Google Scholar
  8. 8.
    Gleason, A. M., Greenwood, R. E. and Kelly, L. M.: 1980, The William Lowell Putnam Mathematical Competition. Problems and Solutions: 1965–1984. Mathematical Association of America, Washington, DC.Google Scholar
  9. 9.
    Hamel, G.: 1905, Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung f(x+y) = f(x)+f(y). Math. Ann. 60, pp. 459–462.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kedlaya, K. S., Poonen, B., and Vakil, R.: 2002, The William Lowell Putnam Mathematical Competition 1985–2000. Problems, Solutions and Commentary. Mathematical Association of America, Washington, DC.zbMATHGoogle Scholar
  11. 11.
    Koenigs, G.: 1884, Recherches sur les intégrales de certaines équations fonctionnelles. Ann. Sci. Ec. Norm. Sup. (3) 1,Supplement, pp. 3–41.MathSciNetGoogle Scholar
  12. 12.
    Kuczma, M., Choczewski, B.. and Ger, R.: 1990, Iterative Functional Equations. Cambridge, UK, Cambridge University Press.zbMATHGoogle Scholar
  13. 13.
    Lévy, P.: 1928, Fonctions á croissance régulière et itération d’ordre fractionnaire. Ann. Mat. Pura Appl. (4) 5, pp. 269–298.CrossRefGoogle Scholar
  14. 14.
    Oresme, N.: c. 1352, Tractatus de configurationibus qualitatum et motuum. Paris (Ed. transl. and comm. M. Clagett, University of Wisconsin Press, Madison, 1968).Google Scholar
  15. 15.
    Pexider, H. W.: 1903, Notizüber Funktionaltheoreme. Monatsh. Math. Phys. 14, pp. 293–301.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Vincze, E.: 1962, Eine allgemeinere Methode in der Theorie der Funktionalgleichungen I, Publ. Math. Debrecen 9, pp. 149–163.MathSciNetGoogle Scholar
  17. 17.
    Young, G. S.: 1958, The linear functional equation. Amer. Math. Monthly 65, pp. 37–38.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations