A. Radiologic Perspective: Magnetic Resonance Imaging of the Knee
B. Orthopedic Perspective: Knee Disorders
  • Theodore T. Miller
  • Robert A. Pedowitz
  • Ali Dalal
  • Catherine Robertson
  • Ryan Serrano

In most radiology practices, the knee is the most commonly imaged joint in the appendicular skeleton. There is wide variation in the field strengths of clinical magnets (ranging from 0.2 to 3 tesla [T]), the configuration of the magnets (open or closed), the sequences (e.g., T1, T2, proton density, conventional spin echo, fast spin echo, gradient echo), and slice thicknesses used to image the knee, as well as a wide variety in the skill of the radiologist interpreting the images. All of these factors have bearing on the accuracy of the magnetic resonance (MR) examination as well as the anecdotal usefulness of this modality to the referring physician. Nonetheless, Glynn et al., using Medicare data on reimbursements between 1993 and 1999, found a 145% increase in performance of magnetic resonance imaging (MRI) of the lower extremity and a 54.5% decrease in performance of diagnostic arthroscopy of the knee, suggesting an increasingly greater reliance by clinicians on MRI to provide diagnostic information. Similarly, Bryan et al. found that the use of MRI in the diagnostic evaluation of patients with chronic knee complaints significantly reduced the need for surgery.


Anterior Cruciate Ligament Anterior Cruciate Ligament Reconstruction Posterior Cruciate Ligament Patellar Tendon Medial Collateral Ligament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fischer SP, Fox JM, Del Pizzo W. Accuracy of diagnosis from magnetic resonance imaging of the knee. A multi-center analysis of one thousand and fourteen patients. J Bone Joint Surg [Am] 1991;73:2–10.Google Scholar
  2. 2.
    Glynn N, Morrison WB, Parker L, et al. Trends in utilization: has extremity MR imaging replaced diagnostic arthroscopy? Skeletal Radiol 2004;33:272–276.PubMedGoogle Scholar
  3. 3.
    Bryan S, Bungay H P, Weatherburn G, et al. Magnetic resonance imaging for investigation of the knee joint: a clinical and economic evaluation. Int J Technol Assess Health Care 2004;20:222–229.PubMedGoogle Scholar
  4. 4.
    Gelb JH, Glasgow SG, Sapega AA. Magnetic resonance imaging of knee disorders. Clinical value and cost-effectiveness in a sports medicine practice. Am J Sports Med 1996;24:99–103.PubMedGoogle Scholar
  5. 5.
    Rose NE, Gold SM. A comparison of accuracy between clinical examination and magnetic resonance imaging in the diagnosis of meniscal and anterior cruciate ligament tears. Arthroscopy 1996;12:398–405.PubMedGoogle Scholar
  6. 6.
    Kocabey Y, Tetik O, Isbell WM. The value of clinical examination versus magnetic resonance imaging in the diagnosis of meniscal tears and anterior cruciate ligament rupture. Arthros-copy 2004;20:696–700.Google Scholar
  7. 7.
    Campbell JD. The evolution and current treatment trends with anterior cruciate, posterior cruciate, and medial collateral ligament injuries. Am J Knee Surg 1998;11:128–135.PubMedGoogle Scholar
  8. 8.
    Alioto RJ, Browne JE, Barnthouse CD. The influence of MRI on treatment decisions regarding knee injuries. Am J Knee Surg 1999;12:91–97.PubMedGoogle Scholar
  9. 9.
    Munshi M, Davidson M, MacDonald PB. The efficacy of magnetic resonance imaging in acute knee injuries. Clin J Sports Med 2000;10:34–39.Google Scholar
  10. 10.
    Treishmann HW Jr, Mosure JC. The impact of magnetic resonance imaging of the knee on surgical decision making. Arthros-copy 1996;12:550–555.Google Scholar
  11. 11.
    Twaddle BC, Hunter JC, Chapman JR. MRI in acute knee dislocation. J Bone Joint Surg [Br] 1996;78:573–579.Google Scholar
  12. 12.
    Sherman PM, Penrod BJ, Lane MJ. Comparison of knee magnetic resonance imaging findings in patients referred by orthopaedic surgeons versus nonorthopaedic practitioners. Arthroscopy 2002;18:201–205.PubMedGoogle Scholar
  13. 13.
    Bernstein J, Cain EL, Kneeland JB, et al. The incidence of pathology detected by magnetic resonance imaging of the knee: differences based on the specialty of the requesting physician. Orthopedics 2003;26:483–485.PubMedGoogle Scholar
  14. 14.
    Miller TT, Stein BE, Staron RB, et al. Relationship of the meniscofemoral ligaments of the knee to lateral meniscus tears: magnetic resonance imaging evaluation. Am J Orthop 1998;27:729–732.PubMedGoogle Scholar
  15. 15.
    Rankin M, Noyes FR, Barber-Westin SD, et al. Human meniscus allografts' in vivo size and motion characteristics: magnetic resonance imaging assessment under weightbearing conditions. Am J Sports Med 2006;34:98–107.PubMedGoogle Scholar
  16. 16.
    Vedi V, Williams A, Tennant SJ, et al. Meniscal movement. An in-vivo study using dynamic MRI. J Bone Joint Surg [Br] 1999;81:37–41.Google Scholar
  17. 17.
    Fukuta S, Masaki K, Korai F. Prevalence of abnormal findings in magnetic resonance images of asymptomatic knees. J Orthop Sci 2002;7:287–291.PubMedGoogle Scholar
  18. 18.
    Rohren EM, Kosarek FJ, Helms CA. Discoid lateral meniscus and the frequency of meniscal tears. Skeletal Radiol 2001;30: 316–320.PubMedGoogle Scholar
  19. 19.
    Silverman JM, Mink JH, Deutsch AL. Discoid menisci of the knee: MR imaging appearance. Radiology 1989;173:351–354.PubMedGoogle Scholar
  20. 20.
    Singh K, Helms CA, Jacobs MT, et al. MRI appearance of Wris-berg variant of discoid lateral meniscus. AJR Am J Roentgenol 2006;187:384–387.PubMedGoogle Scholar
  21. 21.
    Araki Y, Tanaka H, Yamamoto H. MR imaging of pigmented vil-lonodular synovitis of the knee. Radiat Med 1994;12:11–15.PubMedGoogle Scholar
  22. 22.
    Klingele KE, Kocher MS, Hresko MT. Discoid lateral meniscus: prevalence of peripheral rim instability. Pediatr Orthop 2004;24:79–82.Google Scholar
  23. 23.
    Bin SI, Kim JC, Kim JM. Correlation between type of discoid lateral menisci and tear pattern. Knee Surg Sports Traumatol Arthrosc 2002;10:218–222.PubMedGoogle Scholar
  24. 24.
    Stark JE, Siegel MJ, Weinberger E. Discoid menisci in children: MR features. J Comput Assist Tomogr 1995;19:608–611.PubMedGoogle Scholar
  25. 25.
    Araki Y, Ashikaga R, Fujii K. MR imaging of meniscal tears with discoid lateral meniscus. Eur J Radiol 1998;27:153–160.PubMedGoogle Scholar
  26. 26.
    Ryu KN, Kim IS, Kim EJ. MR imaging of tears of discoid lateral menisci. AJR 1998;171:963–967.PubMedGoogle Scholar
  27. 27.
    Park JS, Ryu KN, Yoon KH. Meniscal flounce on knee MRI: correlation with meniscal locations after positional changes. AJR Am J Roentgenol 2006;187:364–370.PubMedGoogle Scholar
  28. 28.
    De Smet AA, Norris MA, Yandow DR. MR diagnosis of menis-cal tears of the knee: importance of high signal in the meniscus that extends to the surface. AJR 1993;161:101–107.PubMedGoogle Scholar
  29. 29.
    Crues JV 3rd, Mink J, Levy TL. Meniscal tears of the knee: accuracy of MR imaging. Radiology 1987;164:445–448.PubMedGoogle Scholar
  30. 30.
    Stoller DW, Martin C, Crues J V. Meniscal tears: pathologic correlation with MR imaging. Radiology 1987;163:731–735.PubMedGoogle Scholar
  31. 31.
    Anderson MW, Raghavan N, Seidenwurm DJ. Evaluation of meniscal tears: fast spin-echo versus conventional spin-echo magnetic resonance imaging. Acad Radiol 1995;2:209–214.PubMedGoogle Scholar
  32. 32.
    Magee T, Shapiro M, Williams D. Usefulness of simultaneous acquisition of spatial harmonics technique for MRI of the knee. AJR 2004;182:1411–1415.PubMedGoogle Scholar
  33. 33.
    Reeder JD, Matz SO, Becker L. MR imaging of the knee in the sagittal projection: comparison of three-dimensional gradient-echo and spin-echo sequences. AJR 1989;153:537–540.PubMedGoogle Scholar
  34. 34.
    Cotten A, Delfaut E, Demondion X, et al. MR imaging of the knee at 0.2 and 1.5 T: correlation with surgery. AJR Am J Roent-genol 2000;174:1093–1097.Google Scholar
  35. 35.
    James P, Buirski G. MR imaging of the knee:a prospective trial using a low field strength magnet. Australas Radiol 1990;34:59–63.PubMedGoogle Scholar
  36. 36.
    Magee T, Williams D. 3.0-T MRI of meniscal tears. AJR Am J Roentgenol 2006;187:371–375.PubMedGoogle Scholar
  37. 37.
    De Smet AA, Graf BK. Meniscal tears missed on MR imaging: relationship to meniscal tear patterns and anterior cruciate ligament tears. AJR 1994;162:905–911.PubMedGoogle Scholar
  38. 38.
    Jee WH, McCauley TR, Kim JM. Magnetic resonance diagnosis of meniscal tears in patients with acute anterior cruciate ligament tears. J Comput Assist Tomogr 2004;28:402–406.PubMedGoogle Scholar
  39. 39.
    Magee T, Shapiro M, Williams D. Prevalence of meniscal radial tears of the knee revealed by MRI after surgery. AJR 2004;182:931–936.PubMedGoogle Scholar
  40. 40.
    Weiss KL, Morehouse HT, Levy IM. Sagittal MR images of the knee: a low-signal band parallel to the posterior cruciate ligament caused by a displaced bucket-handle tear. AJR 1991;156:117–119.PubMedGoogle Scholar
  41. 41.
    Dorsay TA, Helms CA. Bucket-handle meniscal tears of the knee: sensitivity and specificity of MRI signs. Skeletal Radiol 2003;32:266–272.PubMedGoogle Scholar
  42. 42.
    Singson RD, Feldman F, Staron R. MR imaging of displaced bucket-handle tear of the medial meniscus. AJR 1991;156:121–124.PubMedGoogle Scholar
  43. 43.
    Lerer DB, Umans HR, Hu MX, et al. The role of meniscal root pathology and radial meniscal tear in medial meniscal extrusion. Skeletal Radiol 2004;33:569–574.PubMedGoogle Scholar
  44. 44.
    Costa CR, Morrison WB, Carrino JA. Medial meniscus extrusion on knee MRI: is extent associated with severity of degeneration or type of tear? AJR Am J Roentgenol 2004;183:17–23.PubMedGoogle Scholar
  45. 45.
    Brody JM, Lin HM, Hulstyn MJ, et al. Lateral meniscus root tear and meniscus extrusion with anterior cruciate ligament tear. Radiology 2006;239:805–810.PubMedGoogle Scholar
  46. 46.
    De Maeseneer M, Shahabpour M, Vanderdood K. Medial menis-cocapsular separation: MR imaging criteria and diagnostic pitfalls. Eur J Radiol 2002;41:242–252.PubMedGoogle Scholar
  47. 47.
    Zanetti M, Pfirrmann CW, Schmid MR, et al. Patients with suspected meniscal tears: prevalence of abnormalities seen on MRI of 100 symptomatic and 100 contralateral asymptomatic knees. AJR Am J Roentgenol 2003;181:635–641.PubMedGoogle Scholar
  48. 48.
    Simonian PT, Sussmann PS, Wickiewicz TL, et al. Popliteomeniscal fasciculi and the unstable lateral meniscus: clinical correlation and magnetic resonance diagnosis. Arthroscopy 1997;13:590–596.PubMedGoogle Scholar
  49. 49.
    LaPrade RF, Konowalchuk BK. Popliteomeniscal fascicle tears causing symptomatic lateral compartment knee pain: diagnosis by the figure-4 test and treatment by open repair. Am J Sports Med 2005;33:1231–1236.PubMedGoogle Scholar
  50. 50.
    Johnson RL, De Smet AA. MR visualization of the popliteo-meniscal fascicles. Skeletal Radiol 1999;28:561–566.PubMedGoogle Scholar
  51. 51.
    De Smet AA, Asinger DA, Johnson RL. Abnormal superior pop-liteomeniscal fascicle and posterior pericapsular edema: indirect MR imaging signs of a lateral meniscal tear. AJR Am J Roent-genol 2001;176:63–66.Google Scholar
  52. 52.
    Boxheimer L, Lutz AM, Zanetti M, et al. Characteristics of dis-placeable and nondisplaceable meniscal tears at kinematic MR imaging of the knee. Radiology 2006;238:221–231.PubMedGoogle Scholar
  53. 53.
    Vande Berg BC, Poilvache P, Duchateau F, et al. Lesions of the menisci of the knee: value of MR imaging criteria for recognition of unstable lesions. AJR Am J Roentgenol 2001;176:771–776.Google Scholar
  54. 54.
    Campbell SE, Sanders TG, Morrison WB. MR imaging of meniscal cysts: incidence, location, and clinical significance. AJR 2001;177:409–413.PubMedGoogle Scholar
  55. 55.
    McCarthy CL, McNally EG. The MRI appearance of cystic lesions around the knee. Skeletal Radiol 2004;33:187–209.PubMedGoogle Scholar
  56. 56.
    Tyson LL, Daughters TC Jr, Ryu RK. MRI appearance of menis-cal cysts. Skeletal Radiol 1995;24:421–424.PubMedGoogle Scholar
  57. 57.
    Blair TR, Schweitzer M, Resnick D. Meniscal cysts causing bone erosion: retrospective analysis of seven cases. Clin Imaging 1999;23:134–138.PubMedGoogle Scholar
  58. 58.
    Lee W, Kim HS, Kim SJ. CT arthrography and virtual arthroscopy in the diagnosis of the anterior cruciate ligament and meniscal abnormalities of the knee joint. Korean J Radiol 2004;5:47–54.PubMedGoogle Scholar
  59. 59.
    Vande Berg BC, Lecouvet FE, Poilvache P. Anterior cruciate ligament tears and associated meniscal lesions: assessment at dual-detector spiral CT arthrography. Radiology 2002;223:403–409.Google Scholar
  60. 60.
    Vande Berg BC, Lecouvet FE, Poilvache P. Dual-detector spiral CT arthrography of the knee: accuracy for detection of meniscal abnormalities and unstable meniscal tears. Radiology 2000;216:851–857.Google Scholar
  61. 61.
    Deutsch AL, Mink JH, Fox JM. Peripheral meniscal tears: MR findings after conservative treatment or arthroscopic repair. Radiology 1990;176:485–488.PubMedGoogle Scholar
  62. 62.
    Lim PS, Schweitzer ME, Bhatia M. Repeat tear of postoperative meniscus: potential MR imaging signs. Radiology 1999;210:183–188.PubMedGoogle Scholar
  63. 63.
    Farley TE, Howell SM, Love KF. Meniscal tears: MR and arthrographic findings after arthroscopic repair. Radiology 1991;180:517–522.PubMedGoogle Scholar
  64. 64.
    Kent RH, Pope CF, Lynch JK. Magnetic resonance imaging of the surgically repaired meniscus: six-month follow-up. Magn Reson Imaging 1991;9:335–341.PubMedGoogle Scholar
  65. 65.
    Applegate GR, Flannigan BD, Tolin BS. MR diagnosis of recurrent tears in the knee: value of intraarticular contrast material. AJR 1993;161:821–825.PubMedGoogle Scholar
  66. 66.
    Sciulli RL, Boutin RD, Brown RR. Evaluation of the postoperative meniscus of the knee: a study comparing conventional arthrography, conventional MR imaging, MR arthrography with iodinated contrast material, and MR arthrography with gadolinium-based contrast material. Skeletal Radiol 1999;28:508–514.PubMedGoogle Scholar
  67. 67.
    Magee T, Shapiro M, Rodriguez J. MR arthrography of postoperative knee: for which patients is it useful? Radiology 2003;229:159–163.PubMedGoogle Scholar
  68. 68.
    Mutschler C, Vande Berg BC, Lecouvet FE. Postoperative meniscus: assessment at dual-detector row spiral CT arthrography of the knee. Radiology 2003;228:635–641.PubMedGoogle Scholar
  69. 69.
    Vives MJ, Homesley D, Ciccotti MG. Evaluation of recurring meniscal tears with gadolinium-enhanced magnetic resonance imaging: a randomized, prospective study. Am J Sports Med 2003;31:868–873.PubMedGoogle Scholar
  70. 70.
    White LM, Schweitzer ME, Weishaupt D. Diagnosis of recurrent meniscal tears: prospective evaluation of conventional MR imaging, indirect MR arthrography, and direct MR arthrography. Radiology 2002;222:421–429.PubMedGoogle Scholar
  71. 71.
    Hantes ME, Zachos VC, Zibis AH. Evaluation of meniscal repair with serial magnetic resonance imaging: a comparative study between conventional MRI and indirect MR arthrography. Eur J Radiol 2004;50:231–237.PubMedGoogle Scholar
  72. 72.
    Potter HG, Rodeo SA, Wickiewicz TL. MR imaging of meniscal allografts: correlation with clinical and arthroscopic outcomes. Radiology 1996;198:509–514.PubMedGoogle Scholar
  73. 73.
    Noyes FR, Westin-Barber SD, Rankin M. Meniscal transplantation in symptomatic patients less than fifty years old. J Bone Joint Surg 2004;86:1392–1404.PubMedGoogle Scholar
  74. 74.
    Verdonk PC, Verstraete KL, Almqvist KF,et al. Meniscal allograft transplantation: long-term clinical results with radiological and magnetic resonance imaging correlations. Knee Surg Sports Traumatol Arthrosc 2006;7:1–13.Google Scholar
  75. 75.
    Wirth CJ, Peters G, Milachowski KA. Long-term results of meniscal allograft transplantation. Am J Sports Med 2002;30: 174–181.PubMedGoogle Scholar
  76. 76.
    Barry K P, Mesgarzadeh M, Triolo R. Accuracy of MRI patterns in evaluating anterior cruciate ligament tears. Skeletal Radiol 1996;25:365–370.PubMedGoogle Scholar
  77. 77.
    Lerman JE, Gray DS, Schweitzer ME, et al. MR evaluation of the anterior cruciate ligament: value of axial images. J Comput Assist Tomogr 1995;19:604–607.PubMedGoogle Scholar
  78. 78.
    Mellado JM, Calmet J, Olona M. Magnetic resonance imaging of anterior cruciate ligament tears: reevaluation of quantitative parameters and imaging findings including simplified method for measuring the anterior cruciate ligament angle. Knee Surg Sports Traumatol Arthrosc 2004;12:217–224.PubMedGoogle Scholar
  79. 79.
    Murao H, Morishita S, Nakajima M. Magnetic resonance imaging if the anterior cruciate ligament (ACL) tears: diagnostic value of ACL-tibial plateau angle. J Orthop Sci 3:1998;10–17.PubMedGoogle Scholar
  80. 80.
    Katahira K, Yamashita Y, Takahashi M. MR imaging of the anterior cruciate ligament: value of thin slice direct oblique coronal technique. Radiat Med 2001;19:1–7.PubMedGoogle Scholar
  81. 81.
    Hong SH, Choi JY, Lee GK. Grading of anterior cruciate ligament injury. diagnostic efficacy of oblique coronal magnetic resonance imaging of the knee. J Comput Assist Tomogr 2003;27:814– 819.PubMedGoogle Scholar
  82. 82.
    Huang GS, Chain-Her K, Chan WP. Acute anterior cruciate ligament stump entrapment in anterior cruciate ligament tears: MR imaging appearance. Radiology 2002;225:537–540.PubMedGoogle Scholar
  83. 83.
    Chen WT, Shih TT, Tu HY. Partial and complete tear of the anterior cruciate ligament. Acta Radiol 20021;43:511–516.Google Scholar
  84. 84.
    Umans H, Wimpfheimer O, Haramati N. Diagnosis of partial tears of the anterior cruciate ligament of the knee: value of MR imaging. AJR 1995;165:893–897.PubMedGoogle Scholar
  85. 85.
    Yao L, Gentili A, Petrus L, et al. Partial ACL rupture: an MR diagnosis? Skeletal Radiol 1995;24:247–51.PubMedGoogle Scholar
  86. 86.
    Garcia-Alvarez F, Garcia-Pequerul JM, Avila JL. Ganglion cysts associated with cruciate ligaments of the knee: a possible cause of recurrent knee pain. Acta Orthop Belg 2000;66:490–494.PubMedGoogle Scholar
  87. 87.
    Krudwig WK, Schulte KK, Heinemann C. Intra-articular ganglion cysts of the knee joint: a report of 85 cases and review of the literature. Knee Surg Sports Traumatol Arthrosc 2004;12: 123–129.PubMedGoogle Scholar
  88. 88.
    Recht MP, Applegate G, Kaplan P. The MR appearance of cruciate ganglion cysts: a report of 16 cases. Skeletal Radiol 1994;23:597–600.PubMedGoogle Scholar
  89. 89.
    McIntyre J, Moelleken S, Tirman S. Mucoid degeneration of the anterior cruciate ligament mistaken for ligamentous tears. Skeletal Radiol 2001;30:312–315.PubMedGoogle Scholar
  90. 90.
    Narvekar A, Gajjar S. Mucoid degeneration of the anterior cruciate ligament. Arthroscopy 2004;20:141–146.PubMedGoogle Scholar
  91. 91.
    Friedl W, Glaser F. Dynamic sonography in the diagnosis of ligament and meniscal injuries of the knee. Arch Orthop Trauma Surg 1991;110:132–138.PubMedGoogle Scholar
  92. 92.
    Gebhard F, Authenrieth M, Strecker W. Ultrasound evaluation of gravity induced anterior drawer following anterior cruciate ligament lesion. Knee Surg Sports Traumatol Arthrosc 1999;7:166–172.PubMedGoogle Scholar
  93. 93.
    Goldman AB, Pavlov H, Rubenstein D. The second fracture of the proximal tibia: a small avulsion that reflects major ligamen-tous damage. AJR 1988;151:1163–1170.PubMedGoogle Scholar
  94. 94.
    Davis DS, Post WR. Segond fractures: lateral capsular ligament avulsion. J Orthop Sports Phys Ther 1997;25:103–106.PubMedGoogle Scholar
  95. 95.
    Weber WN, Neumann CH, Barakos JA. Lateral tibial rim (Segond) fractures: MR imaging characteristics. Radiology 1991;180:731–734.PubMedGoogle Scholar
  96. 96.
    Remer EM, Fitzgerald SW, Friedman H. Anterior cruciate ligament injury: MR imaging diagnosis and patterns of injury. RadioGraphics 1992;12:901–915.PubMedGoogle Scholar
  97. 97.
    Snearly WN, Kaplan PA, Dussault RG. Lateral-compartment bone contusions in adolescents with intact anterior cruciate ligaments. Radiology 1996;198:205–208.PubMedGoogle Scholar
  98. 98.
    Lee K, Siegel MJ, Lau DM. Anterior cruciate ligament tears: MR imaging-based diagnosis in a pediatric population. Radiology 1999;213:697–704.PubMedGoogle Scholar
  99. 99.
    Johnson DL, Urban WP Jr, Caborn DN. Articular cartilage changes seen with magnetic resonance imaging-detected bone bruises associated with acute anterior cruciate ligaments rupture. Am J Sports Med 1998;26:409–414.PubMedGoogle Scholar
  100. 100.
    Costa-Paz M, Muscolo DL, Ayerza MA. Magnetic resonance imaging follow-up study of bone bruises associated with anterior cruciate ligament ruptures. Arthroscopy 2001;17: 445–449.PubMedGoogle Scholar
  101. 101.
    Vellet AD, Marks PH, Fowler PJ. Occult posttraumatic osteo-chondral lesions of the knee: prevalence, classification, and short-term sequelae evaluated with MR imaging. Radiology 1991;178:271–276.PubMedGoogle Scholar
  102. 102.
    Chan KK, Resnick D, Goodwin D. Posteromedial tibial plateau injury including avulsion fracture of the semimem-branosus tendon insertion site: ancillary sign of anterior cruciate ligament tear at MR imaging. Radiology 1999;211: 754–758.PubMedGoogle Scholar
  103. 103.
    Kaplan PA, Gehl RH, Dussault RG. Bone contusions of the posterior lip of the medial tibial plateau (countercoup injury) and associated internal derangements of the knee at MR imaging. Radiology 1999;211:747–753.PubMedGoogle Scholar
  104. 104.
    Gentili A, Seeger LL, Yao L. Anterior cruciate ligament tear: indirect signs at MR imaging. Radiology 1994;193:835–840.PubMedGoogle Scholar
  105. 105.
    Robertson PL, Schweitzer ME, Bartolozzi AR. Anterior cruciate ligament tears: evaluation of multiple signs with MR imaging. Radiology 1994;193:829–834.PubMedGoogle Scholar
  106. 106.
    Tung GA, Davis LM, Wiggins ME. Tears of the anterior cruciate ligament: primary and secondary signs at MR imaging. Radiology 1993;188:661–667.PubMedGoogle Scholar
  107. 107.
    Vahey TN, Broome DR, Kayes KJ. Acute and chronic tears of the anterior cruciate ligament: differential features at MR imaging. Radiology 1991;181:251–253.PubMedGoogle Scholar
  108. 108.
    Dimond PM, Fadale PD, Hulstyn MJ. A comparison of MRI findings in patients with acute and chronic ACL tears. Am J Knee Surg 1998;11:153–159.PubMedGoogle Scholar
  109. 109.
    Nakauchi M, Kurosawa H, Kawakami A. Abnormal lateral notch in knees with anterior cruciate ligament injury. J Orthop Sci 2000;5:92–95.PubMedGoogle Scholar
  110. 110.
    Cobby MJ, Schweitzer ME, Resnick D. The deep lateral femoral notch: an indirect sign of a torn anterior cruciate ligament. Radiology 1992;184:855–858.PubMedGoogle Scholar
  111. 111.
    McCauley TR. MR imaging evaluation of the postoperative knee. Radiology 2005;234:53–61.PubMedGoogle Scholar
  112. 112.
    Tomczak RJ, Hehl G, Mergo PJ. Tunnel placement in anterior cruciate ligament reconstruction: MRI analysis as an important risk factor in the radiological report. Skeletal Radiol 1997;26:409–413.PubMedGoogle Scholar
  113. 113.
    Warden WH, Friedman R, Teresi LM. Magnetic resonance imaging of bioabsorbable polylactic acid interference screws during the first 2 years after anterior cruciate ligament reconstruction. Arthroscopy 1999;15:474–480.PubMedGoogle Scholar
  114. 114.
    Lajtai G, Noszian I, Humer K. Serial magnetic resonance imaging evaluation of operative site after fixation of patel-lar tendon graft with bioabsorbable interference screws in anterior cruciate ligament reconstruction. Arthroscopy 1999;15:709–718.PubMedGoogle Scholar
  115. 115.
    Horton KL, Jacobson JA, Lin J. MR imaging of anterior cruciate ligament reconstruction graft. AJR 2000;175:1091–1097.PubMedGoogle Scholar
  116. 116.
    Hong SJ, Ahn JM, Ahn JH, et al. Postoperative MR findings of the healthy ACL grafts: correlation with second look arthros-copy. Clin Imaging 2005;29:55–59.PubMedGoogle Scholar
  117. 117.
    Ayerza MA, Muscolo L, Costa-Paz M. Comparison of sagittal obliquity of the reconstructed anterior cruciate ligament with native anterior cruciate ligament using magnetic resonance imaging. Arthroscopy 2003;19:257–261.PubMedGoogle Scholar
  118. 118.
    Fujimoto E, Sumen Y, Deie M. Anterior cruciate ligament graft impingement against the posterior cruciate ligament: diagnosis using MRI plus three-dimensional reconstruction software. Magnetic Resonance Imaging 2004;22:1125–1129.PubMedGoogle Scholar
  119. 119.
    Stockle U, Hoffmann R, Schwedke J. Anterior cruciate ligament reconstruction: the diagnostic value of MRI. Int Orthop 1998;22:288–292.PubMedGoogle Scholar
  120. 120.
    Vogl TJ, Schmitt J, Lubrich J. Reconstructed anterior cruciate ligaments using patellar tendon ligament grafts: diagnostic value of contrast-enhanced MRI in a 2-year follow-up regimen. Eur Radiol 2001;11:1450–1456.PubMedGoogle Scholar
  121. 121.
    Amiel D, Kleiner JB, Roux RD, et al. The phenomenon of “lig-amentization”: anterior cruciate ligament reconstruction with autogenous patellar tendon. J Orthop Res 1986;4:162–172.PubMedGoogle Scholar
  122. 122.
    Howell SM, Berns GS, Farley TE. Unimpinged and impinged anterior cruciate ligament grafts: MR signal intensity measurements. Radiology 1991;179:639–643.PubMedGoogle Scholar
  123. 123.
    Kanamiya T, Hara M, Naito M. Magnetic resonance evaluation of remodeling process in patellar tendon graft. Clin Orthop Relat Res 2004;419:202–206.PubMedGoogle Scholar
  124. 124.
    Jansson KA, Harilainen A, Sandelin J, et al. Bone tunnel enlargement after anterior cruciate ligament reconstruction with the hamstring autograft and endobutton fixation technique. A clinical, radiographic and magnetic resonance imaging study with 2 years follow-up. Knee Surg Sports Traumatol Arthrosc 1999;7:290–295.PubMedGoogle Scholar
  125. 125.
    McCauley TR, Elfar A, Moore A. MR arthrography of anterior cruciate ligament reconstruction grafts. AJR 2003;181:1217–1223.PubMedGoogle Scholar
  126. 126.
    May DA, Snearly WN, Bents R. MR imaging findings in anterior cruciate ligament reconstruction: evaluation of notchplasty. AJR 1997;169:217–222.PubMedGoogle Scholar
  127. 127.
    Bradley DM, Bergman AG, Dillingham MF. MR imaging of Cyclops lesions. AJR 2000;174:719–726.PubMedGoogle Scholar
  128. 128.
    Recht MP, Piraino DW, Cohen MA. Localized anterior arthro-fibrosis (cyclops lesion) after reconstruction of the anterior cruciate ligament: MR imaging findings. AJR 1995;165:383–385.PubMedGoogle Scholar
  129. 129.
    Rispoli DM, Sanders TG, Miller MD. Magnetic resonance imaging at different time periods following hamstring harvest for anterior cruciate ligament reconstruction. Arthroscopy 2001;17:2–8.PubMedGoogle Scholar
  130. 130.
    Leis HT, Sander TG, Larsen KM. Hamstring regrowth following harvesting for ACL reconstruction: the lizard tail phenomenon. J Knee Surg 2003;16:159–164.PubMedGoogle Scholar
  131. 131.
    Svensson M, Kartus J, Ejerhed L. Does the patellar tendon normalize after harvesting its central third? Am J Sports Med 2004;32:34–38.PubMedGoogle Scholar
  132. 132.
    Patten RM, Richardson ML, Zink-Brody G, et al. Complete vs partial-thickness tears of the posterior cruciate ligament: MR findings. J Comput Assist Tomogr 1994 ;18:793–799.PubMedGoogle Scholar
  133. 133.
    Sonin AH, Fitzgerald SW, Hoff FL, et al. MR imaging of the posterior cruciate ligament: normal, abnormal, and associated injury patterns. Radiographics 1995;15:551–561.PubMedGoogle Scholar
  134. 134.
    Malone AA, Dowd GS, Saifuddin A. Injuries of the posterior cruciate ligament and posterolateral corner of the knee. Injury 2006;37:485–501.PubMedGoogle Scholar
  135. 135.
    Mair SD, Schlegel TF, Gill TJ, et al. Incidence and location of bone bruises after acute posterior cruciate ligament injury. Am J Sports Med 2004;32:1681–1687.PubMedGoogle Scholar
  136. 136.
    Escobedo EM, Mills WJ, Hunter JC. The “reverse Segond” fracture: association with a tear of the posterior cruciate ligament. AJR 2002;178:979–983.PubMedGoogle Scholar
  137. 137.
    Shelbourne KD, Jennings RW, Vahey TN. Magnetic resonance imaging of posterior cruciate ligament injuries: assessment of healing. Am J Knee Surg 1999;12:209–213.PubMedGoogle Scholar
  138. 138.
    Tewes DP, Fritts HM, Fields RD, et al. Chronically injured posterior cruciate ligament: magnetic resonance imaging. Clin Orthop Relat Res 1997;335:224–232.PubMedGoogle Scholar
  139. 139.
    Griffin LY, Burnett M, Milsap JH. Appearance of previously injured posterior cruciate ligaments on magnetic resonance imaging. South Med J 2002;95:1153–1157.PubMedGoogle Scholar
  140. 140.
    Servant CT, Ramos JP, Thomas NP. The accuracy of magnetic resonance imaging in diagnosing chronic posterior cruciate ligament injury. Knee 2004;11:265–270.PubMedGoogle Scholar
  141. 141.
    Mariani PP, Margheritini F, Christel P, et al. Evaluation of posterior cruciate ligament healing: a study using magnetic resonance imaging and stress radiography. Arthroscopy 2005;21:1354–1361.PubMedGoogle Scholar
  142. 142.
    Mariani PP, Adriano E, Bellelli A. Magnetic resonance imaging of tunnel placement in posterior cruciate ligament reconstruction. Arthroscopy 1999;15:733–740.PubMedGoogle Scholar
  143. 143.
    Bosch U, Kasperczyk WJ. Healing of the patellar tendon auto-graft after posterior cruciate ligament reconstruction-a process of ligamentization? An experimental study in a sheep model. Am J Sports Med 1992;20:558–66.PubMedGoogle Scholar
  144. 144.
    Mariani PP, Margheritini F, Camillieri G. Serial magnetic resonance imaging evaluation of the patellar tendon after posterior cruciate ligament reconstruction. Arthroscopy 2002;18:38–45.PubMedGoogle Scholar
  145. 145.
    de Abreu MR, Kim HJ, Chung CB, et al. Posterior cruciate ligament recess and normal posterior capsular inser-tional anatomy: MR imaging of cadaveric knees. Radiology 2005;236:968–73.PubMedGoogle Scholar
  146. 146.
    Robinson JR, Bull AM, Thomas RR, et al. The Role of the Medial Collateral Ligament and Posteromedial Capsule in Controlling Knee Laxity. Am J Sports Med 2006;34:1815–1823.PubMedGoogle Scholar
  147. 147.
    Warren LF, Marshall JL. The supporting structures and layers on the medial side of the knee: an anatomical analysis. J Bone Joint Surg [Am] 1979;61:56–62.Google Scholar
  148. 148.
    De Maeseneer M, Shahabpour M, Van Roy F, et al. MR imaging of the medial collateral ligament bursa: findings in patients and anatomic data derived from cadavers. AJR Am J Roent-genol 2001;177:911–917.Google Scholar
  149. 149.
    Schweitzer ME, Tran D, Deely DM. Medial collateral ligament injuries: evaluation of multiple signs, prevalence and location of associated bone bruises, and assessment with MR imaging. Radiology 1995;194:825–829.PubMedGoogle Scholar
  150. 150.
    Beltran J, Matityahu A, Hwang K, et al. The distal semimem-branosus complex: normal MR anatomy, variants, biomechan-ics and pathology. Skeletal Radiol 2003;32:435–445.PubMedGoogle Scholar
  151. 151.
    Sims WF, Jacobson KE. The posteromedial corner of the knee: medial-sided injury patterns revisited. Am J Sports Med 2004;32:337–345.PubMedGoogle Scholar
  152. 152.
    De Maeseneer M, Van Roy F, Lenchik L, et al. Three layers of the medial capsular and supporting structures of the knee: MR imaging-anatomic correlation. Radiographics 2000;20:S83–89.PubMedGoogle Scholar
  153. 153.
    Amis AA, Bull AM, Gupte CM, et al. Biomechanics of the PCL and related structures: posterolateral, posteromedial and meniscofemoral ligaments. Knee Surg Sports Traumatol Arthrosc 2003;11:271–281.PubMedGoogle Scholar
  154. 154.
    Yao L, Dungan D, Seeger LL. MR imaging of tibial collateral ligament injury: comparison with clinical examination. Skeletal Radiol 1994;23:521–524.PubMedGoogle Scholar
  155. 155.
    Niitsu M, Ikeda K, Iijima T, et al. MR imaging of Pellegrini-Stieda disease. Radiat Med 1999;17:405–409.PubMedGoogle Scholar
  156. 156.
    Bergin D, Keogh C, O'Connell M, et al. Atraumatic medial collateral ligament oedema in medial compartment knee osteoar-thritis. Skeletal Radiol 2002;31:14–18.PubMedGoogle Scholar
  157. 157.
    Alioto RJ, Browne JE, Barnthouse CD, Scott AR. Complete rupture of the distal semimembranosus complex in a professional athlete. Clin Orthop Relat Res 1997;336:162–165.PubMedGoogle Scholar
  158. 158.
    Mochizuki T, Akita K, Muneta T, et al. Pes anserinus: layered supportive structure on the medial side of the knee. Clin Anat 2004;17:50–54.PubMedGoogle Scholar
  159. 159.
    Bencardino JT, Rosenberg ZS, Brown RR, et al. Traumatic musculotendinous injuries of the knee: diagnosis with MR imaging. Radiographics 2000;20 :S103–120.PubMedGoogle Scholar
  160. 160.
    Miller TT, Gladden P, Staron RB. Posterolateral stabilizers of the knee: anatomy and injuries with MR imaging. AJR 1997;169:1641–1647.PubMedGoogle Scholar
  161. 161.
    Harish S, O'Donnell P, Connell D, et al. Imaging of the pos-terolateral corner of the knee. Clin Radiol 2006;61:457–466.PubMedGoogle Scholar
  162. 162.
    Stannard J P, Brown SL, Robinson JT, et al. Reconstruction of the posterolateral corner of the knee. Arthroscopy 2005;21:1051–1059.PubMedGoogle Scholar
  163. 163.
    Munshi M, Pretterklieber ML, Kwak S, et al. MR imaging, MR arthrography, and specimen correlation of the posterolateral corner of the knee: an anatomic study. AJR Am J Roentgenol 2003;180:1095–1101.PubMedGoogle Scholar
  164. 164.
    Yoon KH, Bae DK, Ha JH, et al. Anatomic reconstructive surgery for posterolateral instability of the knee. Arthroscopy 2006;22:159–165.PubMedGoogle Scholar
  165. 165.
    LaPrade RF, Gilbert TJ, Bollom TS, et al. The magnetic resonance imaging appearance of individual structures of the posterolateral knee. A prospective study of normal knees and knees with surgically verified grade III injuries. Am J Sports Med 2000;28:191–199.PubMedGoogle Scholar
  166. 166.
    Yu JS, Salonen DC, Hodler J. Posterolateral aspect of the knee: improved MR imaging with a coronal oblique technique. Radiology 1996;198:199–204.PubMedGoogle Scholar
  167. 167.
    Brown TR, Quinn SF, Wensel JP, et al. Diagnosis of popliteus injuries with MR imaging. Skeletal Radiol 1995;24:511–514.PubMedGoogle Scholar
  168. 168.
    Shindell R, Walsh WM, Connolly JF. Avulsion fracture of the fibula: the “arcuate sign” of posterolateral knee instability. Nebr Med J 1984;69:369–371.PubMedGoogle Scholar
  169. 169.
    Juhng SK, Lee JK, Choi SS, et al. MR evaluation of the “arcuate” sign of posterolateral knee instability. AJR Am J Roent-genol 2002;178:583–588.Google Scholar
  170. 170.
    Lee J, Papakonstantinou O, Brookenthal KR, et al. Arcuate sign of posterolateral knee injuries: anatomic, radiographic, and MR imaging data related to patterns of injury. Skeletal Radiol 2003;32:619–627.PubMedGoogle Scholar
  171. 171.
    Huang GS, Yu JS, Munshi M, et al. Avulsion fracture of the head of the fibula (the “arcuate” sign): MR imaging findings predictive of injuries to the posterolateral ligaments and posterior cruciate ligament. AJR Am J Roentgenol 2003;180: 381–387.PubMedGoogle Scholar
  172. 172.
    Theodorou DJ, Theodorou SJ, Fithian DC, et al. Posterolateral complex knee injuries: magnetic resonance imaging with surgical correlation. Acta Radiol 2005;46:297–305.PubMedGoogle Scholar
  173. 173.
    Rumball JS, Lebrun CM, Di Ciacca SR, et al. Rowing injuries. Sports Med 2005;3:537–555.Google Scholar
  174. 174.
    Fairclough J, Hayashi K, Toumi H, et al. The functional anatomy of the iliotibial band during flexion and extension of the knee: implications for understanding iliotibial band syndrome. J Anat 2006;2 08:309–316.Google Scholar
  175. 175.
    Farrell KC, Reisinger KD, Tillman MD. Force and repetition in cycling: possible implications for iliotibial band friction syndrome. Knee 2003;10:103–109.PubMedGoogle Scholar
  176. 176.
    Orchard JW, Fricker PA, Abud AT, et al. Biomechanics of iliotibial band friction syndrome in runners. Am J Sports Med 1996;24:375–379.PubMedGoogle Scholar
  177. 177.
    Murphy BJ, Hechtman KS, Uribe JW. Iliotibial band friction syndrome: MR imaging findings. Radiology 1992;185:569–571.PubMedGoogle Scholar
  178. 178.
    Muhle C, Ahn JM, Yeh L. Iliotibial band friction syndrome: MR imaging findings in 16 patients and MR arthrographic study of six cadaveric knees. Radiology 1999;212:103–110.PubMedGoogle Scholar
  179. 179.
    Sonin AH, Fitzgerald SW, Bresler ME, et al. MR imaging appearance of the extensor mechanism of the knee: functional anatomy and injury patterns. Radiographics 1995;15:367–382.PubMedGoogle Scholar
  180. 180.
    Andrikoula S, Tokis A, Vasiliadis HS, et al. The extensor mechanism of the knee joint: an anatomical study. Knee Surg Sports Traumatol Arthrosc 2006;14:214–220.PubMedGoogle Scholar
  181. 181.
    Schweitzer ME, Mitchell DG, Ehrlich SM. The patellar tendon: thickening, internal signal buckling, and other MR variants. Skeletal Radiol 1993;22:411–416.PubMedGoogle Scholar
  182. 182.
    El-Khoury GY, Wira RL, Berbaum KS. MR imaging of patellar tendinitis. Radiology 199;184:849–854.Google Scholar
  183. 183.
    Vanhoenacker FM, Bernaerts A, Van de Perre S, et al. MRI of painful bipartite patella. JBR-BTR 2002;85:219.PubMedGoogle Scholar
  184. 184.
    Starok M, Lenchik L, Trudell D, et al. Normal patellar retinacu-lum: MR and sonographic imaging with cadaveric correlation. AJR Am J Roentgenol 1997;168:1493–1499.PubMedGoogle Scholar
  185. 185.
    Bianchi S, Zwass A, Abdelwahab IF. Diagnosis of tears of the quadriceps tendon of the knee: value of sonography. AJR 1994;162:1137–1140.PubMedGoogle Scholar
  186. 186.
    La S, Fessell D P, Femino JE. Sonography of partial-thickness quadriceps tendon tears with surgical correlation. J Ultrasound Med 2003;22:1323–1329.PubMedGoogle Scholar
  187. 187.
    Schmid MR, Hodler J, Cathrein P. Is impingement the cause of jumper's knee? Dynamic and static magnetic resonance imaging of patellar tendinitis in an open-configuration system. Am J Sports Med 2002;30:388–395.PubMedGoogle Scholar
  188. 188.
    Khan KM, Bonar F, Desmond PM. Patellar tendinosis (jumper's knee): findings at histopathologic examination, US, and MR imaging. Victorian Institute of Sports Tendon Study Group. Radiology 1996;200:821–827.PubMedGoogle Scholar
  189. 189.
    Lian OB, Engebretsen L, Bahr R. Prevalence of jumper's knee among elite athletes from different sports: a cross-sectional study. Am J Sports Med 2005;33:561–567.PubMedGoogle Scholar
  190. 190.
    Major NM, Helms CA. MR imaging of the knee: findings in asymptomatic collegiate basketball players. AJR 2002;179:641–644.PubMedGoogle Scholar
  191. 191.
    Peace KA, Lee JC, Healy J. Imaging the infrapatellar tendon in the elite athlete. Clin Radiol 2006;61:570–578.PubMedGoogle Scholar
  192. 192.
    Medlar RC, Lyne ED. Sinding-Larsen-Johansson disease. Its etiology and natural history. J Bone Joint Surg [Am] 1978;60:1113–1116.Google Scholar
  193. 193.
    Rosenberg ZS, Kawelblum M, Cheung YY. Osgood-Schlatter lesion: fracture or tendinitis? Scintigraphic, CT, and MR imaging features. Radiology 1992;185:853–858.PubMedGoogle Scholar
  194. 194.
    Elias DA, White LM, Fithian DC. Acute lateral patellar dislocation at MR imaging: injury patterns of medial patellar soft-tissue restraints and osteochondral injuries of the inferomedial patella. Radiology 2002;225:736–743.PubMedGoogle Scholar
  195. 195.
    Pope TL. MR imaging of patellar dislocation and relocation. Semin Ultrasound CT MR 2001;22:371–382.PubMedGoogle Scholar
  196. 196.
    Miller TT, Staron RB, Feldman F. Patellar height on sagittal MR imaging of the knee. AJR 1996;167:339–341.PubMedGoogle Scholar
  197. 197.
    Insall J, Salvati E. Patella position in the normal knee joint. Radiology 1971;101:101.PubMedGoogle Scholar
  198. 198.
    Chung CB, Skaf A, Roger B, et al. Patellar tendon-lateral femoral condyle friction syndrome: MR imaging in 42 patients. Skeletal Radiol 2001;30:694–697.PubMedGoogle Scholar
  199. 199.
    Shellock FG, Mink JH, Deutsch AL, et al. Kinematic MR imaging of the patellofemoral joint: comparison of passive positioning and active movement techniques. Radiology 1992;184:574–577.PubMedGoogle Scholar
  200. 200.
    Muhle C, Brinkmann G, Skaf A, et al. Effect of a patellar realignment brace on patients with patellar subluxation and dislocation. Evaluation with kinematic magnetic resonance imaging. Am J Sports Med 1999;27:350–353.PubMedGoogle Scholar
  201. 201.
    Dupuy DE, Hangen DH, Zachazewski JE, et al. Kinematic CT of the patellofemoral joint. AJR Am J Roentgenol 1997;169:211–215.PubMedGoogle Scholar
  202. 202.
    Niitsu M. Kinematic MR imaging of the knee. Semin Musculo-skelet Radiol 2001;5:153–157.Google Scholar
  203. 203.
    Elias DA, White LM. Imaging of patellofemoral disorders. Clin Radiol 2004;59:543–557.PubMedGoogle Scholar
  204. 204.
    Ward EE, Jacobson JA, Fassell DP. Sonographic detection of Baker's cysts: comparison with MR imaging. AJR 2001;176:373–380.PubMedGoogle Scholar
  205. 205.
    Marti-Bonmati L, Molla E, Dosda E. MR imaging of Baker cysts- prevalence and relation to internal derangements of the knee. MAGMA 2000;10:205–210.PubMedGoogle Scholar
  206. 206.
    Miller TT, Staron RB, Koenigsberg T. MR imaging of Baker cysts: association with internal derangement, effusion, and degenerative arthropathy. Radiology 1996;201:247–250.PubMedGoogle Scholar
  207. 207.
    De Maeseneer M, Debaere C, Desprechins B. Popliteal cysts in children: prevalence, appearance, and associated findings at MR imaging. Pediatr Radiol 1999;29:605–609.PubMedGoogle Scholar
  208. 208.
    Forbes JR, Helms CA, Janzen DL. Acute pes anserine bursitis: MR imaging. Radiology 1995;194:525–527.PubMedGoogle Scholar
  209. 209.
    Rothstein CP, Laorr A, Helms CA. Semimembranosus-tib-ial collateral ligament bursitis: MR imaging findings. AJR 1996;166:875–877.PubMedGoogle Scholar
  210. 210.
    Bredella MA, Tirman PF, Peterfy CG. Accuracy of T2–weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients. AJR 1999;172:1073–1080.PubMedGoogle Scholar
  211. 211.
    Gold GE, Fuller SE, Hargreaves BA. Driven equilibrium magnetic resonance imaging of articular cartilage: initial clinical experience. J Magn Reson Imaging 2005;21:476–481.PubMedGoogle Scholar
  212. 212.
    Kornaat PR, Doornbos J, van der Molen AJ. Magnetic resonance imaging of knee cartilage using a water selective balanced steady-state free precession sequence. J Magn Reson Imaging 2004;20:850–856.PubMedGoogle Scholar
  213. 213.
    Graichen H, Al-Shamari D, Hinterwimmer S. Accuracy of quantitative MRI in the detection of ex vivo focal cartilage defects. Ann Rheum Dis 2005;64:1120–1125.PubMedGoogle Scholar
  214. 214.
    Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 2004;8:355–368.PubMedGoogle Scholar
  215. 215.
    Potter HG, Linklater JM, Allen AA. Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast spin-echo imaging. J Bone Joint Surg [Am] 1998;80:1276–1284.Google Scholar
  216. 216.
    Tiderius CJ, Tjornstrand J, Akeson P. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): intra-and interob-server variability in standardized drawing of regions of interest. Acta Radiol 2004;45:628–634.PubMedGoogle Scholar
  217. 217.
    Yoshioka H, Stevens K, Hargreaves BA. Magnetic resonance imaging of articular cartilage of the knee: comparison between fat-suppressed three-dimensional SPGR imaging, fat-suppressed FSE imaging, and fat-suppressed three-dimensional DEFT imaging, and correlation with arthroscopy. J Magn Reson Imaging 2004;20:857–864.PubMedGoogle Scholar
  218. 218.
    Modl JM, Sether LA, Haughton VM. Articular cartilage: correlation of histologic zones with signal intensity at MR imaging. Radiology 1991;181:853–855.PubMedGoogle Scholar
  219. 219.
    Recht M, White LM, Winalski CS. MR imaging of cartilage repair procedures. Skeletal Radiol 2003;32:185–2000.Google Scholar
  220. 220.
    Brown T, Quinn SF. Evaluation of chondromalacia of the patel-lofemoral compartment with axial magnetic resonance imaging. Skeletal Radiol 1993;22:325–328.PubMedGoogle Scholar
  221. 221.
    McCauley TR, Kier R, Lynch KJ. Chondromalacia patellae: diagnosis with MR imaging. AJR 1992;158:101–105.PubMedGoogle Scholar
  222. 222.
    van Leersum M, Schweitzer ME, Gannon F, et al. Chondromalacia patellae: an in vitro study. Comparison of MR criteria with histo-logic and macroscopic findings. Skeletal Radiol 1996;25:727–732.PubMedGoogle Scholar
  223. 223.
    Gagliardi JA, Chung EM, Chandnani VP, et al. Detection and staging of chondromalacia patellae: relative efficacies of conventional MR imaging, MR arthrography, and CT arthrogra-phy. AJR Am J Roentgenol 1994;163:629–636.PubMedGoogle Scholar
  224. 224.
    De Smet AA, Fisher DR, Graf BK. Osteochondritis disse-cans of the knee: value of MR imaging in determining lesion stability and the presence of articular cartilage defects. AJR 1990;155:549–553.PubMedGoogle Scholar
  225. 225.
    De Smet AA, Ilahi OA, Graf BK. Reassessment of the MR criteria for stability of osteochondritis dissecans in the knee and ankle. Skeletal Radiol 1996;25:159–163.PubMedGoogle Scholar
  226. 226.
    Hinshaw MH, Tuite MJ, De Smet AA. “Dem bones”: osteo-chondral injuries of the knee. Magn Reson Imaging Clin North Am 2000;8:335–348.Google Scholar
  227. 227.
    Brossmann J, Preidler KW, Daenen B. Imaging of osseous and cartilaginous intraarticular bodies in the knee: comparison of MR imaging and MR arthrography with CT and CT arthrogra-phy in cadavers. Radiology 1996;20:509–517.Google Scholar
  228. 228.
    Gebarski K, Hernandez RJ. Stage-I osteochondritis dissecans versus normal variants of ossification in the knee in children. Pediatr Radiol 2005;35:880–886.PubMedGoogle Scholar
  229. 229.
    Marlovits S, Striessnig G, Resinger CT, et al. Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging. Eur J Radiol 2004;52:310–319.PubMedGoogle Scholar
  230. 230.
    Brown WE, Potter HG, Marx RG, et al. Magnetic resonance imaging appearance of cartilage repair in the knee. Clin Orthop Relat Res 2004;422:214–223.PubMedGoogle Scholar
  231. 231.
    Mithoefer K, Williams RJ 3rd, Warren RF, et al. The microfrac-ture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Joint Surg [Am] 2005;87:1911–1920.Google Scholar
  232. 232.
    Gudas R, Stankevicius E, Monastyreckiene E, et al. Osteo-chondral autologous transplantation versus microfracture for the treatment of articular cartilage defects in the knee joint in athletes. Knee Surg Sports Traumatol Arthrosc 2006;14(9): 834–842.PubMedGoogle Scholar
  233. 233.
    Sanders TG, Mentzer KD, Miller MD. Autogenous osteochon-dral “plug” transfer for the treatment of focal chondral defects: postoperative MR appearance with clinical correlation. Skeletal Radiol 2001;30:570–578.PubMedGoogle Scholar
  234. 234.
    Link TM, Mischung J, Wortler K, et al. Normal and pathological MR findings in osteochondral autografts with longitudinal follow-up. Eur Radiol 2006;16:88–96.PubMedGoogle Scholar
  235. 235.
    Koulalis D, Schultz W, Heyden M. Autologous osteochon-dral grafts in the treatment of cartilage defects of the knee joint. Knee Surg Sports Knee Surg Sports Traumatol Arthrosc 2004;12:329–334.Google Scholar
  236. 236.
    James SL, Connell DA, Saifuddin A, et al. MR imaging of autologous chondrocyte implantation of the knee. Eur Radiol 2006;16:1022–1030.PubMedGoogle Scholar
  237. 237.
    Krishnan SP, Skinner JA, Bartlett W, et al. Who is the ideal candidate for autologous chondrocyte implantation? J Bone Joint Surg [Br] 2006;88:61–64.Google Scholar
  238. 238.
    Trattnig S, Pinker K, Krestan C, et al. Matrix-based autologous chondrocyte implantation for cartilage repair with Hyalograft C: two-year follow-up by magnetic resonance imaging. Eur J Radiol 2006;57:9–15.PubMedGoogle Scholar
  239. 239.
    Tins BJ, McCall IW, Takahashi T. Autologous chondrocyte implantation in knee joint: MR imaging and histologic features at 1-year follow-up. Radiology 2005;234:501–508.PubMedGoogle Scholar
  240. 240.
    Henderson IJ, Tuy B, Connell D. Prospective clinical study of autologous chondrocyte implantation and correlation with MRI at three and 12 months. J Bone Joint Surg [Br] 2003;85:1060–1066.Google Scholar
  241. 241.
    Wada Y, Watanabe A, Yamashita T. Evaluation of articular cartilage with 3D-SPGR MRI after autologous chondrocyte implantation. J Orthop Sci 2003;8:514–517.PubMedGoogle Scholar
  242. 242.
    Roberts S, McCall IW, Darby AJ. Autologous chondrocyte implantation for cartilage repair: monitoring its success by magnetic resonance imaging and histology. Arthritis Res Ther 2003;5:R60–73.PubMedGoogle Scholar
  243. 243.
    Plank CM, Kubin K, Weber M, et al. Contrast-enhanced high-resolution magnetic resonance imaging of autologous cartilage implants of the knee joint. Magn Reson Imaging 2005;23:739–744.PubMedGoogle Scholar
  244. 244.
    Jacobson JA, Lenchik L, Ruhoy MK. MR imaging of the infrapa-tellar fat pad of Hoffa. RadioGraphics 1997;17:675–691.PubMedGoogle Scholar
  245. 245.
    Saddik D, McNally EG, Richardson M. MRI of Hoffa's fat pad. Skeletal Radiol 2004;33:433–444.PubMedGoogle Scholar
  246. 246.
    Boyd CR, Eakin C, Matheson GO. Infrapatella plica as a cause of anterior knee pain. Clin J Sport Med 2005;15:98–103.PubMedGoogle Scholar
  247. 247.
    Cothran RL, McGuire PM, Helms CA. MR imaging of infrapa-tellar plica injury. AJR 180:2003;1443–1447.PubMedGoogle Scholar
  248. 248.
    Base DK, Nam GU, Sun SD. The clinical significance of the complete type of suprapatellar membrane. Arthroscopy 1998;14:830–835.Google Scholar
  249. 249.
    Kim SJ, Shin SJ, Koo TY. Arch type pathologic suprapatellar plica. Arthroscopy 2001;17:536–538.PubMedGoogle Scholar
  250. 250.
    Boles CA, Butler J, Lee JA. Magnetic resonance characteristics of medial plica of the knee correlation with arthroscopic resection. J Comput Assist Tomogr 2004;28:397–401.PubMedGoogle Scholar
  251. 251.
    Kobayashi Y, Murakami R, Tajima H, et al. Direct MR arthrography of plica synovialis mediopatellaris. Acta Radiol 2001;42:286–290.PubMedGoogle Scholar
  252. 252.
    Asik M, Erlap L, Altinel L. Localized pigmented villonodular synovitis of the knee. Arthroscopy 2001;17:e23.PubMedGoogle Scholar
  253. 253.
    Kim RS, Lee JY, Lee KY. Localized pigmented villonodular synovitis attached to the posterior cruciate ligament of the knee. Arthroscopy 2003;19:e32–e35.PubMedGoogle Scholar
  254. 254.
    Cheng XG, You YH, Liu W. MRI features of pigmented vil-lonodular synovitis (PVNS). Clin Rheumatol 2004;23:31–34.PubMedGoogle Scholar
  255. 255.
    Roberts D, Miller TT, Erlanger SM. Sonographic appearance of primary synovial chondromatosis of the knee. J Ultrasound Med 2004;23:707–709.PubMedGoogle Scholar
  256. 256.
    Mandalia V, Fogg AJ, Chari R, et al. Bone bruising of the knee. Clin Radiol 2005;60:627–636.PubMedGoogle Scholar
  257. 257.
    Sanders TG, Medynski MA, Feller JF, et al. Bone contusion patterns of the knee at MR imaging: footprint of the mechanism of injury. Radiographics 2000;20:S135–151.PubMedGoogle Scholar
  258. 258.
    Miller MD, Osborne JR, Gordon WT, et al. The natural history of bone bruises. A prospective study of magnetic resonance imaging-detected trabecular microfractures in patients with isolated medial collateral ligament injuries. Am J Sports Med 1998;26:15–19.PubMedGoogle Scholar
  259. 259.
    Lecouvet FE, Van de Berg BC, Maldague BE. Early irreversible osteonecrosis versus transient lesions of the femoral condyles: prognostic value of subchondral bone and marrow changes on MR imaging. AJR 1998;170:71–77.PubMedGoogle Scholar
  260. 260.
    Moosikasuwan JR, Miller TT, Math K. Shifting bone marrow edema of the knee. Skeletal Radiol 2004;33:380–385.PubMedGoogle Scholar
  261. 261.
    Mitchell DG, Steinberg ME, Dalinka MK. Magnetic resonance imaging of the ischemic hip. Alterations within osteo-necrotic, viable, and reactive zones. Clin Orthop Relat Res 1989;244:60–77.PubMedGoogle Scholar
  262. 262.
    De Falco RA, Ricci AR, Balduini FC. Osteonecrosis of the knee after arthroscopic meniscectomy and chondroplasty: a case report and literature review. Am J Sports Med 2003;31:1013–1016.Google Scholar
  263. 263.
    Encalada I, Richmond JC. Osteonecrosis after arthroscopic meniscectomy using radiofrequency. Arthroscopy 2004;20: 632–636.PubMedGoogle Scholar
  264. 264.
    Johnson TC, Evans JA, Gilley JA. Osteonecrosis of the knee after arthroscopic surgery for meniscal tears and chondral lesions. Arthroscopy 2000;16:254–261.PubMedGoogle Scholar
  265. 265.
    Prues-Latour V, Bonvin JC, Fritschy D. Nine cases of osteone-crosis in elderly patients following arthroscopic meniscectomy. Knee Surg Sports Traumatol Arthrosc 1998;6:142–147.PubMedGoogle Scholar
  266. 266.
    Athanasian EA, Wickiewicz TL, Warren RF. Osteonecrosis of the femoral condyle after arthroscopic reconstruction of a cruciate ligament. Report of two cases. J Bone Joint Surg [Am] 1995;77:1418–1422.Google Scholar
  267. 267.
    Ramnath RR, Kattapuram SV. MR appearance of SONK-like subchondral abnormalities in the adult knee: SONK redefined. Skeletal Radiol 2004;33:575–581.PubMedGoogle Scholar
  268. 268.
    Yamamoto T, Bullough PG. Spontaneous osteonecrosis of the knee: the result of subchondral insufficiency fracture. J Bone Joint Surg [Am] 2000;82:858–866.Google Scholar
  269. 269.
    Kidwai AS, Hemphill SD, Griffiths HJ. Radiologic case study: spontaneous osteonecrosis of the knee reclassified as insufficiency fracture. Orthopedics 2005;28:333–336.Google Scholar
  270. 270.
    Deutsch AL, Mink JH, Rosenfelt FP. Incidental detection of hematopoietic hyperplasia on routine knee MR imaging. AJR 1989;152:333–336.PubMedGoogle Scholar
  271. 271.
    Poulton TB, Murphy WD, Duerk JL. Bone marrow reconversion in adults who are smokers: MR imaging findings. AJR 1993;161:1217–1221.PubMedGoogle Scholar
  272. 272.
    Shellock FG, Morris E, Deutsch AL. Hematopoietic bone marrow hyperplasia: high prevalence on MR images of the knee in asymptomatic marathon runners. AJR 1992;158:335–338.PubMedGoogle Scholar
  273. 273.
    Wilson AJ, Hodge JC, Pilgram TK. Prevalence of red marrow around the knee joint in adults demonstrated on magnetic resonance imaging. Acad Radiol 1996;3:550–555.PubMedGoogle Scholar
  274. 274.
    Cummings JR, Pedowitz RA. Knee instability: the orthopedic approach. Semin Musculoskeletal Radiol 2005;9(1):1–16.Google Scholar
  275. 275.
    Bui-Mansfield LT, Youngberg RA, Warme W, Pitcher JD, Nguyen PL. Potential cost savings of MR imaging obtained before arthroscopy of the knee: evaluation of 50 consecutive patients. AJR 1997;168:913–918.PubMedGoogle Scholar
  276. 276.
    Rose NE, Gold SM. A comparison of accuracy between clinical examination and magnetic resonance imaging in the diagnosis of meniscal and anterior cruciate ligament tears. Arthroscopy 1996;12(4):398–405.PubMedGoogle Scholar
  277. 277.
    Duc SR, Zanetti M, Kramer J, Kach KP, Zollikofer, Wentz KU. Magnetic resonance imaging of anterior cruciate ligament tears: evaluation of standard orthogonal and tailored paracoro-nal images. Acta Radiol 1946;7:729–733.Google Scholar
  278. 278.
    Patten RM, Richardson ML, Zink-Brody G, Rolfe BA. Complete versus partial thickness tears of the posterior cruciate ligament: MR findings. J Comput Assist Tomogr 1994;18(5):793–799.PubMedGoogle Scholar
  279. 279.
    Porat E, Roos M, Roos H. High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes. Ann Rheum Dis 2004;63:269–273.Google Scholar
  280. 280.
    Lohmander LS, Ostenberg A, Englund M, Roos H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 2004;50(10):3145–3152.PubMedGoogle Scholar
  281. 281.
    Harilainen A, Sandelin J, Jansson KA. Cross-pin femoral fixation versus metal interference screw fixation in anterior cruciate ligament reconstruction with hamstring tendons: results of a controlled prospective randomized study with 2-year follow-up. Arthroscopy 2005;21(1):25–33.PubMedGoogle Scholar
  282. 282.
    Fauno P, Kaalund S. Tunnel widening after hamstring anterior cruciate ligament reconstruction is influenced by the type of graft fixation used: a prospective randomized study. Arthros-copy. 2005;21(11):1337–1341.Google Scholar
  283. 283.
    Rose T, Hepp P, Venus J, Stockmar C, Josten C, Helmut. Prospective randomized clinical comparison of femoral transfixation versus bioscrew fixation in hamstring tendon ACL reconstruction—a preliminary report. Knee Surg Sport Trauma 2006;14(8):730–738.Google Scholar
  284. 284.
    Laxdal G, Kartus J, Hansson L, Heidvall M, Ejerhed L, Karls-son J. A prospective randomized comparison of bone-patellar tendon-bone and hamstring grafts for anterior cruciate ligament reconstruction. Arthroscopy 2005;21(1):34–42.PubMedGoogle Scholar
  285. 285.
    Svensson M, Sernert N, Ejerhed L, Karlsson J, Kartus J. A prospective comparison of bone-patellar tendon-bone and hamstring grafts for anterior cruciate ligament reconstruction in female patients. Knee Surg Sport Trauma 2006;14(3):278–286.Google Scholar
  286. 286.
    Harilainen A, Linko E, Sandelin J. Randomized prospective study of ACL reconstruction with interference screw fixation in patellar tendon autografts versus femoral metal plate suspension and tibial post fixation in hamstring tendon autografts: 5-year clinical and radiological follow-up results. Knee Surg Sports Traumatol Arthrosc 2006;14(6):517–528.PubMedGoogle Scholar
  287. 287.
    Getelman MH, Friedman MJ. Revision anterior cruciate ligament reconstruction surgery. J Am Acad Orthop Surg 1999;7:189–198.PubMedGoogle Scholar
  288. 288.
    Fetto JF, Marshall JL. MCL injuries of the knee: rationale for treatment. Clin Orthop Rel Res 1978;132:206–218.Google Scholar
  289. 289.
    Gross ML, Grover JS, Bassett LW, Seeger LL, Finerman GA. Magnetic resonance imaging of the posterior cruciate ligament. Clinical use to improve diagnostic accuracy. Am J Sports Med 1992;20(6):732–737.PubMedGoogle Scholar
  290. 290.
    Johnson DH, Fanelli GC, Miller MD. PCL 2002: indications, double bundle versus inlay technique and revision surgery. Arthroscopy 2002;18:40–52.PubMedGoogle Scholar
  291. 291.
    Rubin DA, Kettering JM, Towers JD, Britton CA. MR imaging of knees having isolated and combined ligament injuries. AJR 1998;170:1207–1213.PubMedGoogle Scholar
  292. 292.
    Yu JS, Goodwin D, Salonen D, et al. Complete dislocation of the knee, spectrum of associated soft tissue injuries depicted by MR imaging. AJR 1995;164(1):135–139.PubMedGoogle Scholar
  293. 293.
    Rihn JA, Cha PS, Groff YJ, Harner CD. The acutely dislocated knee: evaluation and management. J Am Acad Orthop Surg 2004;12:334–346.PubMedGoogle Scholar
  294. 294.
    Jackson JL, O'Malley PG, Kroenke K. Evaluation of acute knee pain in primary care. Ann Intern Med 2003;139(7) 575–588.PubMedGoogle Scholar
  295. 295.
    Campbell SE, Sanders TG, Morrison WB. MR imaging of meniscal cysts: incidence, location and clinical significance. AJR 2001;177:409–413.PubMedGoogle Scholar
  296. 296.
    Eren OT. The accuracy of joint line tenderness by physical examination in the diagnosis of meniscal tears. Arthroscopy 2003;19(8):850–854.PubMedGoogle Scholar
  297. 297.
    Malanga GA, Andrus S, Nadler SF, McLean J. Physical examination tests of the knee. Arch Phys Med Rehabil 2003;84(4):592–603.PubMedGoogle Scholar
  298. 298.
    Greis PE, Bardana DD, Holmstrom MC, Burks RT. Meniscal injury: I. Basic science and evaluation. J Am Acad Orthop Surg 2002;10(3):168–176.PubMedGoogle Scholar
  299. 299.
    Rangger C, Klestil T, Kathrein A, Inderster A, Laith H. Influence of magnetic resonance imaging on indications for arthroscopy of the knee. Clin Orthop Rel Res 1996;330:133–142.Google Scholar
  300. 300.
    Wright DH, De Smet AA, Norris M. Bucket-handle tears of the medial and lateral menisci of the knee: value of MR imaging in detecting displaced fragments. AJR 1995;165(3):621–625.PubMedGoogle Scholar
  301. 301.
    Pedowitz RA, Feagin JA, Rajagopalan S. A surgical algorithm for treatment of cystic degeneration of the meniscus. Arthros-copy 1996;12(2):209–216.Google Scholar
  302. 302.
    Greis PE, Holmstrom MC, Bardana DD, Burks RT. Meniscal injury: II. Management. J Am Acad Orthop Surg 2002;10(3):177–187.PubMedGoogle Scholar
  303. 303.
    Ulrich-Vinther, Maloney M, Schwarz EM, Rosier R, O'Keefe RJ. Articular cartilage biology. J Am Acad Orthop Surg 2003;11:421–430.PubMedGoogle Scholar
  304. 304.
    Wearing SC, Hennig EM, Byrne NM, Steele JR, Hills AP. Mus-culoskeletal disorders associated with obesity: a biomechanical perspective. Obes Rev 2006;7:239.PubMedGoogle Scholar
  305. 305.
    Bruce EJ, Hamby T, Jones DG. Sports related osteochondral injuries: clinical presentation, diagnosis and treatment. Prim Care Clin Office Pract 2005;32:253–276.Google Scholar
  306. 306.
    Browne JE, Branch TP. Surgical alternatives for treatment of articular cartilage lesions. J Am Acad Orthop Surg 2000;8(3):180–190.PubMedGoogle Scholar
  307. 307.
    Tyler WK, Vidal AF, Williams RJ, Healey JH. Pigmented villonodular synovitis. J Am Acad Orthop Surg 2006;12: 376–385.Google Scholar
  308. 308.
    el-Khoury GY, Wira RL, Berbaum KS, Pope TL Jr, Monu JU. MR imaging of patellar tendinitis. Radiology 1992;184(3): 849–854.PubMedGoogle Scholar
  309. 309.
    Khan KM, Bonar F, Desmond PM, et al. Patellar tendinosis (jumper's knee): findings at histopathologic examination, US, and MR imaging. Victorian Institute of Sport Tendon Study Group. Radiology 1996;200(3):821–827.PubMedGoogle Scholar
  310. 310.
    Larson RL, Grana WA. The Knee: Form, Function, Pathology and Treatment. Philadelphia: WB Saunders, 1993.Google Scholar
  311. 311.
    Torg JS, Conrad W, Kalen V. Clinical diagnosis of anterior cruciate ligament instability in the athlete. Am J Sports Med 1976;4:84–93.PubMedGoogle Scholar
  312. 312.
    Kocher MS, Tucker R, Ganley TJ, Flynn JM. Management of osteochondritis dissecans of the knee: current concepts overview. Am J Sports Med 2006;34(7):1181–1191.PubMedGoogle Scholar
  313. 313.
    Chen TS, Crues JV 3rd, Ali M, Troum OM. Magnetic resonance imaging is more sensitive than radiography in detecting change and size of erosions in rheumatoid arthritis. J Rheumatol 2006;33(10):1957–1967.PubMedGoogle Scholar
  314. 314.
    McGrath B, Schlatterer D, Mindell E. Case reports: osteogenic sarcoma of the patella spread to lateral meniscus after arthros-copy. Clin Orthop Rel Res 2006;444:250–255.Google Scholar
  315. 315.
    Huang H, Chen YP, Cao GH, Lin ZC. MRI and radiography for diagnosis of lower limb osteosarcoma: a comparison. Di Yi Jun YI Da Xue Xue Bao 2005;25(12):1552–1554.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • Theodore T. Miller
    • 1
  • Robert A. Pedowitz
    • 2
  • Ali Dalal
    • 3
  • Catherine Robertson
    • 3
  • Ryan Serrano
    • 4
  1. 1.Department of Radiology and ImagingHospital for Special SurgeryNew YorkUSA
  2. 2.Department of Orthopaedics and Sports MedicineUniversity of South Florida College of MedicineTampaUSA
  3. 3.Department of Orthopaedic SurgeryUniversity of CaliforniaSan DiegoUSA
  4. 4.Occidental CollegeLos AngelesUSA

Personalised recommendations