Advertisement

Cartilage

A. Radiologic Perspective: Magnetic Resonance Imaging of Articular Cartilage—Conventional and Novel Imaging Techniques
B. Orthopedic Perspective: Clinical Applications of Magnetic Resonance Imaging of Articular Cartilage Pathology
  • Hamid Torshizy
  • Garry E. Gold
  • Christine B. Chung
  • Michael J. Angel
  • Nicholas A. Sgaglione
  • Steve Sharon

Traditionally, articular or hyaline cartilage has been described as a glistening layer of connective tissue that covers the articular surface of bones, acting mainly as a “shock absorber” for the lower extremity. This perception underscores the structural intricacy and functional importance of this tissue. Articular cartilage is a complex and dynamic tissue with unique properties and matrix constituents that are essential for normal joint function. Injuries and degenerative changes of articular cartilage result in significant morbidity and a diminished quality of life.1 Advances in basic science research, novel therapeutic interventions, and imaging techniques have reaffirmed the pivotal importance of articular cartilage, and has changed the way we think about it and the various entities affecting it.

A vast spectrum of different pathophysiologic processes, including trauma, inflammatory arthritis, and primary osteoarthritis, are responsible for the irreversible loss of hyaline cartilage. However, the most common cause is osteoarthritis (OA), either of a degenerative primary etiology or secondary to trauma.2

Keywords

Articular Cartilage Autologous Chondrocyte Implantation Medial Femoral Condyle Fast Spin Echo Magnetic Resonance Arthrography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cooper C. Occupational activity and the risk of osteoarthritis. J Rheumatol 1995;43:10–12.Google Scholar
  2. 2.
    Cova M, Toffanin R. MR microscopy of hyaline cartilage: current status. Eur Radiol 2002;12:814–823.PubMedGoogle Scholar
  3. 3.
    Felson DT. Epidemiology of hip and knee osteoarthritis. Epidemiol Rev 1998;10:1–28.Google Scholar
  4. 4.
    Felson DT, Zhang Y, Hannan MT, et al. The incidence and natural history of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study: the effects of specific medical conditions on the functional limitations of elders in the Framingham Study. Arthritis Rheum 1995;38(10):1500–1505.PubMedGoogle Scholar
  5. 5.
    Buckwalter JA, Saltzman C, Brown T. The impact of osteoarthritis: implications for research. Clin Orthop Rel Res 2004;427(suppl): S6–15.Google Scholar
  6. 6.
    Guccione AA, Felson DT, Anderson JJ, et al. The effects of specific medical conditions on the functional limitations of elders in the Framingham Study. Am J Public Health 1994;84(3):351–358.PubMedGoogle Scholar
  7. 7.
    Felson DT, Lawrence RC, Dieppe PA, et al. Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med 2000;133(8):635–646.PubMedGoogle Scholar
  8. 8.
    Felson DT. The course of osteoarthritis and factors that affect it. Rheum Dis Clin North Am 1993;19:607–633.PubMedGoogle Scholar
  9. 9.
    Chan WP, Lang P, Stevens M P, et al. Osteoarthritis of the knee: comparison of radiography, CT, and MR imaging to assess extent and severity. AJR 1991;157:799–806.PubMedGoogle Scholar
  10. 10.
    Fife RS, Brandt KD, Braunstein EM, et al. Relationship between arthroscopic evidence of cartilage damage and radiographic evidence of joint space narrowing in early osteoarthritis of the knee. Arthritis Rheum 1991;34:377–382.PubMedGoogle Scholar
  11. 11.
    Armstrong CG, Mow VC. Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content. J Bone Joint Surg [Am] 1982;64:88–94.Google Scholar
  12. 12.
    Wojtys E, Wilson M, Buckwalter K, Braunstein E, Martel W. Magnetic resonance imaging of knee hyaline cartilage and intraarticular pathology. Am J Sports Med 1987;15: 455–463.PubMedGoogle Scholar
  13. 13.
    Peterfy CG, van Dijke CF, Janzen DL, et al. Quantification of articular cartilage in the knee with pulsed saturation transfer subtraction and fat-suppressed MR imaging: optimization and validation. Radiology 1994;192:485–491.PubMedGoogle Scholar
  14. 14.
    Hoch DH, Grodzinsky AJ, Koob TJ, Albert ML, Eyre DR. Early changes in material properties of rabbit articular cartilage after meniscectomy. J Orthop Res 1983;1:4–12.PubMedGoogle Scholar
  15. 15.
    Buckwalter JA, Mow VC. Cartilage repair in osteoarthritis. In: Moskowitz RW, Howell DS, Goldberg VM, Mankin HJ, eds. Osteoarthritis, Diagnosis and Medical/Surgical Management, 2nd ed. Philadelphia: Saunders, 1992:71–107.Google Scholar
  16. 16.
    Hayes CW, Balkissoon AA. Magnetic resonance imaging of the musculoskeletal system. II. The hip. Clin Orthop 1996;322:297–309.PubMedGoogle Scholar
  17. 17.
    Fritz RC, Steinbach LS. Magnetic Resonance imaging of the musculoskeletal system. III. The elbow. Clin Orthop 1996;324:321–339.PubMedGoogle Scholar
  18. 18.
    Siegel S, White LM, Brahme S. Magnetic resonance imaging of the musculoskeletal system. V. The wrist. Clin Orthop 1996;332:281–300.PubMedGoogle Scholar
  19. 19.
    Crotty JM, Monu JU, Pope TJ. Magnetic resonance imaging of the musculoskeletal system. IV. The knee. Clin Orthop 1996;330:288–303.PubMedGoogle Scholar
  20. 20.
    Oxner KG. Magnetic resonance imaging of the musculoskeletal system. VI. The shoulder. Clin Orthop 1997;334:354–373.PubMedGoogle Scholar
  21. 21.
    Haygood TM. Magnetic resonance imaging of the musculoskel-etal system: VII. The ankle. Clin Orthop 1997;336:318–336.PubMedGoogle Scholar
  22. 22.
    Ruwe PA, Wright J, Randal RL, Lynch JK, Jokl P, McCarthy S. Can MR imaging effectively replace diagnostic radiology? Radiology 1992;183:335–339.PubMedGoogle Scholar
  23. 23.
    Winalski CS, Palmer WE, Rosenthal DI, Weissman BN. Magnetic resonance imaging of rheumatoid arthritis. Radiol Clin North Am 1996;34:243–258.PubMedGoogle Scholar
  24. 24.
    Palmer WE, Rosenthal DI, Schoenberg OI, et al. Quantification of inflammation in the wrist with gadolinium-enhanced MR imaging and PET with 2-[F-18]-fluoro-2-deoxy-D-glucose. Radiology 1995;196;647–655.PubMedGoogle Scholar
  25. 25.
    Akeson WH, Amiel DA, Gershuni DH. Articular cartilage physiology and metabolism. In: Resnick D, ed. Diagnosis of Bone and Joint Disorders, 3rd ed. Philadelphia: Saunders, 1995:769–790.Google Scholar
  26. 26.
    Resnick D. Articular anatomy and histology. In: Resnick D, ed. Diagnosis of Bone and Joint Disorders, 4th ed. Philadelphia: Saunders, 2002:688–707.Google Scholar
  27. 27.
    Ghadially FN. Structure and function of articular cartilage. Clin Rheum Dis 1981;7:3.Google Scholar
  28. 28.
    Pearle AD, Warren RF, Rodeo SA. Basic science of articular cartilage and osteoarthritis. Clin Sports Med 2005;24:1–12.PubMedGoogle Scholar
  29. 29.
    Goodwin DW. Visualization of the macroscopic structure of hyaline cartilage with MR imaging. Semin Musculoskel Radiol 2001;5(4):305–312.Google Scholar
  30. 30.
    Trattnig S. Overuse of hyaline cartilage and imaging. Eur J Radiol 1997;25:188–198.PubMedGoogle Scholar
  31. 31.
    Buckwalter JA, Mankin HG. Articular cartilage. I. tissue design and chondrocyte matrix interactions. J Bone Joint Surg [Am] 1997;79:600–611.Google Scholar
  32. 32.
    Imhof H, Nobauer-Huhmann IM, Krestan C, et al. MRI of cartilage. Eur Radiol 2002;12:2781–2793.PubMedGoogle Scholar
  33. 33.
    Morris NP, Keene DR, Horton WA. Morphology and chemical composition of connective tissue: cartilage. In: Royce PM, Steinmann B, eds. Connective Tissue and Its Heritable Disorders. Molecular, Genetic, and Medical Aspects. New York: Wiley-Liss, 2002:41–65.Google Scholar
  34. 34.
    Mankin HJ, Brandt KD. Biochemistry and metabolism of articular cartilage in osteoarthritis. In: Moskowitz RW, Howell DS, Goldberg VM, Mankin HJ, eds. Osteoarthritis, 2nd ed. Philadelphia: Saunders, 1992:109–154.Google Scholar
  35. 35.
    Mankin HJ, Mow VC, Buckwalter JA, Iannotti JP, Ratcliffe A. Articular cartilage structure, composition, and function. In: Buckwalter JA, Einhorn TA, Simon SR, eds. Orthopedic Basic Science: Biology and Biomechanics of the Musculoskeletal System. Rosemont, IL: American Academy of Orthopedic Surgeons, 1999:444–470.Google Scholar
  36. 36.
    Maroudas AI. Balanced between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 1976;260(5554):808–809.PubMedGoogle Scholar
  37. 37.
    Soltz MA, Ateshian GA. Interstitial fluid pressurization during confined compression cyclical loading of articular cartilage. Ann Biomed Eng 2000;28(2):150–9.PubMedGoogle Scholar
  38. 38.
    McCauley TR, Disler DG. MR imaging of articular cartilage. Radiology 1998;209(3):629–640.PubMedGoogle Scholar
  39. 39.
    Mayne R, Brewton RG. New members of the collagen superfamily. Curr Opin Cell Biol 1993;5:883–890.PubMedGoogle Scholar
  40. 40.
    Mow VC, Proctor CS, Kelly MA. Biomechanics of articular cartilage. In: Nordin M, Frankel VH, eds. Basic Biomechanics of the Musculoskeletal System. Philadelphia: Lea & Febiger, 1989:31–57.Google Scholar
  41. 41.
    Clarke IC. Articular cartilage: a review and scanning electron microscopy study 1. The interterritorial fibrillar architecture. J Bone Joint Surg 1971;53B:732–750.Google Scholar
  42. 42.
    Maroudas A, Muir A, Wingham J. The correlation of fixed negative charge with glycosaminoglycan content of human articular cartilage. Biochem Biophys Acta 1969;177:492–500.PubMedGoogle Scholar
  43. 43.
    Paul PK, Jasani MK, Sebok D, Rakhit A, Dunton AW, Douglas FL. Variation in MR signal intensity across normal human knee cartilage. J Magn Reson Imaging Eng 1993;3:569–574.Google Scholar
  44. 44.
    Modl JM, Sether LA, Haughton VM, Kneeland JB. Articular cartilage: correlation of histologic zones with signal intensity at MR imaging. Radiology 1991;181:853–855.PubMedGoogle Scholar
  45. 45.
    Redler I, Mow VC, Zimmy ML, et al. The ultrastructure and biomechanical significance of the tidemark of articular cartilage. Clin Orthop Rel Res 1975;112:357–362.Google Scholar
  46. 46.
    Green WT Jr, Martin GN, Eanes ED, et al. Microradiographic study of the calcified layer of articular cartilage. Arch Pathol 1970;90:151.PubMedGoogle Scholar
  47. 47.
    Fawns HT, Landells JW. Histochemical studies of rheumatic conditions; observations on the fine structures of the matrix of normal bone and cartilage. Ann Rheum Dis 1953;12:105.PubMedGoogle Scholar
  48. 48.
    Oegema TR, Thompson RC. Histopathology and pathobiochemistry of the cartilage-bone interface in osteoarthritis. In: Kuettner KE, Goldberg V, eds. Osteoarthritic Disorders. New York: Raven Press, 1995:205–217.Google Scholar
  49. 49.
    Disler DG, McCauley TR, Holmes TJ, Cousins JP. Articular cartilage volume in the knee: semiautomated determination from three-dimensional reformations of MR images. Radiology 1996;198:855–859.PubMedGoogle Scholar
  50. 50.
    Peterfy CG, van Dijke CF, Lu Y, et al. Quantification of the volume of articular cartilage in the metacarpophalangeal joints of the hand: accuracy and precision of three-dimensional MR imaging. AJR 1995;165:371–375.PubMedGoogle Scholar
  51. 51.
    Mohana-Borges A, Resnick D, Chung CB. Magnetic resonance imaging of knee instability. Semin Musculoskeletal Radiol 2005;9(1);17–33.Google Scholar
  52. 52.
    Disler DG, McCauley TR, Kelman CG, et al. Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy. AJR 1996;167:127–132.PubMedGoogle Scholar
  53. 53.
    Daenen BR, Ferrara MA, Marcelis S, Dondelinger RF. Evaluation of patellar cartilage surface lesions: comparison of CT arthrography and fat-suppressed FLASH 3D MR imaging. Eur Radiol 1998;8:981–985.PubMedGoogle Scholar
  54. 54.
    Bredella MA, Tirman PF, Peterfy CG, et al. Accuracy of T2ûweighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients. AJR 1999;172:1073–1080.PubMedGoogle Scholar
  55. 55.
    Suh JS, Lee SH, Jeong EK, Kim DJ. Magnetic resonance imaging of articular cartilage. Eur Radiol 2001;11:2015–2025.PubMedGoogle Scholar
  56. 56.
    Sonin AH, Pensy RA, Mulligan ME, Hatem S. Grading articular cartilage of the knee using fast spin-echo proton density-weighted MR imaging without fat suppression. AJR 2002;179:1159– 1166.PubMedGoogle Scholar
  57. 57.
    Mohr A, Priebe M, Taouli B, Grimm J, Heller M, Bross-mann J. Selective water excitation for faster MR imaging of articular cartilage defects: initial cartilage results. Eur Radiol 2003;12:686–689.Google Scholar
  58. 58.
    Noyes FR, Stabler CL. A system for grading articular cartilage lesions at arthroscopy. Am J Sports Med 1989;17(4):505–513.PubMedGoogle Scholar
  59. 59.
    Outerbridge RE. The etiology of chondromalacia patellae. J Bone Joint Surg Br 1961;43B:752–757.Google Scholar
  60. 60.
    Hayes CW, Sawyer RW, Conway WF: Patellar cartilage lesions: in vitro detection and staging with MR imaging and pathologic correlation. Radiology 1990;176:479–483.PubMedGoogle Scholar
  61. 61.
    Karvonen RL, Negendank WG, Fraser SM, Mayes MD, An T, Fernandez-Madrid F. Articular cartilage defects of the knee: correlation between magnetic resonance imaging and gross pathology. Ann Rheum Dis 1990;49(9):672–675.PubMedGoogle Scholar
  62. 62.
    Chandnani VP, Ho C, Chu P, Trudell D, Resnick D. Knee hyaline cartilage evaluated with MR imaging: a cadaveric study involving multiple imaging sequences and intraarticular injection of gadolinium and saline solution. Radiology 1991;178:557–561.PubMedGoogle Scholar
  63. 63.
    Wolff SD, Chesnick S, Frank JA, Lim KO, Balaban RS. Magnetization transfer contrast: MR imaging of the knee. Radiology 1991;179:623–628.PubMedGoogle Scholar
  64. 64.
    Brown SM, Schneider E, Song S, et al. Saturation transfer: a new technique to detect articular cartilage defects in the knee. In: Book of Abstracts. Berkeley, CA: Society of Magnetic Resonance in Medicine, 1992:324(abst).Google Scholar
  65. 65.
    Recht MP, Resnick D. MR imaging of articular cartilage: current status and future directions. AJR 1994;163:283–290.PubMedGoogle Scholar
  66. 66.
    Kramer J, Stiglbauer R, Engel A, Prayer L, Imhof H. MR contrast arthrography (MRA) in osteochondrosis dissecans. J Comput Assist Tomogr 1992;16:254–260.PubMedGoogle Scholar
  67. 67.
    McCauley TR, Moses M, Kier R, Lynch JK, Barton JW, Jokl P. MR diagnosis of tears of anterior cruciate ligament of the knee: importance of ancillary findings. AJR 1994;162:115–119.PubMedGoogle Scholar
  68. 68.
    Recht MP, Kramer J, Marcelis S, et al. Abnormalities of articular cartilage in the knee: analysis of available MR techniques. Radiology 1993;187:473–478.PubMedGoogle Scholar
  69. 69.
    Gagliardi JA, Chung EM, Chandnani VP, et al. Detection and staging of chondromalacia patellae: relative efficacies of conventional MR imaging, MR arthrography, and CT arthrography. AJR 1994;163:629–636.PubMedGoogle Scholar
  70. 70.
    Handelberg F, Shahabpour M, Casteleyn PP. Chondral lesions of the patella evaluated with computed tomography, magnetic resonance imaging, and arthroscopy. Arthroscopy 1990;6:24–29.PubMedGoogle Scholar
  71. 71.
    Weiss C, Mirow S. An ultrastructural study of osteoarthritis changes articular change of human knees. J Bone Joint Surg Am 1972;54–A95.Google Scholar
  72. 72.
    Kramer J, Recht MP, Imhof H, Engel A. MR contrast arthrography (MRA) in assessment of cartilage lesions. J Comput Assist Tomogr 1994;18:218–224.PubMedGoogle Scholar
  73. 73.
    Fry ME, Jacoby RK, Hutton CV, et al. High-resolution magnetic resonance imaging of the interphalangeal joints of the hand. Skeletal Radiol 1991;20:273–277.PubMedGoogle Scholar
  74. 74.
    Recht MP, Piraino DW, Paletta GA, et al. Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities. Radiology 1996;198:209–212.PubMedGoogle Scholar
  75. 75.
    Potter HG, Linklater JM, Allen AA, et al. Magnetic resonance imaging of articular cartilage in the knee. An evaluation of use of fast-spin-echo imaging. J Bone Joint Surg Am 1998;80:1276–1284.PubMedGoogle Scholar
  76. 76.
    Disler DG, McCauley TR, Wirth CR, et al. Detection of knee hyaline cartilage defects using fat-suppressed three-dimensional spoiled gradient-echo MR imaging: comparison with standard MR imaging and correlation with arthroscopy. AJR 1995;165:377–382.PubMedGoogle Scholar
  77. 77.
    Winalski CS, Gupta KB. Magnetic resonance imaging of focal articular cartilage lesions. Topics Magn Reson Imaging 2003;14(2):131–144.Google Scholar
  78. 78.
    Disler DG, Peters TL, Muscoreil SJ, et al. Fat-suppressed spoiled GRASS imaging of knee hyaline cartilage: technique optimization and comparison with conventional MR imaging. AJR 1994;163:887–892.PubMedGoogle Scholar
  79. 79.
    Kawahara Y, Uetani M, Nakahara N, et al. Fast spin-echo MR of the articular cartilage in the osteoarthritic knee. Correlation of MR and arthroscopic findings. Acta Radiol 1998;39:120–125.PubMedGoogle Scholar
  80. 80.
    Gold GE, Hargreaves BA, Reeder SB, Vasanawala SS, Beaulieu C. Controversies in protocol selection in the imaging of articular cartilage. Semin Musculoskeletal Imaging 2005;9(2):161–172.Google Scholar
  81. 81.
    Erickson SJ, Waldschmidt JG, Czervionke LF, et al. Hyaline cartilage: Truncation artifact as a cause of trilaminar appearance with fat-suppressed three-dimensional spoiled gradient-recalled sequences. Radiology 1996;201:260–264.PubMedGoogle Scholar
  82. 82.
    Gylys-Morin VM, Hajek PC, Sartoris DJ, Resnick D. Articular cartilage defects: detectability in cadaver knees with MR. AJR 1987;148:1153–1157.PubMedGoogle Scholar
  83. 83.
    Vande Berg BC, Lecouvet FE, Poilvache P, et al. Assessment of knee cartilage in cadavers with dual-detector spiral CT arthrography and MR imaging. Radiology 2002;222:430–436.PubMedGoogle Scholar
  84. 84.
    Pilch L, Stewart C, Gordon D, et al. Assessment of cartilage volume in the femorotibial joint with magnetic resonance imaging and 3D computer reconstruction. J Rheumatol 1994;21:2307– 2321.PubMedGoogle Scholar
  85. 85.
    Maroudas A, Venn M. Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. II. Swelling. Ann Rheum Dis 1977;36:399–406.PubMedGoogle Scholar
  86. 86.
    Venn M. Chemical composition and swelling of normal and osteoar-thritic femoral head cartilage. Ann Rheum Dis 1977;36:121–129.PubMedGoogle Scholar
  87. 87.
    Mow VC, Zhu W, Ratcliffe A. Structure and function of articular cartilage and meniscus. In: Mow VC, Hayes HC, eds. Basic Orthopedic Biomechanics. New York: Raven Press, 1991:143–189.Google Scholar
  88. 88.
    Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskeletal Radiology 2004;8(4):355–368.Google Scholar
  89. 89.
    Mori Y, Kubo M, Okumo H, Kuroki Y. A scanning electron microscopic study of the degenerative cartilage in patellar chondropathy. Arthroscopy 193;9:247–264.PubMedGoogle Scholar
  90. 90.
    Muir H, Bullough P, Maroudas A. The distribution of collagen in human articular cartilage with some of its physiological implications. J Bone Joint Surg Br 1970;52:554–563.PubMedGoogle Scholar
  91. 91.
    Lusse S, Knauss R, Werner A, Grunder W, Arnold K. Action of compression andcatios on the proton and deuterium relaxation in cartilage. Magn Reson Med 1995;33:483–489.PubMedGoogle Scholar
  92. 92.
    Dardzinski BJ, Mosher TJ, Li S, Va n Slyke MA, Smith MB. Spatial variation of T2 in human cartilage. Radiology 1997;205:546–550.PubMedGoogle Scholar
  93. 93.
    Xia Y. Heterogeneity of cartilage laminae in MR imaging. J Magn Reson Imaging 2000;11:686–693.PubMedGoogle Scholar
  94. 94.
    Mosher TJ, Dardzinski BJ, Smith MB. Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2—preliminary findings at 3 T. Radiology 2000;214:259–266.PubMedGoogle Scholar
  95. 95.
    Packer KJ. The dynamics of water in heterogeneous systems. Philos Trans R Soc Lond B Biol Sci 1977;278:59–87.PubMedGoogle Scholar
  96. 96.
    Gold GE, Thedens DR, Pauly JM, et al. MR imaging of articular cartilage of the knee: new methods using ultrashort TEs. AJR 1998;170:1223–1226.PubMedGoogle Scholar
  97. 97.
    Frank LR, Wong EC, Luh WM, Ahn JM, Resnick D. Articular cartilage in the knee: mapping of the physiologic parameters at MR imaging with a local gradient coil—preliminary results. Radiology 1999;210:241–246.PubMedGoogle Scholar
  98. 98.
    Gold GE, Han E, Stainsby J, Wright G, Brittain J, Beaulieu C. Musculoskeletal MRI at 3.0T: relaxation times and image contrast. AJR 2003;183:343–351.Google Scholar
  99. 99.
    Duewell SH, Ceckler TL, Ong K, et al. Musculoskeletal MR imaging at 4T and 1.5T: comparison of relaxation times and image contrast. Radiology 1995;196:551–555.PubMedGoogle Scholar
  100. 100.
    Becker ED, Farrar TC. Driven equilibrium Fourier transform spectroscopy. A new method for nuclear magnetic resonance signal enhancement. J Am Chem Soc 1969;91:7784–7785.PubMedGoogle Scholar
  101. 101.
    Kneeland JB. MRI probes biophysical structure of cartilage. Diagn Imaging (San Franc) 1996;18:36–40.Google Scholar
  102. 102.
    Xia Y, Farquhar T, Burton-Wurster N, Lust G. Origin of cartilage laminae in MRI. J Magn Reson Imaging 1997;887–894.Google Scholar
  103. 103.
    Stevens KJBF, Hishioka H, Steines D, Genovese M, Lang PK. Contrast-enhanced MRI measurement of GAG concentrations in articular cartilage of knees with early osteoarthritis. In: Proceedings of the Radiology Society of North America. Chicago: Radiological Society of North America, 2001:275.Google Scholar
  104. 104.
    Bashir A, Gray ML, Boutin RD and Burstein D. Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. Radiology 1997;205:551–558.PubMedGoogle Scholar
  105. 105.
    Bashir A, Gray ML, Burnstein D. Gd-DTPA2—as a measure of cartilage degradation. Magn Reson Med 1996;36:665–673.PubMedGoogle Scholar
  106. 106.
    Allen RG, Burnstein D, Gray ML. Monitoring glycosaminoglycan replenishment in cartilage explants with gadolinium-enhanced magnetic resonance imaging. J Orthop Res 1999;17:430–436.PubMedGoogle Scholar
  107. 107.
    Burr DB. Anatomy and physiology of the mineralized tissues: role in the pathogenesis of osteoarthrosis. Osteoarthritis Cartilage 2004;12(suppl A):S20–30.PubMedGoogle Scholar
  108. 108.
    Martel-Pelletier J. Pathophysiology of osteoarthritis. Osteoarthritis Cartilage 2004;12(suppl A):S31–33.PubMedGoogle Scholar
  109. 109.
    Muir P, McCarthy J, Radtke CL, et al. Role of endochondral ossification of articular cartilage and functional adaptation of the subchondral plate in the development of fatigue microcracking of joints. Bone 2005.Google Scholar
  110. 110.
    Squires GR, Okouneff S, Ionescu M, Poole AR. The pathobiology of focal lesion development in aging human articular cartilage and molecular matrix changes characteristic of osteoarthritis. Arthritis Rheum 2003;48(5):1261–70.PubMedGoogle Scholar
  111. 111.
    Donohue JM, Buss D, Oegema TR Jr, Thompson RC Jr. The effects of indirect blunt trauma on adult canine articular cartilage. J Bone Joint Surg Am, 1983;65(7):948–57.Google Scholar
  112. 112.
    Jackson RW. The role of arthroscopy in diagnosis and management of osteoarthritis. In: Moskowitz RW, Howell DS, Goldberg VM, Mankin HJ, eds. Osteoarthritis, 2nd ed. Philadelphia: Saunders, 1992:527–534.Google Scholar
  113. 113.
    Recht MP, Goodwin DW, Winalski CS, White LM. MRI of articular cartilage: revisiting current status and future directions. AJR 2005;185:899–914,PubMedGoogle Scholar
  114. 114.
    Hangody L, Rathonyi GK, Duska Z, Vasarhelyi G, Fules P, Modis L. Autologous osteochondral mosaicplasty: surgical technique. J Bone Joint Surg Am 2004;86(suppl):65–72.PubMedGoogle Scholar
  115. 115.
    Pridie KH, Gordon G. A method of resurfacing osteoarthritic knee joints. J Bone Joint Surg Br 1959;41:618–619.Google Scholar
  116. 116.
    Steadman J, Rodkey W, Singleton S, Briggs K. Microfracture technique for full-thickness chondral defects: technique and clinical results. Oper Tech Orthop 1997;7:300–304.Google Scholar
  117. 117.
    Howell DS, Altman RD. Cartilage repair and conservation in osteoarthritis. Rheum Dis Clin North Am 1993;19:713–724.PubMedGoogle Scholar
  118. 118.
    Bert JM. Role of abrasion arthroplasty and debridement in the management of osteoarthritis of the knee. Rheum Dis Clin North Am 1993;19:725–739.PubMedGoogle Scholar
  119. 119.
    Berlet CG, Mascia A, Miniaci A. Treatment of unstable osteochondritis dissecans lesions of the knee using autogenous osteochondral grafts (mosaicplasty). Arthroscopy 1999;15:312–316.PubMedGoogle Scholar
  120. 120.
    Duchow J, Hess T, Kohn D. Primary stability of press-fit-implanted osteochondral grafts: influence of graft size, repeated insertion, and harvesting technique. Am J Sports Med 2000;28:24–27.PubMedGoogle Scholar
  121. 121.
    Hangody L, Kish G, Karpati Z, Eberhardt R. Osteochondral plugs: autogenous osteochondral mosaicplasty for the treatment of focal chondral and osteochondral articular defects. Oper Tech Orthop 1997;7:312–322.Google Scholar
  122. 122.
    Pearce SG, Hurtig MB, Clarnette R, Kalra M, Cowan B, Miniaci A. An investigation of 2 techniques for optimizing joint surface congruency using multiple cylindrical osteochondral autografts. Arthroscopy 2001;17:50–55.PubMedGoogle Scholar
  123. 123.
    Recht M, White LM, Winalwski CS, et al. MR imaging of cartilage repair procedures. Skeletal Radiol 2003;32:185–200.PubMedGoogle Scholar
  124. 124.
    Sanders TG, Mentzer KD, Miller MD, Morrison WB, Campbell SE, Penrod BJ. Autogenous osteochondral “plug” transfer for the treatment of focal chondral defects: postoperative MR appearance with clinical correlation. Skeletal Radiol 2001;30:570–78.PubMedGoogle Scholar
  125. 125.
    Minas T, Peterson L. Advanced techniques in autologous chondrocyte transplantation. Clin Sports Med 1999;18:13–44.PubMedGoogle Scholar
  126. 126.
    Peterson L, Minas T, Brittberg M, Nilsson A, Sjogren-Jans-son E, Lindahl A. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop 2000;374:212–234.PubMedGoogle Scholar
  127. 127.
    Peterson L, Brittberg M, Kiviranta I, Akerlund EL, Lindahl A. Autologous chondrocyte transplantation: biomechanics and long-term durability. Am J Sports Med 2002;30:2–12.PubMedGoogle Scholar
  128. 128.
    Alparslan L, Winalski CS, Boutin RD, Minas T. Postoperative magnetic resonance imaging of articular cartilage repair. Semin Msuculoskel Radiol 2001;5(4):345–363.Google Scholar
  129. 129.
    Alparslan L, Minas T, Winalski CS. Magnetic resonance imaging of autologous chondrocyte implantation. Semin Ultrasound CT MR 2001;22:341–351.PubMedGoogle Scholar
  130. 130.
    Minas T. Autologous chondrocyte implantation for focal chondral defects of the knee. Clin Orthop 2001;391S:349–361.Google Scholar
  131. 131.
    Azer N, Winalski CS, Minas T. Magnetic resonance imaging for surgical planning and postoperative assessment in early osteoarthritis. Radiol Clin North Am 2004;42:43–60.PubMedGoogle Scholar
  132. 132.
    Lawrence RC, Hochberg MC, Kelsey JL, et al. Estimates of the prevalence of selected arthritic and musculoskeletal diseases in the United States. J Rheumatol 1989;16(4):427–441.PubMedGoogle Scholar
  133. 133.
    McCauley T, Disler D, Magnetic resonance imaging of articular cartilage of the knee. J Am Acad Orthop Surg 2001;9:2–8.PubMedGoogle Scholar
  134. 134.
    Disler DG, McCauley TR, Kelman CG, et al. Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy. Am J Roentgenol 1996;167:127–132.Google Scholar
  135. 135.
    Brown WE, Potter HG, Marx RG, et al. Magnetic resonance imaging appearance of cartilage repair in the knee. Clin Orthop Rel Res 2004;422:214–223.Google Scholar
  136. 136.
    Potter H, Linklater J, Answorth A. Magnetic resonance imaging of articular cartilage in the knee: an evaluation with use of fast-spin-echo imaging. J Bone Joint Surg Am 1998;80:1276–1284.PubMedGoogle Scholar
  137. 137.
    Curl WW, Krome J, Gordon ES, et al. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 1997;13:456–460.PubMedGoogle Scholar
  138. 138.
    Hjelle K, Solheim E, Strand T, et al. Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy 2002;18:730–734.PubMedGoogle Scholar
  139. 139.
    Maffulli N, Binfield P, King J. Articular cartilage lesions in the symptomatic anterior cruciate ligament-deficient knee. Arthroscopy 2003;19:685–690.PubMedGoogle Scholar
  140. 140.
    Nomura E, Motoyasu I, Makoto K. Chondral and osteochondral injuries associated with acute patellar dislocation. Arthroscopy 2003;19:717–721.PubMedGoogle Scholar
  141. 141.
    Aroen A, Loken S, Heir S. Articular cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med 2004;32:211–215.PubMedGoogle Scholar
  142. 142.
    Drongowski R, Coran A. Wojtys E. Predictive values of meniscal and chondral injuries in conservatively treated anterior cruciate ligament injuries. Arthroscopy 1994;10:97–102.PubMedGoogle Scholar
  143. 143.
    Shelbourne KD, Jari S, Gray T. Outcome of untreated traumatic articular cartilage defects of the knee. J Bone Joint Surg Am 2003;85(2):8.PubMedGoogle Scholar
  144. 144.
    Alford JW, Cole B. Cartilage restoration. Part I. Am J Sports Med 2005;33:295–306.Google Scholar
  145. 145.
    Newman A. Current Concepts: articular cartilage repair. Am J Sports Med 1998;26: 309–324.PubMedGoogle Scholar
  146. 146.
    Buckwalter JA, Mankin HJ. Instructional Course Lectures, The AAOS-articular cartilage. Part I: tissue design and chondrocytes-matrix interactions. J Bone Joint Surg Am 1997;79:600–611.Google Scholar
  147. 147.
    Sgaglione N, Abrutyn D. Update on the treatment of osteochondral fractures and osteochondritis dissecans of the knee. Sports Med Arthrosc Rev 2003;11:222–235.Google Scholar
  148. 148.
    Terry GC, Flandry F, Van Manen JW, et al. Isolated chondral fractures of the knee. Clin Orthop Rel Res 1988;234:170–177.Google Scholar
  149. 149.
    Williams JS Jr, Bush-Joseph CA, Bach BR Jr. Osteochondritis dissecans of the knee. Am J Knee Surg 1998;11:221–232.PubMedGoogle Scholar
  150. 150.
    Graf BK, Cook DA, De Smet AA. “Bone bruises” on magnetic resonance imaging evaluation of anterior cruciate ligament injuries. Am J Sports Med 1993;21:220–223.PubMedGoogle Scholar
  151. 151.
    Hunter DJ, Zhang YQ, Niu JB, et al. The association of meniscal pathologic changes with cartilage loss in symptomatic knee osteoarthritis. Arthritis Rheum 2006;54:795–801.PubMedGoogle Scholar
  152. 152.
    Cameron ML, Briggs KK, Steadman JR, Reproducibility and reliability of the Outerbridge classification for grading chondral lesions of the knee arthroscopically. Am J Sports Med 2003;31:83–86.PubMedGoogle Scholar
  153. 153.
    Outerbridge RE. The etiology of chondromalacia patella. J Bone Joint Surg 1961;43B:752–757.Google Scholar
  154. 154.
    Insall J, Falvo K, Wise D. Chondromalacia patellae. A prospective study. J Bone Joint Surg Am 1976;58:1–8.PubMedGoogle Scholar
  155. 155.
    Noyes FR, Stabler CL. A system for grading articular cartilage lesions at arthroscopy. Am J Sports Med 1989;17(4):505–513.PubMedGoogle Scholar
  156. 156.
    Bauer M, Jackson RW. Chondral lesions of the femoral condyles: a system of arthroscopic classification. Arthroscopy 1988;4:97–102.PubMedGoogle Scholar
  157. 157.
    Hunt N, Sanchez-Ballester J, Pandit R, et al. Chondral lesions of the knee: a new localization method and correlation with associated pathology. Arthroscopy 2001;17:481–490.PubMedGoogle Scholar
  158. 158.
    Marx RG, Jones EC, Allen AA, et al. Reliability, validity, and responsiveness of four knee outcome scales for athletic patients. J Bone Joint Surg Am 2001;83:1459–1469.PubMedGoogle Scholar
  159. 159.
    Kocher M, Steadman JR, Briggs K. Reliability, validity, and responsiveness of the Lysholm knee scale for various chondral disorders of the knee. J Bone Joint Surg Am 2004;86:1139–114.PubMedGoogle Scholar
  160. 160.
    McConnell S, Kolopack P, Davis AM. The western Ontario and McMaster universities osteoarthritis Index (WOMAC): a review of its utility and measurement properties. Arthritis Rheum 2001;45:453–456.PubMedGoogle Scholar
  161. 161.
    Roos E, Roos, H, Lohmander L, et al. Knee injury and osteoarthritis outcome score (KOOS)—development of a self-administered outcome measure. J Orthop Sports Phys Ther 1998;28:88–96.PubMedGoogle Scholar
  162. 162.
    Brittberg M. ICRS clinical cartilage injury evaluation system. Third ICRS Meeting, April 28, 2000.Google Scholar
  163. 163.
    Wilson JN. A diagnostic sign in osteochondritis dissecans of the knee. J Bone Joint Surg Am 1967;49:477–480.PubMedGoogle Scholar
  164. 164.
    Hardaker W, Garrett W, Bassett F. Evaluation of acute traumatic hemarthrosis of the knee joint. South Med J 1990;83;640–644.PubMedGoogle Scholar
  165. 165.
    Guilak F, Fermor B, Keefe F. The role of biomechanics and inflammation in cartilage injury and repair. Clin Orthop Rel Res 2004;423:17–26.Google Scholar
  166. 166.
    O'Driscoll S. The healing and regeneration of articular cartilage. J Bone Joint Surg Am 1998;80:1795–1807.PubMedGoogle Scholar
  167. 167.
    Vachon A, Bronlage L, Gabel A, et al. Evaluation of the repair process of cartilage defects of the equines third carpal bone with and without subchondral bone perforation. Am J Vet Res 1986;4:2637–2645.Google Scholar
  168. 168.
    Kim HKW, Moran ME, Salter RB. The potential for regeneration of articular cartilage in defects created by chondral shaving and subchondral abrasion. An experimental investigation in rabbits. J Bone Joint Surg Am 1991;73:1301–1315.PubMedGoogle Scholar
  169. 169.
    Mithoefer K, Williams R, Warren R, et al. The microfracture technique for the treatment of articular cartilage lesions in the knee: a prospective cohort study. J Bone Joint Surg Am 2005;87:1911–1920.PubMedGoogle Scholar
  170. 170.
    Hangody L, Fules P. Autologous osteochondral mosaicplasty for the treatment of full thickness defects of weight-bearing joints; ten years of experimental and clinical experience. J Bone Joint Surg Am 2003;85:25–32.PubMedGoogle Scholar
  171. 171.
    Barber A, Chow J. Arthroscopic osteochondral transplantation: histologic results. Arthroscopy 2001;17:832–835.PubMedGoogle Scholar
  172. 172.
    Chow JC, Hantes M, Houle JB. Arthroscopic autogenous osteochondral transplantation for treating knee cartilage defects: a 2 to 5 year followup study. Arthroscopy 2004;20:681–690.PubMedGoogle Scholar
  173. 173.
    Horas U, Pelinkovic D, Aigner T. Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint: a prospective comparative trial. J Bone Joint Surg Am 2003;85:185–192.PubMedGoogle Scholar
  174. 174.
    Evans P, Miniaci A, Hurtig M. Manual punch versus power harvesting of osteochondral grafts. Arthroscopy 2004;20:306–310.PubMedGoogle Scholar
  175. 175.
    Gudas R, Stankevicius E, Monastyreckiene E, et al. Osteochondral autologous transplantation versus microfracture for the treatment of articular cartilage defects in the knee joint in athletes. Knee Surg Sports Traumatol Arthrosc 2006.Google Scholar
  176. 176.
    Duchow J, Hess T, Kohn D. Primary stability of press-fit implanted osteochondral grafts. Am J Sports Med 2000;28:24–27.PubMedGoogle Scholar
  177. 177.
    LaPrade RF, Botker JC. Donor-site morbidity after osteochondral autograft transfer procedures. Arthroscopy 2004;20:69–73.Google Scholar
  178. 178.
    Gross A, Shasha N, Aubin P. Long-term follow-up of the use of fresh osteochondral allografts for the posttraumatic knee defects. Clin Orthop Rel Res 2005;435:79–87.Google Scholar
  179. 179.
    Jamali A, Emmerson B, Chung C, et al. Fresh osteochondral allografts. Clin Orthop Rel Res 2005;437:176–185.Google Scholar
  180. 180.
    Glenn E, McCarty E, Potter H. Comparison of fresh osteochondral autografts and allografts: a canine model. Am J Sports Med 2006;34(7):1084–1093.PubMedGoogle Scholar
  181. 181.
    Sgaglione N, Miniaci A, Gillogly S, Carter T. Update on advanced surgical techniques in the treatment of traumatic focal articular cartilage lesions of the knee. Arthroscopy 2002;18:9–32.PubMedGoogle Scholar
  182. 182.
    Peterson L, Brittberg M, Kiviranta I, et al. Autologous chondrocyte transplantation; biomechanics and long-term durability. Am J Sports Med 2002;30:2–12.PubMedGoogle Scholar
  183. 183.
    Peterson L, Minas T, Brittberg M, Lindahl A. Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation. J Bone Joint Surg Am 2003;85:17–24.PubMedGoogle Scholar
  184. 184.
    Minas T, Peterson L. Advanced techniques in autologous chondrocyte transplantation. Clin Sports Med 1999;18:13–44.PubMedGoogle Scholar
  185. 185.
    Knutsen G, Engbretsen L, Ludvigsen T. Autologous chondrocyte implantation compared with microfracture in the knee: a randomized trial. J Bone Joint Surg Am 2004;86:455–464.PubMedGoogle Scholar
  186. 186.
    Kang HJ, Han C, Kang E, et al. An experimental intraarticular implantation of woven carbon fiber pad into osteochondral defect of the femoral condyle in rabbit. Yonsei Med J 1991;32:108–116.PubMedGoogle Scholar
  187. 187.
    Minnus RJ, Flynn M. Intraarticular implant of filamentous carbon fiber in the experimental animal. J Bioeng 1978;2:279–286.Google Scholar
  188. 188.
    Minnus RJ, Muckle DS, Donkin JE. The repair of osteochondral defects in osteoarthritic rabbit knees by the use of carbon fiber. Biomaterials 1982;3:81–86.Google Scholar
  189. 189.
    Robinson D, Efrat M, Mendes D, et al. Implants composed of carbon fiber mesh and bone-marrow derived chondrocyte-enriched cultures for joint surface reconstruction. Bull Hosp Joint Dis 1993;53:75–82.Google Scholar
  190. 190.
    Sgaglione N. The future of cartilage restoration. J Knee Surg 2004;17:235–243.PubMedGoogle Scholar
  191. 191.
    Bruder S. Current and emerging technologies in orthopaedic tissue engineering. Clin Ortho Rel Res 1999;376:S406–409.Google Scholar
  192. 192.
    Grande D, Mason J, Dines D. Stem cells as platforms for delivery of genes to enhance cartilage grafts. J Bone Joint Surg Am 2003;85:111–116PubMedGoogle Scholar
  193. 193.
    Hannallah D, Peterson B, Lieberman JR, et al. Gene therapy in orthopaedic surgery. Instr Course Lect 2003;2:70–76.Google Scholar
  194. 194.
    Jackson D, Scheer M, Simon T. Tissue engineering principles in orthopaedic surgery. Clin Orthop Rel Res 2001;9:37–52.Google Scholar
  195. 195.
    Muschler GF, Nakamoto C, Griffith LG. Engineering principles of clinical-cell based tissue engineering. J Bone Joint Surg Am 2004;86:1541–1558.PubMedGoogle Scholar
  196. 196.
    Wright R, Boyce RH, Michener T. Radiographs are not useful in detecting arthroscopically confirmed mild chondral damage. Clin Orthop Rel Res 2006;442:245–251.Google Scholar
  197. 197.
    Recht M, Bobic V, Burstein D, Magnetic resonance imaging of articular cartilage. Clin Orth Rel Res 2001;391:S379–396.Google Scholar
  198. 198.
    Alparslan L, Winalski CS, Boutin R. Postoperative magnetic resonance imaging of articular cartilage repair. Semin Musculoskeletal Radiol 2001;5:345–363.Google Scholar
  199. 199.
    Chung C, Frank L, Resnick D. Cartilage imaging techniques: current clinical application and state of the art imaging. Clin Orthop Rel Res 2001;391:S370–378.Google Scholar
  200. 200.
    Winalski CS, Mina T. Evaluation of chondral injuries by magnetic resonance imaging: repair assessments. Oper Tech Sports Med 2000;8:108–119.Google Scholar
  201. 201.
    Guettler JH, Demetropoulos CK, Yang, KH, et al. Osteochondral defects in the human knee: Influence of defect size on cartilage rim stress and load redistribution to surrounding cartilage. Am J Sports Med 2004;32:1451–1458.PubMedGoogle Scholar
  202. 202.
    Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994;331:889–895.PubMedGoogle Scholar
  203. 203.
    Minas T, Nehrer S. Current concepts in the treatment of articular cartilage defects. Orthopedics 1997;20:525–538.PubMedGoogle Scholar
  204. 204.
    Bashir A, Gray, MI, Boutin RD, et al. Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)2-enhanced MR imaging, Radiology 1997;205:551–558.PubMedGoogle Scholar
  205. 205.
    Burstein D, Gray M. Potential of molecular imaging of cartilage, Sport Med Arthrosc Rev 2003;11:182–191.Google Scholar
  206. 206.
    Mosher TJ, Dardzinski BJ, Smith MB. Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2—preliminary findings at 3 T. Radiology 2000;214:259–266.PubMedGoogle Scholar
  207. 207.
    Mosher T, Smith H, Collins C, et al. Change in knee cartilage T2 at MR imaging after running: a feasibility study. Radiology 2005;234:245–249.PubMedGoogle Scholar
  208. 208.
    Wheaton AJ, Borthakur A, Dodge GR. Sodium magnetic resonance imaging of proteoglycan depletion in an in vivo model of osteoarthritis. Acad Radiol 2004;11:21–28.PubMedGoogle Scholar
  209. 209.
    Insko EK, Reddy R, Leigh JS. High resolution, short echo time sodium imaging of articular cartilage. J Magn Reson Imaging 1997;7:1056–1059.PubMedGoogle Scholar
  210. 210.
    Burstein D, Gray M. New MRI techniques for imaging cartilage. J Bone Joint Surg Am 2003;85:70–77.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • Hamid Torshizy
    • 1
  • Garry E. Gold
    • 2
  • Christine B. Chung
    • 3
  • Michael J. Angel
    • 4
  • Nicholas A. Sgaglione
    • 5
  • Steve Sharon
    • 6
  1. 1.Division of Musculoskeletal Radiology, Department of RadiologyUniversity of California San Diego School of Medicine and VA San Diego Healthcare SystemsSan DiegoUSA
  2. 2.Department of RadiologyStanford University School of MedicineStanfordUSA
  3. 3.Department of RadiologyUniversity of CaliforniaSan DiegoUSA
  4. 4.Department of Orthopaedic SurgeryLong Island Jewish Medical CenterNew Hyde ParkUSA
  5. 5.Department of OrthopaedicsNorth Shore University HospitalGreat NeckUSA
  6. 6.Musculosketetal MRIAtlantic Radiologic ImagingStaten IslandUSA

Personalised recommendations