Skip to main content

Lymphomas

  • Chapter
  • First Online:
  • 2310 Accesses

Abstract

Hodgkin’s and non-Hodgkin’s lymphomas are lymphoid neoplasms arising from B cells, T cells, or NK (natural killer) cells. [18F]FDG PET/CT is more accurate for the primary staging of lymphoma particularly because it can detect disease in normal sized lymph nodes, the liver, spleen and bone marrow. A major advantage of [18F]FDG PET in determining the outcome of therapy is distinguishing active lymphoma from fibrosis/necrosis in residual masses. Posttherapy [18F]FDG PET provides important prognostic information and has been incorporated into the currently used criteria for evaluating response to therapy in lymphoma (revised International Workshop Criteria—IWC). Interim [18F]FDG PET/CT also provides prognostic information and is being evaluated for “risk-adapted therapy” in setting of clinical trials. Radioimmunotherapy with the anti-CD20 monoclonal antibodies, 90Y-ibritumomab and 131I-tositumomab, is effective therapy for non-Hodgkin’s lymphoma. Currently, radioimmunotherapy is used in the relapsed/refractory setting and also for consolidation after front-line chemotherapy in low-grade follicular lymphoma. Optimal usage of radioimmunotherapy and additional indications are areas of ongoing active investigations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kuwabara Y, Ichiya Y, Otsuka M, et al. High [18F]FDG uptake in primary cerebral lymphoma: a PET study. J Comput Assist Tomogr. 1988;12:47–8.

    Article  CAS  PubMed  Google Scholar 

  2. Newman JS, Francis IR, Kaminski MS, Wahl RL. Imaging of ­lymphoma with PET with 2-[F-18]-fluoro-2-deoxy-D-glucose: correlation with CT. Radiology. 1994;190:111–6.

    CAS  PubMed  Google Scholar 

  3. American Cancer Society. Cancer facts and figures. http://www.cancer.org/docroot/STT/content/STT_1x_Cancer_Facts__Figures_2009. Accessed 14 Apr 2010.

  4. Weiss LM, Strickler JG, Warnke RA, Purtilo DT, Sklar J. Epstein-Barr viral DNA in tissues of Hodgkin’s disease. Am J Pathol. 1987;129:86–91.

    CAS  PubMed  Google Scholar 

  5. Hjalgrim H, Askling J, Rostgaard K, et al. Characteristics of Hodgkin’s lymphoma after infectious mononucleosis. N Engl J Med. 2003;349:1324–32.

    Article  CAS  PubMed  Google Scholar 

  6. Kamper PM, Kjeldsen E, Clausen N, Bendix K, Hamilton-Dutoit S, d’Amore F. Epstein-Barr virus-associated familial Hodgkin lymphoma: paediatric onset in three of five siblings. Br J Haematol. 2005;129:615–7.

    Article  PubMed  Google Scholar 

  7. Mack TM, Cozen W, Shibata DK, et al. Concordance for Hodgkin’s disease in identical twins suggesting genetic susceptibility to the young-adult form of the disease. N Engl J Med. 1995;332:413–8.

    Article  CAS  PubMed  Google Scholar 

  8. Horning SJ. Hodgkin’s lymphoma. In: Abeloff M, Armitage JO, Niederhuber JE, Kastan MB, McKenna WG, editors. Abeloff’s clinical oncology. 4th ed. Philadelphia: Churchill Livingstone Elsevier; 2008.

    Google Scholar 

  9. Cotran RS, Kumar V, Robbins SL. Diseases of white cells, lymph nodes, and spleen. In: Cotran RS, Kumar V, Robbins SL, editors. Pathologic basis of disease. 5th ed. Philadelphia: W.B. Saunders Company; 1994. p. 629–72.

    Google Scholar 

  10. Foss HD, Reusch R, Demel G, et al. Frequent expression of the B-cell-specific activator protein in Reed-Sternberg cells of classical Hodgkin’s disease provides further evidence for its B-cell origin. Blood. 1999;94:3108–13.

    CAS  PubMed  Google Scholar 

  11. Marafioti T, Hummel M, Anagnostopoulos I, et al. Origin of nodular lymphocyte-predominant Hodgkin’s disease from a clonal expansion of highly mutated germinal-center B cells. N Engl J Med. 1997;337:453–8.

    Article  CAS  PubMed  Google Scholar 

  12. Hall PA, D’Ardenne AJ. Value of CD15 immunostaining in diagnosing Hodgkin’s disease: a review of published literature. J Clin Pathol. 1987;40:1298–304.

    Article  CAS  PubMed  Google Scholar 

  13. Pinkus GS, Thomas P, Said JW. Leu-M1—a marker for Reed-Sternberg cells in Hodgkin’s disease. An immunoperoxidase study of paraffin-embedded tissues. Am J Pathol. 1985;119:244–52.

    CAS  PubMed  Google Scholar 

  14. Rassidakis GZ, Medeiros LJ, Viviani S, et al. CD20 expression in Hodgkin and Reed-Sternberg cells of classical Hodgkin’s disease: associations with presenting features and clinical outcome. J Clin Oncol. 2002;20:1278–87.

    Article  CAS  PubMed  Google Scholar 

  15. Watanabe K, Yamashita Y, Nakayama A, et al. Varied B-cell immunophenotypes of Hodgkin/Reed-Sternberg cells in classic Hodgkin’s disease. Histopathology. 2000;36:353–61.

    Article  CAS  PubMed  Google Scholar 

  16. Mani H, Jaffe ES. Hodgkin lymphoma: an update on its biology with new insights into classification. Clin Lymphoma Myeloma. 2009;9:206–16.

    Article  PubMed  Google Scholar 

  17. Skinnider BF, Mak TW. The role of cytokines in classical Hodgkin lymphoma. Blood. 2002;99:4283–97.

    Article  CAS  PubMed  Google Scholar 

  18. NCCN. NCCN clinical practice guidelines in oncology: Hodgkin lymphoma. V1.2010. http://www.nccn.org/professionals/physician_gls/f_guidelines.asp#site. Accessed 1 Apr 2010.

  19. Carbone PP, Kaplan HS, Musshoff K, Smithers DW, Tubiana M. Report of the Committee on Hodgkin’s Disease Staging Classification. Cancer Res. 1971;31:1860–1.

    CAS  PubMed  Google Scholar 

  20. Lister TA, Crowther D, Sutcliffe SB, et al. Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin’s disease: Cotswolds meeting. J Clin Oncol. 1989;7:1630–6.

    CAS  PubMed  Google Scholar 

  21. Hasenclever D, Diehl V. A prognostic score for advanced Hodgkin’s disease. International Prognostic Factors Project on Advanced Hodgkin’s Disease. N Engl J Med. 1998;339:1506–14.

    Article  CAS  PubMed  Google Scholar 

  22. Gallamini A, Hutchings M, Rigacci L, et al. Early interim 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography is prognostically superior to international prognostic score in advanced-stage Hodgkin’s lymphoma: a report from a joint Italian-Danish study. J Clin Oncol. 2007;25:3746–52.

    Article  CAS  PubMed  Google Scholar 

  23. Canellos GP, Anderson JR, Propert KJ, et al. Chemotherapy of advanced Hodgkin’s disease with MOPP, ABVD, or MOPP alternating with ABVD. N Engl J Med. 1992;327:1478–84.

    Article  CAS  PubMed  Google Scholar 

  24. Canellos GP, Niedzwiecki D. Long-term follow-up of Hodgkin’s disease trial. N Engl J Med. 2002;346:1417–8.

    Article  PubMed  Google Scholar 

  25. DeVita Jr VT, Carbone PP. Treatment of Hodgkin’s disease. Med Ann Dist Columbia. 1967;36:232–4.

    PubMed  Google Scholar 

  26. Klimo P, Connors JM. MOPP/ABV hybrid program: combination chemotherapy based on early introduction of seven effective drugs for advanced Hodgkin’s disease. J Clin Oncol. 1985;3:1174–82.

    CAS  PubMed  Google Scholar 

  27. Klimm B, Diehl V, Pfistner B, Engert A. Current treatment strategies of the German Hodgkin Study Group (GHSG). Eur J Haematol Suppl. 2005;66:125–34.

    Article  PubMed  Google Scholar 

  28. Specht L, Gray RG, Clarke MJ, Peto R. Influence of more extensive radiotherapy and adjuvant chemotherapy on long-term outcome of early-stage Hodgkin’s disease: a meta-analysis of 23 randomized trials involving 3,888 patients. International Hodgkin’s Disease Collaborative Group. J Clin Oncol. 1998;16:830–43.

    CAS  PubMed  Google Scholar 

  29. Carde P, Hagenbeek A, Hayat M, et al. Clinical staging versus laparotomy and combined modality with MOPP versus ABVD in early-stage Hodgkin’s disease: the H6 twin randomized trials from the European Organization for Research and Treatment of Cancer Lymphoma Cooperative Group. J Clin Oncol. 1993;11:2258–72.

    CAS  PubMed  Google Scholar 

  30. Connors JM, Klimo P, Adams G, et al. Treatment of advanced Hodgkin’s disease with chemotherapy—comparison of MOPP/ABV hybrid regimen with alternating courses of MOPP and ABVD: a report from the National Cancer Institute of Canada clinical trials group. J Clin Oncol. 1997;15:1638–45.

    CAS  PubMed  Google Scholar 

  31. Duggan DB, Petroni GR, Johnson JL, et al. Randomized comparison of ABVD and MOPP/ABV hybrid for the treatment of advanced Hodgkin’s disease: report of an intergroup trial. J Clin Oncol. 2003;21:607–14.

    Article  CAS  PubMed  Google Scholar 

  32. Sieber M, Tesch H, Pfistner B, et al. Rapidly alternating COPP/ABV/IMEP is not superior to conventional alternating COPP/ABVD in combination with extended-field radiotherapy in intermediate-stage Hodgkin’s lymphoma: final results of the German Hodgkin’s Lymphoma Study Group Trial HD5. J Clin Oncol. 2002;20:476–84.

    Article  CAS  PubMed  Google Scholar 

  33. Bonadonna G, Valagussa P, Santoro A. Alternating non-cross-resistant combination chemotherapy or MOPP in stage IV Hodgkin’s disease. A report of 8-year results. Ann Intern Med. 1986;104:739–46.

    CAS  PubMed  Google Scholar 

  34. Diehl V, Brillant A, Engert J, for the German Hodgkin’s Study Group, et al. Reduction of combined modality treatment intensity in early stage Hodgkin’s lymphoma: interim analysis of the HD10 trial of the GHSG. Eur J Hematol. 2004;73 Suppl 65:36 [abstract].

    Google Scholar 

  35. Diehl V, Brillant A, Engert J, for the German Hodgkin’s Study Group, et al. Intensification of chemotherapy and concomitant reduction of radiotherapy dose in intermediate stage Hodgkin’s lymphoma: results of the 4th interim analysis of the HD11 trial of the GHSG. Eur J Hematol. 2004;73 Suppl 65:36. [abstract]. Ref Type: Abstract.

    Google Scholar 

  36. Diehl V, Franklin J, Pfreundschuh M, et al. Standard and increased-dose BEACOPP chemotherapy compared with COPP-ABVD for advanced Hodgkin’s disease. N Engl J Med. 2003;348:2386–95.

    Article  CAS  PubMed  Google Scholar 

  37. Horning SJ, Chao NJ, Negrin RS, et al. High-dose therapy and autologous hematopoietic progenitor cell transplantation for recurrent or refractory Hodgkin’s disease: analysis of the Stanford University results and prognostic indices. Blood. 1997;89:801–13.

    CAS  PubMed  Google Scholar 

  38. Horning SJ, Williams J, Bartlett NL, et al. Assessment of the stanford V regimen and consolidative radiotherapy for bulky and advanced Hodgkin’s disease: Eastern Cooperative Oncology Group pilot study E1492. J Clin Oncol. 2000;18:972–80.

    CAS  PubMed  Google Scholar 

  39. Ballova V, Ruffer JU, Haverkamp H, et al. A prospectively randomized trial carried out by the German Hodgkin Study Group (GHSG) for elderly patients with advanced Hodgkin’s disease comparing BEACOPP baseline and COPP-ABVD (study HD9 elderly). Ann Oncol. 2005;16:124–31.

    Article  CAS  PubMed  Google Scholar 

  40. Akpek G, Ambinder RF, Piantadosi S, et al. Long-term results of blood and marrow transplantation for Hodgkin’s lymphoma. J Clin Oncol. 2001;19:4314–21.

    CAS  PubMed  Google Scholar 

  41. Jagannath S, Armitage JO, Dicke KA, et al. Prognostic factors for response and survival after high-dose cyclophosphamide, carmustine, and etoposide with autologous bone marrow transplantation for relapsed Hodgkin’s disease. J Clin Oncol. 1989;7:179–85.

    CAS  PubMed  Google Scholar 

  42. Jones RJ, Piantadosi S, Mann RB, et al. High-dose cytotoxic therapy and bone marrow transplantation for relapsed Hodgkin’s disease. J Clin Oncol. 1990;8:527–37.

    CAS  PubMed  Google Scholar 

  43. Nademanee A, O’Donnell MR, Snyder DS, et al. High-dose chemotherapy with or without total body irradiation followed by autologous bone marrow and/or peripheral blood stem cell transplantation for patients with relapsed and refractory Hodgkin’s disease: results in 85 patients with analysis of prognostic factors. Blood. 1995;85:1381–90.

    CAS  PubMed  Google Scholar 

  44. Sureda A, Arranz R, Iriondo A, et al. Autologous stem-cell transplantation for Hodgkin’s disease: results and prognostic factors in 494 patients from the Grupo Espanol de Linfomas/Transplante Autologo de Medula Osea Spanish Cooperative Group. J Clin Oncol. 2001;19:1395–404.

    CAS  PubMed  Google Scholar 

  45. Anderson JE, Litzow MR, Appelbaum FR, et al. Allogeneic, syngeneic, and autologous marrow transplantation for Hodgkin’s disease: the 21-year Seattle experience. J Clin Oncol. 1993;11:2342–50.

    CAS  PubMed  Google Scholar 

  46. Gajewski JL, Phillips GL, Sobocinski KA, et al. Bone marrow transplants from HLA-identical siblings in advanced Hodgkin’s disease. J Clin Oncol. 1996;14:572–8.

    CAS  PubMed  Google Scholar 

  47. Jackson C, Sirohi B, Cunningham D, Horwich A, Thomas K, Wotherspoon A. Lymphocyte-predominant Hodgkin lymphoma—clinical features and treatment outcomes from a 30-year experience. Ann Oncol. 2010;21:2061.

    Article  CAS  PubMed  Google Scholar 

  48. Ekstrand BC, Lucas JB, Horwitz SM, et al. Rituximab in lymphocyte-predominant Hodgkin disease: results of a phase 2 trial. Blood. 2003;101:4285–9.

    Article  CAS  PubMed  Google Scholar 

  49. Rehwald U, Schulz H, Reiser M, et al. Treatment of relapsed CD20+ Hodgkin lymphoma with the monoclonal antibody rituximab is effective and well tolerated: results of a phase 2 trial of the German Hodgkin Lymphoma Study Group. Blood. 2003;101:420–4.

    Article  CAS  PubMed  Google Scholar 

  50. Younes A, Romaguera J, Hagemeister F, et al. A pilot study of rituximab in patients with recurrent, classic Hodgkin disease. Cancer. 2003;98:310–4.

    Article  CAS  PubMed  Google Scholar 

  51. Dores GM, Metayer C, Curtis RE, et al. Second malignant neoplasms among long-term survivors of Hodgkin’s disease: a population-based evaluation over 25 years. J Clin Oncol. 2002;20:3484–94.

    Article  PubMed  Google Scholar 

  52. Swerdlow AJ, Higgins CD, Smith P, et al. Myocardial infarction mortality risk after treatment for Hodgkin disease: a collaborative British cohort study. J Natl Cancer Inst. 2007;99:206–14.

    Article  PubMed  Google Scholar 

  53. Baecklund E, Iliadou A, Askling J, et al. Association of chronic inflammation, not its treatment, with increased lymphoma risk in rheumatoid arthritis. Arthritis Rheum. 2006;54:692–701.

    Article  PubMed  Google Scholar 

  54. Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet. 2007;370:59–67.

    Article  PubMed  Google Scholar 

  55. Ramos-Casals M, la Civita L, de Vita S, et al. Characterization of B cell lymphoma in patients with Sjogren’s syndrome and hepatitis C virus infection. Arthritis Rheum. 2007;57:161–70.

    Article  PubMed  Google Scholar 

  56. Harris NL, Jaffe ES, Stein H, et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood. 1994;84:1361–92.

    CAS  PubMed  Google Scholar 

  57. Jaffe ES. The 2008 WHO classification of lymphomas: implications for clinical practice and translational research. Hematology Am Soc Hematol Educ Program. 2009;2009:523–31.

    Article  Google Scholar 

  58. Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: IARC Press; 2008.

    Google Scholar 

  59. Anderson T, Chabner BA, Young RC, et al. Malignant lymphoma. 1. The histology and staging of 473 patients at the National Cancer Institute. Cancer. 1982;50:2699–707.

    Article  CAS  PubMed  Google Scholar 

  60. Conlan MG, Bast M, Armitage JO, Weisenburger DD. Bone marrow involvement by non-Hodgkin’s lymphoma: the clinical significance of morphologic discordance between the lymph node and bone marrow. Nebraska Lymphoma Study Group. J Clin Oncol. 1990;8:1163–72.

    CAS  PubMed  Google Scholar 

  61. Foucar K, McKenna RW, Frizzera G, Brunning RD. Bone marrow and blood involvement by lymphoma in relationship to the Lukes-Collins classification. Cancer. 1982;49:888–97.

    Article  CAS  PubMed  Google Scholar 

  62. Shipp et al. A predictive model for aggressive non-Hodgkin’s lymphoma: the International Non-Hodgkin’s Lymphoma Prognostic Factors Project. N Engl J Med. 1993;329:987–94.

    Google Scholar 

  63. Sehn LH, Berry B, Chhanabhai M, et al. The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP. Blood. 2007;109:1857–61.

    Article  CAS  PubMed  Google Scholar 

  64. Miller TP. The limits of limited stage lymphoma. J Clin Oncol. 2004;22:2982–4.

    Article  PubMed  Google Scholar 

  65. Blay J, Gomez F, Sebban C, et al. The International Prognostic Index correlates to survival in patients with aggressive lymphoma in relapse: analysis of the PARMA trial. Parma Group. Blood. 1998;92:3562–8.

    CAS  PubMed  Google Scholar 

  66. Hamlin PA, Zelenetz AD, Kewalramani T, et al. Age-adjusted International Prognostic Index predicts autologous stem cell transplantation outcome for patients with relapsed or primary refractory diffuse large B-cell lymphoma. Blood. 2003;102:1989–96.

    Article  CAS  PubMed  Google Scholar 

  67. Lerner RE, Thomas W, Defor TE, Weisdorf DJ, Burns LJ. The International Prognostic Index assessed at relapse predicts outcomes of autologous transplantation for diffuse large-cell non-Hodgkin’s lymphoma in second complete or partial remission. Biol Blood Marrow Transplant. 2007;13:486–92.

    Article  PubMed  Google Scholar 

  68. Moskowitz CH, Nimer SD, Glassman JR, et al. The International Prognostic Index predicts for outcome following autologous stem cell transplantation in patients with relapsed and primary refractory intermediate-grade lymphoma. Bone Marrow Transplant. 1999;23:561–7.

    Article  CAS  PubMed  Google Scholar 

  69. Buske C, Hoster E, Dreyling M, Hasford J, Unterhalt M, Hiddemann W. The Follicular Lymphoma International Prognostic Index (FLIPI) separates high-risk from intermediate- or low-risk patients with advanced-stage follicular lymphoma treated front-line with rituximab and the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) with respect to treatment outcome. Blood. 2006;108:1504–8.

    Article  CAS  PubMed  Google Scholar 

  70. Solal-Celigny P, Roy P, Colombat P, et al. Follicular lymphoma international prognostic index. Blood. 2004;104:1258–65.

    Article  CAS  PubMed  Google Scholar 

  71. Zelenetz AD, Abramson JS, Advani RH, et al. NCCN Clinical Practice Guidelines in Oncology: non-Hodgkin’s lymphomas. J Natl Compr Canc Netw. 2010;8:288–334.

    PubMed  Google Scholar 

  72. Cheson BD, Rummel MJ. Bendamustine: rebirth of an old drug. J Clin Oncol. 2009;27:1492–501.

    Article  CAS  PubMed  Google Scholar 

  73. Coiffier B. Treatment of non-Hodgkin’s lymphoma: a look over the past decade. Clin Lymphoma Myeloma. 2006;7 Suppl 1:S7–13.

    Article  CAS  PubMed  Google Scholar 

  74. Mihelic R, Kaufman J, Lonial S, Flowers C. Maintenance therapy in lymphoma. Clin Lymphoma Myeloma. 2007;7:507–13.

    Article  CAS  PubMed  Google Scholar 

  75. Salles GA. Clinical features, prognosis and treatment of follicular lymphoma. Hematology Am Soc Hematol Educ Program. 2007;2007:216–25.

    Article  Google Scholar 

  76. Tageja N, Padheye S, Dandawate P, Al-Katib A, Mohammad RM. New targets for the treatment of follicular lymphoma. J Hematol Oncol. 2009;2:50.

    Article  PubMed  CAS  Google Scholar 

  77. Winter JN. Defining the role of immunotherapy and radioimmunotherapy in the treatment of low-grade lymphoma. Curr Opin Hematol. 2007;14:360–8.

    Article  CAS  PubMed  Google Scholar 

  78. Wilson WH, Armitage JO. Non-Hodgkin’s lymphoma. In: Abeloff M, Armitage JO, Niederhuber JE, Kastan MB, McKenna WG, editors. Abeloff’s clinical oncology. 4th ed. Philadelphia: Churchill Livingstone Elsevier; 2008.

    Google Scholar 

  79. Ardeshna KM, Smith P, Norton A, et al. Long-term effect of a watch and wait policy versus immediate systemic treatment for asymptomatic advanced-stage non-Hodgkin lymphoma: a randomised controlled trial. Lancet. 2003;362:516–22.

    Article  CAS  PubMed  Google Scholar 

  80. Young RC, Longo DL, Glatstein E, Ihde DC, Jaffe ES, DeVita Jr VT. The treatment of indolent lymphomas: watchful waiting v aggressive combined modality treatment. Semin Hematol. 1988;25(Suppl 2):11–6.

    CAS  PubMed  Google Scholar 

  81. Sousou T, Friedberg J. Rituximab in indolent lymphomas. Semin Hematol. 2010;47:133–42.

    Article  CAS  PubMed  Google Scholar 

  82. Colombat P, Brousse N, Morschhauser F, et al. Single treatment with rituximab monotherapy for low-tumor burden follicular lymphoma (FL): survival analyses with extended follow-up (F/Up) of 7 years. Blood (ASH Annual Meeting Abstracts). 2006;108:486 [abstract].

    Google Scholar 

  83. Colombat P, Salles G, Brousse N, et al. Rituximab (anti-CD20 monoclonal antibody) as single first-line therapy for patients with follicular lymphoma with a low tumor burden: clinical and molecular evaluation. Blood. 2001;97:101–6.

    Article  CAS  PubMed  Google Scholar 

  84. McLaughlin P, Grillo-Lopez AJ, Link BK, et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol. 1998;16:2825–33.

    CAS  PubMed  Google Scholar 

  85. Czuczman MS, Weaver R, Alkuzweny B, Berlfein J, Grillo-Lopez AJ. Prolonged clinical and molecular remission in patients with low-grade or follicular non-Hodgkin’s lymphoma treated with rituximab plus CHOP chemotherapy: 9-year follow-up. J Clin Oncol. 2004;22:4711–6.

    Article  CAS  PubMed  Google Scholar 

  86. Forstpointner R, Dreyling M, Repp R, et al. The addition of rituximab to a combination of fludarabine, cyclophosphamide, mitoxantrone (FCM) significantly increases the response rate and prolongs survival as compared with FCM alone in patients with relapsed and refractory follicular and mantle cell lymphomas: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood. 2004;104:3064–71.

    Article  CAS  PubMed  Google Scholar 

  87. Marcus R, Imrie K, Belch A, et al. CVP chemotherapy plus rituximab compared with CVP as first-line treatment for advanced follicular lymphoma. Blood. 2005;105:1417–23.

    Article  CAS  PubMed  Google Scholar 

  88. Zinzani PL, Pulsoni A, Perrotti A, et al. Fludarabine plus mitoxantrone with and without rituximab versus CHOP with and without rituximab as front-line treatment for patients with follicular lymphoma. J Clin Oncol. 2004;22:2654–61.

    Article  CAS  PubMed  Google Scholar 

  89. van Oers MH, Klasa R, Marcus RE, et al. Rituximab maintenance improves clinical outcome of relapsed/resistant follicular non-Hodgkin lymphoma in patients both with and without rituximab during induction: results of a prospective randomized phase 3 intergroup trial. Blood. 2006;108:3295–301.

    Article  PubMed  CAS  Google Scholar 

  90. Hochster H, Weller E, Gascoyne RD, et al. Maintenance rituximab after cyclophosphamide, vincristine, and prednisone prolongs progression-free survival in advanced indolent lymphoma: results of the randomized phase III ECOG1496 Study. J Clin Oncol. 2009;27:1607–14.

    Article  CAS  PubMed  Google Scholar 

  91. Schulz H, Bohlius JF, Trelle S, et al. Immunochemotherapy with rituximab and overall survival in patients with indolent or mantle cell lymphoma: a systematic review and meta-analysis. J Natl Cancer Inst. 2007;99:706–14.

    Article  CAS  PubMed  Google Scholar 

  92. van MT, Hagenbeek A. CD20-targeted therapy: the next generation of antibodies. Semin Hematol. 2010;47:199–210.

    Article  CAS  Google Scholar 

  93. Davis TA, White CA, Grillo-Lopez AJ, et al. Single-agent monoclonal antibody efficacy in bulky non-Hodgkin’s lymphoma: results of a phase II trial of rituximab. J Clin Oncol. 1999;17:1851–7.

    CAS  PubMed  Google Scholar 

  94. Davis TA, Grillo-Lopez AJ, White CA, et al. Rituximab anti-CD20 monoclonal antibody therapy in non-Hodgkin’s lymphoma: safety and efficacy of re-treatment. J Clin Oncol. 2000;18:3135–43.

    CAS  PubMed  Google Scholar 

  95. Davis TA, Kaminski MS, Leonard JP, et al. The radioisotope contributes significantly to the activity of radioimmunotherapy. Clin Cancer Res. 2004;10:7792–8.

    Article  CAS  PubMed  Google Scholar 

  96. Witzig TE, Gordon LI, Cabanillas F, et al. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20:2453–63.

    Article  CAS  PubMed  Google Scholar 

  97. Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346:235–42.

    Article  CAS  PubMed  Google Scholar 

  98. Feugier P, Van HA, Sebban C, et al. Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: a study by the Groupe d’Etude des Lymphomes de l’Adulte. J Clin Oncol. 2005;23:4117–26.

    Article  CAS  PubMed  Google Scholar 

  99. Habermann TM, Weller EA, Morrison VA, et al. Rituximab-CHOP versus CHOP alone or with maintenance rituximab in older patients with diffuse large B-cell lymphoma. J Clin Oncol. 2006;24:3121–7.

    Article  CAS  PubMed  Google Scholar 

  100. Zinzani PL, Bendandi M, Martelli M, et al. Anaplastic large-cell lymphoma: clinical and prognostic evaluation of 90 adult patients. J Clin Oncol. 1996;14:955–62.

    CAS  PubMed  Google Scholar 

  101. Bruns I, Fox F, Reinecke P, et al. Complete remission in a patient with relapsed angioimmunoblastic T-cell lymphoma following treatment with bevacizumab. Leukemia. 2005;19:1993–5.

    Article  CAS  PubMed  Google Scholar 

  102. Piekarz RL, Robey RW, Zhan Z, et al. T-cell lymphoma as a model for the use of histone deacetylase inhibitors in cancer therapy: impact of depsipeptide on molecular markers, therapeutic targets, and mechanisms of resistance. Blood. 2004;103:4636–43.

    Article  CAS  PubMed  Google Scholar 

  103. Dearden C. Alemtuzumab in peripheral T-cell malignancies. Cancer Biother Radiopharm. 2004;19:391–8.

    CAS  PubMed  Google Scholar 

  104. Richman SD, Levenson SM, Jones AE, Johnston GS. Radionuclide studies in Hodgkin’s disease and lymphomas. Semin Nucl Med. 1975;5:103–8.

    Article  CAS  PubMed  Google Scholar 

  105. Adler S, Parthasarathy KL, Bakshi SP, Stutzman L. Gallium-67-citrate scanning for the localization and staging of lymphomas. J Nucl Med. 1975;16:255–60.

    CAS  PubMed  Google Scholar 

  106. Even-Sapir E, Bar-Shalom R, Israel O, et al. Single-photon emission computed tomography quantitation of gallium citrate uptake for the differentiation of lymphoma from benign hilar uptake. J Clin Oncol. 1995;13:942–6.

    CAS  PubMed  Google Scholar 

  107. Front D, Bar-Shalom R, Mor M, et al. Hodgkin disease: prediction of outcome with 67Ga scintigraphy after one cycle of chemotherapy. Radiology. 1999;210:487–91.

    CAS  PubMed  Google Scholar 

  108. Front D, Bar-Shalom R, Mor M, et al. Aggressive non-Hodgkin lymphoma: early prediction of outcome with 67Ga scintigraphy. Radiology. 2000;214:253–7.

    CAS  PubMed  Google Scholar 

  109. Israel O, Front D, Lam M, et al. Gallium 67 imaging in monitoring lymphoma response to treatment. Cancer. 1988;61:2439–43.

    Article  CAS  PubMed  Google Scholar 

  110. Israel O, Mor M, Epelbaum R, et al. Clinical pretreatment risk factors and Ga-67 scintigraphy early during treatment for prediction of outcome of patients with aggressive non-Hodgkin lymphoma. Cancer. 2002;94:873–8.

    Article  PubMed  Google Scholar 

  111. Janicek M, Kaplan W, Neuberg D, Canellos GP, Shulman LN, Shipp MA. Early restaging gallium scans predict outcome in poor-prognosis patients with aggressive non-Hodgkin’s lymphoma treated with high-dose CHOP chemotherapy. J Clin Oncol. 1997;15:1631–7.

    CAS  PubMed  Google Scholar 

  112. Bekerman C, Moran EM, Hoffer PB, Hendrix RW, Gottschalk A. Scintigraphic evaluation of lymphoma: a comparative study of 67Ga-citrate and 111In-bleomycin. Radiology. 1977;123:687–94.

    CAS  PubMed  Google Scholar 

  113. Jones SE, Lilien DL, O’Mara RE, Durie BG, Salmon SE. Indium-111 bleomycin tumor scanning in lymphoma. Med Pediatr Oncol. 1975;1:11–21.

    Article  CAS  PubMed  Google Scholar 

  114. Bar-Shalom R, Mor M, Yefremov N, Goldsmith SJ. The value of Ga-67 scintigraphy and F-18 fluorodeoxyglucose positron emission tomography in staging and monitoring the response of lymphoma to treatment. Semin Nucl Med. 2001;31:177–90.

    Article  CAS  PubMed  Google Scholar 

  115. Friedberg JW, Fischman A, Neuberg D, et al. FDG-PET is superior to gallium scintigraphy in staging and more sensitive in the follow-up of patients with de novo Hodgkin lymphoma: a blinded comparison. Leuk Lymphoma. 2004;45:85–92.

    Article  PubMed  Google Scholar 

  116. Kostakoglu L, Leonard JP, Kuji I, Coleman M, Vallabhajosula S, Goldsmith SJ. Comparison of fluorine-18 fluorodeoxyglucose positron emission tomography and Ga-67 scintigraphy in evaluation of lymphoma. Cancer. 2002;94:879–88.

    Article  PubMed  Google Scholar 

  117. Tsukamoto N, Kojima M, Hasegawa M, et al. The usefulness of 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) and a comparison of 18F-FDG-PET with 67gallium scintigraphy in the evaluation of lymphoma: relation to histologic subtypes based on the World Health Organization classification. Cancer. 2007;110:652–9.

    Article  PubMed  Google Scholar 

  118. Yamamoto F, Tsukamoto E, Nakada K, et al. 18F-FDG PET is superior to 67Ga SPECT in the staging of non-Hodgkin’s lymphoma. Ann Nucl Med. 2004;18:519–26.

    Article  PubMed  Google Scholar 

  119. Weiler-Sagie M, Bushelev O, Epelbaum R, et al. 18F-FDG avidity in lymphoma readdressed: a study of 766 patients. J Nucl Med. 2010;51:25–30.

    Article  PubMed  Google Scholar 

  120. Lapela M, Leskinen S, Minn HR, et al. Increased glucose metabolism in untreated non-Hodgkin’s lymphoma: a study with positron emission tomography and fluorine-18-fluorodeoxyglucose. Blood. 1995;86:3522–7.

    CAS  PubMed  Google Scholar 

  121. Rodriguez M, Rehn S, Ahlstrom H, Sundstrom C, Glimelius B. Predicting malignancy grade with PET in non-Hodgkin’s lymphoma. J Nucl Med. 1995;36:1790–6.

    CAS  PubMed  Google Scholar 

  122. Schoder H, Noy A, Gonen M, et al. Intensity of 18fluorodeoxyglucose uptake in positron emission tomography distinguishes between indolent and aggressive non-Hodgkin’s lymphoma. J Clin Oncol. 2005;23:4643–51.

    Article  PubMed  Google Scholar 

  123. Bruzzi JF, Macapinlac H, Tsimberidou AM, et al. Detection of Richter’s transformation of chronic lymphocytic leukemia by PET/CT. J Nucl Med. 2006;47:1267–73.

    PubMed  Google Scholar 

  124. Bodet-Milin C, Kraeber-Bodere F, Moreau P, Campion L, Dupas B, Le GS. Investigation of FDG-PET/CT imaging to guide biopsies in the detection of histological transformation of indolent lymphoma. Haematologica. 2008;93:471–2.

    Article  PubMed  Google Scholar 

  125. Bangerter M, Moog F, Buchmann I, et al. Whole-body 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) for accurate staging of Hodgkin’s disease. Ann Oncol. 1998;9:1117–22.

    Article  CAS  PubMed  Google Scholar 

  126. Jerusalem G, Beguin Y, Fassotte MF, et al. Whole-body positron emission tomography using 18F-fluorodeoxyglucose compared to standard procedures for staging patients with Hodgkin’s disease. Haematologica. 2001;86:266–73.

    CAS  PubMed  Google Scholar 

  127. Moog F, Bangerter M, Diederichs CG, et al. Extranodal malignant lymphoma: detection with FDG PET versus CT. Radiology. 1998;206:475–81.

    CAS  PubMed  Google Scholar 

  128. Partridge S, Timothy A, O’Doherty MJ, Hain SF, Rankin S, Mikhaeel G. 2-Fluorine-18-fluoro-2-deoxy-D glucose positron emission tomography in the pretreatment staging of Hodgkin’s disease: influence on patient management in a single institution. Ann Oncol. 2000;11:1273–9.

    Article  CAS  PubMed  Google Scholar 

  129. Weihrauch MR, Re D, Bischoff S, et al. Whole-body positron emission tomography using 18F-fluorodeoxyglucose for initial staging of patients with Hodgkin’s disease. Ann Hematol. 2002;81:20–5.

    Article  CAS  PubMed  Google Scholar 

  130. Carr R, Barrington SF, Madan B, et al. Detection of lymphoma in bone marrow by whole-body positron emission tomography. Blood. 1998;91:3340–6.

    CAS  PubMed  Google Scholar 

  131. Moog F, Bangerter M, Kotzerke J, Guhlmann A, Frickhofen N, Reske SN. 18-F-fluorodeoxyglucose-positron emission tomography as a new approach to detect lymphomatous bone marrow. J Clin Oncol. 1998;16:603–9.

    CAS  PubMed  Google Scholar 

  132. Pakos EE, Fotopoulos AD, Ioannidis JP. 18F-FDG PET for evaluation of bone marrow infiltration in staging of lymphoma: a meta-analysis. J Nucl Med. 2005;46:958–63.

    PubMed  Google Scholar 

  133. Nakamoto Y, Cohade C, Tatsumi M, Hammoud D, Wahl RL. CT appearance of bone metastases detected with FDG PET as part of the same PET/CT examination. Radiology. 2005;237:627–34.

    Article  PubMed  Google Scholar 

  134. Buchmann I, Reinhardt M, Elsner K, et al. 2-(fluorine-18)fluoro-2-deoxy-D-glucose positron emission tomography in the detection and staging of malignant lymphoma. A bicenter trial. Cancer. 2001;91:889–99.

    Article  CAS  PubMed  Google Scholar 

  135. Schoder H, Meta J, Yap C, et al. Effect of whole-body 18F-FDG PET imaging on clinical staging and management of patients with malignant lymphoma. J Nucl Med. 2001;42:1139–43.

    CAS  PubMed  Google Scholar 

  136. Blum RH, Seymour JF, Wirth A, MacManus M, Hicks RJ. Frequent impact of [18F]fluorodeoxyglucose positron emission tomography on the staging and management of patients with indolent non-Hodgkin’s lymphoma. Clin Lymphoma. 2003;4:43–9.

    Article  PubMed  Google Scholar 

  137. Janikova A, Bolcak K, Pavlik T, Mayer J, Kral Z. Value of [18F]fluorodeoxyglucose positron emission tomography in the management of follicular lymphoma: the end of a dilemma? Clin Lymphoma Myeloma. 2008;8:287–93.

    Article  PubMed  Google Scholar 

  138. Jerusalem G, Beguin Y, Najjar F, et al. Positron emission tomography (PET) with 18F-fluorodeoxyglucose (18F-FDG) for the staging of low-grade non-Hodgkin’s lymphoma (NHL). Ann Oncol. 2001;12:825–30.

    Article  CAS  PubMed  Google Scholar 

  139. Karam M, Novak L, Cyriac J, Ali A, Nazeer T, Nugent F. Role of fluorine-18 fluoro-deoxyglucose positron emission tomography scan in the evaluation and follow-up of patients with low-grade lymphomas. Cancer. 2006;107:175–83.

    Article  PubMed  Google Scholar 

  140. Ishimori T, Patel PV, Wahl RL. Detection of unexpected additional primary malignancies with PET/CT. J Nucl Med. 2005;46:752–7.

    PubMed  Google Scholar 

  141. Tatsumi M, Cohade C, Nakamoto Y, Fishman EK, Wahl RL. Direct comparison of FDG PET and CT findings in patients with lymphoma: initial experience. Radiology. 2005;237:1038–45.

    Article  PubMed  Google Scholar 

  142. Allen-Auerbach M, Quon A, Weber WA, et al. Comparison between 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography and positron emission tomography/computed tomography hardware fusion for staging of patients with lymphoma. Mol Imaging Biol. 2004;6:411–6.

    Article  PubMed  Google Scholar 

  143. Jochelson M, Mauch P, Balikian J, Rosenthal D, Canellos G. The significance of the residual mediastinal mass in treated Hodgkin’s disease. J Clin Oncol. 1985;3:637–40.

    CAS  PubMed  Google Scholar 

  144. Jerusalem G, Beguin Y, Fassotte MF, et al. Whole-body positron emission tomography using 18F-fluorodeoxyglucose for posttreatment evaluation in Hodgkin’s disease and non-Hodgkin’s lymphoma has higher diagnostic and prognostic value than classical computed tomography scan imaging. Blood. 1999;94:429–33.

    CAS  PubMed  Google Scholar 

  145. Naumann R, Vaic A, Beuthien-Baumann B, et al. Prognostic value of positron emission tomography in the evaluation of post-treatment residual mass in patients with Hodgkin’s disease and non-Hodgkin’s lymphoma. Br J Haematol. 2001;115:793–800.

    Article  CAS  PubMed  Google Scholar 

  146. Spaepen K, Stroobants S, Dupont P, et al. Can positron emission tomography with 18F-fluorodeoxyglucose after first-line treatment distinguish Hodgkin’s disease patients who need additional ­therapy from others in whom additional therapy would mean avoidable toxicity? Br J Haematol. 2001;115:272–8.

    Article  CAS  PubMed  Google Scholar 

  147. Spaepen K, Stroobants S, Dupont P, et al. Prognostic value of positron emission tomography (PET) with fluorine-18 fluorodeoxyglucose ([18F]FDG) after first-line chemotherapy in non-Hodgkin’s lymphoma: is [18F]FDG-PET a valid alternative to conventional diagnostic methods? J Clin Oncol. 2001;19:414–9.

    CAS  PubMed  Google Scholar 

  148. Zinzani PL, Magagnoli M, Chierichetti F, et al. The role of positron emission tomography (PET) in the management of lymphoma patients. Ann Oncol. 1999;10:1181–4.

    Article  CAS  PubMed  Google Scholar 

  149. Humm JL, Rosenfeld A, Del GA. From PET detectors to PET scanners. Eur J Nucl Med Mol Imaging. 2003;30:1574–97.

    Article  PubMed  Google Scholar 

  150. Kasamon YL, Jones RJ, Wahl RL. Integrating PET and PET/CT into the risk-adapted therapy of lymphoma. J Nucl Med. 2007;48 Suppl 1:19S–27.

    CAS  PubMed  Google Scholar 

  151. Engles JM, Quarless SA, Mambo E, Ishimori T, Cho SY, Wahl RL. Stunning and its effect on 3H-FDG uptake and key gene expression in breast cancer cells undergoing chemotherapy. J Nucl Med. 2006;47:603–8.

    CAS  PubMed  Google Scholar 

  152. Castellucci P, Zinzani P, Nanni C, et al. 18F-FDG PET early after radiotherapy in lymphoma patients. Cancer Biother Radiopharm. 2004;19:606–12.

    PubMed  Google Scholar 

  153. Torizuka T, Zasadny KR, Kison PV, Rommelfanger SG, Kaminski MS, Wahl RL. Metabolic response of non-Hodgkin’s lymphoma to 131I-anti-B1 radioimmunotherapy: evaluation with FDG PET. J Nucl Med. 2000;41:999–1005.

    CAS  PubMed  Google Scholar 

  154. Jacene HA, Filice R, Kasecamp W, Wahl RL. 18F-FDG PET/CT for monitoring the response of lymphoma to radioimmunotherapy. J Nucl Med. 2009;50:8–17.

    Article  CAS  PubMed  Google Scholar 

  155. Cheson BD, Horning SJ, Coiffier B, et al. Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. NCI Sponsored International Working Group. J Clin Oncol. 1999;17:1244–53.

    CAS  PubMed  Google Scholar 

  156. Cheson BD, Pfistner B, Juweid ME, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25:579–86.

    Article  PubMed  Google Scholar 

  157. Juweid ME, Wiseman GA, Vose JM, et al. Response assessment of aggressive non-Hodgkin’s lymphoma by integrated International Workshop Criteria and fluorine-18-fluorodeoxyglucose positron emission tomography. J Clin Oncol. 2005;23:4652–61.

    Article  PubMed  Google Scholar 

  158. Brepoels L, Stroobants S, De WW, et al. Aggressive and indolent non-Hodgkin’s lymphoma: response assessment by integrated international workshop criteria. Leuk Lymphoma. 2007;48:1522–30.

    Article  PubMed  Google Scholar 

  159. Brepoels L, Stroobants S, De WW, et al. Hodgkin lymphoma: response assessment by revised International Workshop Criteria. Leuk Lymphoma. 2007;48:1539–47.

    Article  PubMed  Google Scholar 

  160. Juweid ME, Stroobants S, Hoekstra OS, et al. Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol. 2007;25:571–8.

    Article  PubMed  Google Scholar 

  161. Shankar LK, Hoffman JM, Bacharach S, et al. Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute Trials. J Nucl Med. 2006;47:1059–66.

    CAS  PubMed  Google Scholar 

  162. Boellaard R, Oyen WJ, Hoekstra OS, et al. The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials. Eur J Nucl Med Mol Imaging. 2008;35:2320–33.

    Article  PubMed  Google Scholar 

  163. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50 Suppl 1:122S–50.

    Article  CAS  PubMed  Google Scholar 

  164. Wahl RL, Zasadny KR, Helvie M, Hutchins GD, Weber B, Cody R. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol. 1993;11:2101–11.

    CAS  PubMed  Google Scholar 

  165. Haioun C, Itti E, Rahmouni A, et al. [18F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in aggressive lymphoma: an early prognostic tool for predicting patient outcome. Blood. 2005;106:1376–81.

    Article  CAS  PubMed  Google Scholar 

  166. Hutchings M, Mikhaeel NG, Fields PA, Nunan T, Timothy AR. Prognostic value of interim FDG-PET after two or three cycles of chemotherapy in Hodgkin lymphoma. Ann Oncol. 2005;16:1160–8.

    Article  CAS  PubMed  Google Scholar 

  167. Hutchings M, Loft A, Hansen M, et al. FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma. Blood. 2006;107:52–9.

    Article  CAS  PubMed  Google Scholar 

  168. Jerusalem G, Beguin Y, Fassotte MF, et al. Persistent tumor 18F-FDG uptake after a few cycles of polychemotherapy is predictive of treatment failure in non-Hodgkin’s lymphoma. Haematologica. 2000;85:613–8.

    CAS  PubMed  Google Scholar 

  169. Kostakoglu L, Coleman M, Leonard JP, Kuji I, Zoe H, Goldsmith SJ. PET predicts prognosis after 1 cycle of chemotherapy in aggressive lymphoma and Hodgkin’s disease. J Nucl Med. 2002;43:1018–27.

    PubMed  Google Scholar 

  170. Mikhaeel NG, Hutchings M, Fields PA, O’Doherty MJ, Timothy AR. FDG-PET after two to three cycles of chemotherapy predicts progression-free and overall survival in high-grade non-Hodgkin lymphoma. Ann Oncol. 2005;16:1514–23.

    Article  CAS  PubMed  Google Scholar 

  171. Spaepen K, Stroobants S, Dupont P, et al. Early restaging positron emission tomography with 18F-fluorodeoxyglucose predicts outcome in patients with aggressive non-Hodgkin’s lymphoma. Ann Oncol. 2002;13:1356–63.

    Article  CAS  PubMed  Google Scholar 

  172. Kasamon YL, Wahl RL. FDG PET and risk-adapted therapy in Hodgkin’s and non-Hodgkin’s lymphoma. Curr Opin Oncol. 2008;20:206–19.

    Article  PubMed  Google Scholar 

  173. Skipper HE, Schabel Jr FM, Wilcox WS. Experimental evaluation of potential anticancer agents. XIII. On the criteria and kinetics associated with “Curability” of experimental leukemia. Cancer Chemother Rep. 1964;35:1–111.

    CAS  PubMed  Google Scholar 

  174. Kasamon YL, Wahl RL, Ziessman HA, et al. Phase II study of risk-adapted therapy of newly diagnosed, aggressive non-Hodgkin lymphoma based on midtreatment FDG-PET scanning. Biol Blood Marrow Transplant. 2009;15:242–8.

    Article  PubMed  Google Scholar 

  175. Moskowitz CH, Schoder H, Teruya-Feldstein J, et al. Risk-adapted dose-dense immunochemotherapy determined by interim FDG-PET in Advanced-stage diffuse large B-Cell lymphoma. J Clin Oncol. 2010;28:1896–903.

    Article  CAS  PubMed  Google Scholar 

  176. ClinicalTrials.gov. Response-adapted therapy for aggressive non-Hodgkin’s lymphomas based on early FDG PET scanning. http://www.clinicaltrials.gov/ct2/show/NCT00274924. Accessed on 19 Apr 2010.

  177. ClinicalTrials.gov. Phase II trial investigating tailoring first-line therapy for advanced stage diffuse large B-cell non-Hodgkin’s lymphoma based on mid-treatment positron emission tomography (PET) scan results. http://www.clinicaltrials.gov/ct2/show/NCT00324467. Accessed on 17 Apr 2010.

  178. ClinicalTrials.gov. Treatment intensification with R-ICE and high-dose cyclophosphamide for diffuse large B-cell non-Hodgkin’s lymphoma based on early [18F] FDG-PET scanning. http://www.clinicaltrials.gov/ct2/show/NCT00809341. Accessed on 19 Apr 2010.

  179. ClinicalTrials.gov. Randomized phase II study of two associations of rituximab and chemotherapy, with a PET-driven strategy, in patients from 18 to 59 with DLBCL CD20+ lymphoma and 2 or 3 adverse prognostic factors of the age-adjusted IPI. http://www.clinicaltrials.gov/ct2/show/NCT00498043. Accessed on 17 Apr 2010.

  180. ClinicalTrials.gov. Positron emission tomography guided therapy of aggressive non-Hodgkin’s lymphomas. http://www.clinicaltrials.gov/ct2/show/NCT005541644. Accessed 17 Apr 2010.

  181. Dann EJ, Bar-Shalom R, Tamir A, et al. Risk-adapted BEACOPP regimen can reduce the cumulative dose of chemotherapy for standard and high-risk Hodgkin lymphoma with no impairment of outcome. Blood. 2007;109:905–9.

    Article  CAS  PubMed  Google Scholar 

  182. ClinicalTrials.gov. Multicenter clinical study with early treatment intensification in patients with high-risk Hodgkin lymphoma, identified as FDG-PET scan positive after 2 conventional ABVD courses. http://www.clinicaltrials.gov/ct2/show/NCT00795613. Accessed 17 Apr 2010.

  183. ClinicalTrials.gov. Early salvage with high dose chemotherapy and stem cell transplantation in advanced stage Hodgkin’s lymphoma patients with positive PET after two courses of ABVD (PET-2 Positive) and comparison of RT versus no RT in PET-2 negative patients. http://www.clinicaltrials.gov/ct2/show/NCT00784537. Accessed 17 Apr 2010.

  184. ClinicalTrials.gov. HD18 for advanced stages in Hodgkins lymphoma. http://www.clinicaltrials.gov/ct2/show/NCT00515554. Accessed 17 Apr 2010.

  185. ClinicalTrials.gov. HD16 for early stages—treatment optimization trial in the first-line treatment of early stage Hodgkin lymphoma; treatment stratification by means of FDG-PET. http://www.clinicaltrials.gov/ct2/show/NCT00736320. Accessed 17 Apr 2010.

  186. ClinicalTrials.gov. The H10 EORTC/GELA randomized intergroup trial on early FDG-PET scan guided treatment adaptation versus standard combined modality treatment in patients with supradiaphragmatic stage I/II Hodgkin’s lymphoma. http://www.clinicaltrials.gov/ct2/show/NCT00433433. Accessed 17 Apr 2010.

  187. Radford J, O’Doherty M, Barrington S, et al. Results of the 2nd planned interim analysis of the RAPID trial (involved field radiotherapy versus no further treatment) in patients with clinical stages 1A and 2A Hodgkin lymphoma and a ‘negative’ FDG-PET scan after 3 cycles of ABVD. Blood (ASH Annual Meeting Abstracts). 2008;112:369 [abstract].

    Google Scholar 

  188. Barrington SF, O’Doherty MJ, MacKewn J, et al. Quality control of PET imaging in a multicentre phase III trial (RAPID) involving randomisation of patients with stages IA and IIA Hodgkin lymphoma who are PET ‘negative’ after 3 cycles of ABVD chemotherapy. Blood (ASH Annual Meeting Abstracts). 2008;112:1449 [abstract].

    Google Scholar 

  189. Barrington SF, Qian W, Somer EJ, et al. Concordance between four European Centres of PET reporting criteria designed for use in multicentre trials in Hodgkin lymphoma. Eur J Nucl Med Mol Imaging. 2009;36 Suppl 2:S234–59. OP484[abstract].

    Google Scholar 

  190. Horning SJ, Juweid ME, Schoder H, et al. Interim positron emission tomography scans in diffuse large B-cell lymphoma: an independent expert nuclear medicine evaluation of the Eastern Cooperative Oncology Group E3404 study. Blood. 2010;115:775–7.

    Article  CAS  PubMed  Google Scholar 

  191. Mikhaeel NG, Timothy AR, O’Doherty MJ, Hain S, Maisey MN. 18-FDG-PET as a prognostic indicator in the treatment of aggressive non-Hodgkin’s lymphoma—comparison with CT. Leuk Lymphoma. 2000;39:543–53.

    Article  CAS  PubMed  Google Scholar 

  192. ClinicalTrials.gov. A randomized phase III trial to assess response adapted therapy using FDG-PET imaging in patients with newly diagnosed, advanced Hodgkin lymphoma. http://www.clinicaltrials.gov/ct2/show/NCT00678327. Accessed 17 Apr 2010.

  193. Meignan M, Gallamini A, Meignan M, Gallamini A, Haioun C. Report on the First International Workshop on Interim-PET-scan in lymphoma. Leuk Lymphoma. 2009;50:1257–60.

    Article  PubMed  Google Scholar 

  194. Lin C, Itti E, Haioun C, et al. Early 18F-FDG PET for prediction of prognosis in patients with diffuse large B-cell lymphoma: SUV-based assessment versus visual analysis. J Nucl Med. 2007;48:1626–32.

    Article  PubMed  Google Scholar 

  195. Itti E, Lin C, Dupuis J, et al. Prognostic value of interim 18F-FDG PET in patients with diffuse large B-Cell lymphoma: SUV-based assessment at 4 cycles of chemotherapy. J Nucl Med. 2009;50:527–33.

    Article  PubMed  Google Scholar 

  196. Liedtke M, Hamlin PA, Moskowitz CH, Zelenetz AD. Surveillance imaging during remission identifies a group of patients with more favorable aggressive NHL at time of relapse: a retrospective analysis of a uniformly-treated patient population. Ann Oncol. 2006;17:909–13.

    Article  CAS  PubMed  Google Scholar 

  197. Oh YK, Ha CS, Samuels BI, Cabanillas F, Hess MA, Cox JD. Stages I-III follicular lymphoma: role of CT of the abdomen and pelvis in follow-up studies. Radiology. 1999;210:483–6.

    CAS  PubMed  Google Scholar 

  198. Radford JA, Eardley A, Woodman C, Crowther D. Follow up policy after treatment for Hodgkin’s disease: too many clinic visits and routine tests? A review of hospital records. BMJ. 1997;314:343–6.

    Article  CAS  PubMed  Google Scholar 

  199. Jerusalem G, Beguin Y, Fassotte MF, et al. Early detection of relapse by whole-body positron emission tomography in the follow-up of patients with Hodgkin’s disease. Ann Oncol. 2003;14:123–30.

    Article  CAS  PubMed  Google Scholar 

  200. Rhodes MM, Delbeke D, Whitlock JA, et al. Utility of FDG-PET/CT in follow-up of children treated for Hodgkin and non-Hodgkin lymphoma. J Pediatr Hematol Oncol. 2006;28:300–6.

    Article  PubMed  Google Scholar 

  201. Levine JM, Weiner M, Kelly KM. Routine use of PET scans after completion of therapy in pediatric Hodgkin disease results in a high false positive rate. J Pediatr Hematol Oncol. 2006;28:711–4.

    Article  PubMed  Google Scholar 

  202. Zinzani PL, Stefoni V, Tani M, et al. Role of [18F]fluorodeoxy­glucose positron emission tomography scan in the follow-up of lymphoma. J Clin Oncol. 2009;27:1781–7.

    Article  PubMed  Google Scholar 

  203. Petrausch U, Samaras P, Veit-Haibach P, et al. Hodgkin’s lymphoma in remission after first-line therapy: which patients need FDG-PET/CT for follow-up? Ann Oncol. 2010;21:1053–7.

    Article  CAS  PubMed  Google Scholar 

  204. Petrausch U, Samaras P, Haile SR, et al. Risk-adapted FDG-PET/CT-based follow-up in patients with diffuse large B-cell lymphoma after first-line therapy. Ann Oncol. 2010;21:1694–8.

    Article  CAS  PubMed  Google Scholar 

  205. Leskinen-Kallio S, Minn H, Joensuu H. PET and [11C]methionine in assessment of response in non-Hodgkin lymphoma. Lancet. 1990;336:1188.

    Article  CAS  PubMed  Google Scholar 

  206. Leskinen-Kallio S, Ruotsalainen U, Nagren K, Teras M, Joensuu H. Uptake of carbon-11-methionine and fluorodeoxyglucose in non-Hodgkin’s lymphoma: a PET study. J Nucl Med. 1991;32:1211–8.

    CAS  PubMed  Google Scholar 

  207. Nuutinen J, Leskinen S, Lindholm P, et al. Use of carbon-11 methionine positron emission tomography to assess malignancy grade and predict survival in patients with lymphomas. Eur J Nucl Med. 1998;25:729–35.

    Article  CAS  PubMed  Google Scholar 

  208. Sutinen E, Jyrkkio S, Varpula M, et al. Nodal staging of lymphoma with whole-body PET: comparison of. J Nucl Med. 2000;41:1980–8.

    CAS  PubMed  Google Scholar 

  209. ClinicalTrials.gov. Methionine PET/CT studies in patients with cancer. http://www.clinicaltrials.gov/ct2/show/NCT00840047. Accessed 17 Apr 2010.

  210. Buchmann I, Neumaier B, Schreckenberger M, Reske S. [18F]3′-deoxy-3′-fluorothymidine-PET in NHL patients: whole-body biodistribution and imaging of lymphoma manifestations—a pilot study. Cancer Biother Radiopharm. 2004;19:436–42.

    CAS  PubMed  Google Scholar 

  211. Buck AK, Bommer M, Stilgenbauer S, et al. Molecular imaging of proliferation in malignant lymphoma. Cancer Res. 2006;66:11055–61.

    Article  CAS  PubMed  Google Scholar 

  212. Wagner M, Seitz U, Buck A, et al. 3′-[18F]fluoro-3′-deoxythymidine ([18F]-FLT) as positron emission tomography tracer for imaging proliferation in a murine B-Cell lymphoma model and in the human disease. Cancer Res. 2003;63:2681–7.

    CAS  PubMed  Google Scholar 

  213. Kasper B, Egerer G, Gronkowski M, et al. Functional diagnosis of residual lymphomas after radiochemotherapy with positron emission tomography comparing FDG- and FLT-PET. Leuk Lymphoma. 2007;48:746–53.

    Article  PubMed  Google Scholar 

  214. Brepoels L, Stroobants S, Verhoef G, De Groot T, Mortelmans L, De Wolf-Peeters C. 18F-FDG and 18F-FLT uptake early after cyclophosphamide and mTOR inhibition in an experimental lymphoma model. J Nucl Med. 2009;50:1102–9.

    Article  CAS  PubMed  Google Scholar 

  215. Buck AK, Kratochwil C, Glatting G, et al. Early assessment of therapy response in malignant lymphoma with the thymidine analogue [18F]FLT. Eur J Nucl Med Mol Imaging. 2007;34:1775–82.

    Article  CAS  PubMed  Google Scholar 

  216. Graf N, Herrmann K, den Hollander J, et al. Imaging proliferation to monitor early response of lymphoma to cytotoxic treatment. Mol Imaging Biol. 2008;10:349–55.

    Article  PubMed  Google Scholar 

  217. Herrmann K, Wieder HA, Buck AK, et al. Early response assessment using 3′-deoxy-3′-[18F]fluorothymidine-positron emission tomography in high-grade non-Hodgkin’s lymphoma. Clin Cancer Res. 2007;13:3552–8.

    Article  CAS  PubMed  Google Scholar 

  218. Lawrence J, Vanderhoek M, Barbee D, Jeraj R, Tumas DB, Vail DM. Use of 3′-deoxy-3′-[18F]fluorothymidine PET/CT for evaluating response to cytotoxic chemotherapy in dogs with non-Hodgkin’s lymphoma. Vet Radiol Ultrasound. 2009;50:660–8.

    Article  PubMed  Google Scholar 

  219. ClinicalTrials.gov. Use of [F-18] FLT for imaging with positron emission tomography (PET). http://www.clinicaltrials.gov/ct2/show/NCT00935090. Accessed 17 Apr 2010.

  220. ClinicalTrials.gov. Assessment of hematopoietic recovery following chemotherapy for non-Hodgknin’s lymphoma. http://www.clinicaltrials.gov/ct2/show/NCT00775957. Accessed 17 Apr 2010.

  221. ClinicalTrials.gov. A contiguous, sequential phase I/II imaging study of 18F-FLT in patients with known or suspected carcinoma of the lung, breast, renal cell, or pancreas and with gastrointestinal malignancies, neuroendocrine tumours or lymphoma. http://www.clinicaltrials.gov/ct2/show/NCT01065805. Accessed 17 Apr 2010.

  222. ClinicalTrials.gov. Risk-adapted therapy for patients with untreated age-adjusted international prognostic index low-intermediate risk, high-intermediate risk, or high risk diffuse large B cell lymphoma. http://www.clinicaltrials.gov/ct2/show/NCT00712582. Accessed 17 Apr 2010.

  223. ClinicalTrials.gov. A pilot study of 18F fluorothymidine (FLT) PET/CT in lymphoma. http://www.clinicaltrials.gov/ct2/show/NCT00775268. Accessed 17 Apr 2010.

  224. Sugawara Y, Braun DK, Kison PV, Russo JE, Zasadny KR, Wahl RL. Rapid detection of human infections with fluorine-18 fluorodeoxyglucose and positron emission tomography: preliminary results. Eur J Nucl Med. 1998;25:1238–43.

    Article  CAS  PubMed  Google Scholar 

  225. Yamada S, Kubota K, Kubota R, Ido T, Tamahashi N. High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue. J Nucl Med. 1995;36:1301–6.

    CAS  PubMed  Google Scholar 

  226. Jacene HA, Ishimori T, Engles JM, Leboulleux S, Stearns V, Wahl RL. Effects of pegfilgrastim on normal biodistribution of 18F-FDG: preclinical and clinical studies. J Nucl Med. 2006;47:950–6.

    CAS  PubMed  Google Scholar 

  227. Sugawara Y, Fisher SJ, Zasadny KR, Kison PV, Baker LH, Wahl RL. Preclinical and clinical studies of bone marrow uptake of fluorine-1-fluorodeoxyglucose with or without granulocyte colony-stimulating factor during chemotherapy. J Clin Oncol. 1998;16:173–80.

    CAS  PubMed  Google Scholar 

  228. Blodgett TM, Ames JT, Torok FS, McCook BM, Meltzer CC. Diffuse bone marrow uptake on whole-body F-18 fluorodeoxyglucose positron emission tomography in a patient taking recombinant erythropoietin. Clin Nucl Med. 2004;29:161–3.

    Article  PubMed  Google Scholar 

  229. Brink I, Reinhardt MJ, Hoegerle S, Altehoefer C, Moser E, Nitzsche EU. Increased metabolic activity in the thymus gland studied with 18F-FDG PET: age dependency and frequency after chemotherapy. J Nucl Med. 2001;42:591–5.

    CAS  PubMed  Google Scholar 

  230. Cohade C, Osman M, Pannu HK, Wahl RL. Uptake in supraclavicular area fat (“USA-Fat”): description on 18F-FDG PET/CT. J Nucl Med. 2003;44:170–6.

    CAS  PubMed  Google Scholar 

  231. Zevalin[package insert]. 2009. Irvine, CA: Spectrum Pharmaceuticals, Inc.

    Google Scholar 

  232. Bexxar [package insert]. 2003. Seattle, WA: GlaxoSmithKline.

    Google Scholar 

  233. Anderson KC, Bates MP, Slaughenhoupt BL, et al. Expression of human B cell-associated antigens on leukemias and lymphomas: a model of human B cell differentiation. Blood. 1984;63:1424–33.

    CAS  PubMed  Google Scholar 

  234. Tedder TF, Boyd AW, Freedman AS, Nadler LM, Schlossman SF. The B cell surface molecule B1 is functionally linked with B cell activation and differentiation. J Immunol. 1985;135:973–9.

    CAS  PubMed  Google Scholar 

  235. Cardarelli PM, Quinn M, Buckman D, et al. Binding to CD20 by anti-B1 antibody or F(ab′)2 is sufficient for induction of apoptosis in B-cell lines. Cancer Immunol Immunother. 2002;51:15–24.

    Article  CAS  PubMed  Google Scholar 

  236. Stashenko P, Nadler LM, Hardy R, Schlossman SF. Characterization of a human B lymphocyte-specific antigen. J Immunol. 1980;125:1678–85.

    CAS  PubMed  Google Scholar 

  237. Brown RS, Kaminski MS, Fisher SJ, Chang AE, Wahl RL. Intratumoral microdistribution of [131I]MB-1 in patients with B-cell lymphoma following radioimmunotherapy. Nucl Med Biol. 1997;24:657–63.

    Article  CAS  PubMed  Google Scholar 

  238. Horning SJ, Younes A, Jain V, et al. Efficacy and safety of tositumomab and iodine-131 tositumomab (Bexxar) in B-cell lymphoma, progressive after rituximab. J Clin Oncol. 2005;23:712–9.

    Article  CAS  PubMed  Google Scholar 

  239. Kaminski MS, Zasadny KR, Francis IR, et al. Radioimmunotherapy of B-cell lymphoma with [131I]anti-B1 (anti-CD20) antibody. N Engl J Med. 1993;329:459–65.

    Article  CAS  PubMed  Google Scholar 

  240. Kaminski MS, Estes J, Zasadny KR, et al. Radioimmunotherapy with iodine 131I tositumomab for relapsed or refractory B-cell ­non-Hodgkin lymphoma: updated results and long-term follow-up of the University of Michigan experience. Blood. 2000;96:1259–66.

    CAS  PubMed  Google Scholar 

  241. Kaminski MS, Zelenetz AD, Press OW, et al. Pivotal study of iodine I 131 tositumomab for chemotherapy-refractory low-grade or transformed low-grade B-cell non-Hodgkin’s lymphomas. J Clin Oncol. 2001;19:3918–28.

    CAS  PubMed  Google Scholar 

  242. Vose JM, Wahl RL, Saleh M, et al. Multicenter phase II study of iodine-131 tositumomab for chemotherapy-relapsed/refractory low-grade and transformed low-grade B-cell non-Hodgkin’s lymphomas. J Clin Oncol. 2000;18:1316–23.

    CAS  PubMed  Google Scholar 

  243. Witzig TE, White CA, Wiseman GA, et al. Phase I/II trial of IDEC-Y2B8 radioimmunotherapy for treatment of relapsed or refractory CD20+ B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 1999;17:3793–803.

    CAS  PubMed  Google Scholar 

  244. Witzig TE, Flinn IW, Gordon LI, et al. Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20:3262–9.

    Article  CAS  PubMed  Google Scholar 

  245. Czuczman MS, Emmanouilides C, Darif M, Witzig TE, Gordon LI, Revell S, Vo K, Molina A. Treatment-related myelodysplastic syndrome and acute myelogenous leukemia in patients treated with ibritumomab tiuxetan radioimmunotherapy. J Clin Oncol. 2007;25:4285–92.

    Article  CAS  PubMed  Google Scholar 

  246. Witzig TE, White CA, Gordon LI, et al. Safety of yttrium-90 ibritumomab tiuxetan radioimmunotherapy for relapsed low-grade, follicular, or transformed non-Hodgkin’s lymphoma. J Clin Oncol. 2003;21:1263–70.

    Article  CAS  PubMed  Google Scholar 

  247. Kaminski MS, Tuck M, Estes J, et al. 131I-tositumomab therapy as initial treatment for follicular lymphoma. N Engl J Med. 2005;352:441–9.

    Article  CAS  PubMed  Google Scholar 

  248. Morschhauser F, Radford J, Van Hoof A, et al. Phase III trial of consolidation therapy with yttrium-90-ibritumomab tiuxetan compared with no additional therapy after first remission in advanced follicular lymphoma. J Clin Oncol. 2008;26:5156–64.

    Article  CAS  PubMed  Google Scholar 

  249. Press OW, Unger JM, Braziel RM, et al. Phase II trial of CHOP chemotherapy followed by tositumomab/iodine I-131 tositumomab for previously untreated follicular non-Hodgkin’s ­lymphoma: five-year follow-up of Southwest Oncology Group Protocol S9911. J Clin Oncol. 2006;24:4143–9.

    Article  CAS  PubMed  Google Scholar 

  250. ClinicalTrials.gov. A phase III trial of CHOP plus rituximab vs. CHOP plus iodine-131-labeled monoclonal anti-B1 antibody (tositumomab) for treatment of newly diagnosed follicular Non-Hodgkin’s lymphomas. http://www.clinicaltrials.gov/ct2/show/NCT00006721. Accessed 19 Apr 2010.

  251. ClinicalTrials.gov. Iodine-131-labeled monoclonal anti-B1 antibody (I-131 tositumomab) in combination with cyclophosphamide, doxorubicin, vincristine, prednisone and rituximab therapy for patients age >60 with advanced stage diffuse large B-cell NHL: a phase II study. http://www.clinicaltrials.gov/ct2/show/NCT00107380. Accessed 19 Apr 2010.

  252. Goldsmith SJ. Radioimmunotherapy of lymphoma: Bexxar and Zevalin. Semin Nucl Med. 2010;40:122–35.

    Article  PubMed  Google Scholar 

  253. Wagner Jr HN, Wiseman GA, Marcus CS, et al. Administration guidelines for radioimmunotherapy of Non-Hodgkin’s lymphoma with 90Y-labeled anti-CD20 monoclonal antibody. J Nucl Med. 2002;43:267–72.

    CAS  PubMed  Google Scholar 

  254. Wahl RL. Tositumomab and 131I therapy in non-Hodgkin’s lymphoma. J Nucl Med. 2005;46 Suppl 1:128S–40.

    CAS  PubMed  Google Scholar 

  255. Jacobs SA, Vidnovic N, Joyce J, McCook B, Torok F, Avril N. Full-dose 90Y ibritumomab tiuxetan therapy is safe in patients with prior myeloablative chemotherapy. Clin Cancer Res. 2005;11(19 Pt 2):7146s–50.

    Article  CAS  PubMed  Google Scholar 

  256. Vose JM, Bierman PJ, Loberiza Jr FR, Bociek RG, Matso D, Armitage JO. Phase I trial of 90Y-ibritumomab tiuxetan in patients with relapsed B-cell non-Hodgkin’s lymphoma following high-dose chemotherapy and autologous stem cell transplantation. Leuk Lymphoma. 2007;48:683–90.

    Article  CAS  PubMed  Google Scholar 

  257. Conti PS, White C, Pieslor P, Molina A, Aussie J, Foster P. The role of imaging with 111In-ibritumomab tiuxetan in the ibritumomab tiuxetan (Zevalin) regimen: results from a Zevalin Imaging Registry. J Nucl Med. 2005;46:1812–8.

    CAS  PubMed  Google Scholar 

  258. Wiseman GA, White CA, Stabin M, et al. Phase I/II 90Y-Zevalin (yttrium-90 ibritumomab tiuxetan, IDEC-Y2B8) radioimmunotherapy dosimetry results in relapsed or refractory non-Hodgkin’s lymphoma. Eur J Nucl Med. 2000;27:766–77.

    Article  CAS  PubMed  Google Scholar 

  259. Wiseman GA, Leigh B, Erwin WD, et al. Radiation dosimetry results for Zevalin radioimmunotherapy of rituximab-refractory non-Hodgkin lymphoma. Cancer. 2002;94(4 Suppl):1349–57.

    Article  CAS  PubMed  Google Scholar 

  260. Kaminski MS, Fig LM, Zasadny KR, et al. Imaging, dosimetry, and radioimmunotherapy with iodine 131-labeled anti-CD37 antibody in B-cell lymphoma. J Clin Oncol. 1992;10:1696–711.

    CAS  PubMed  Google Scholar 

  261. Kaminski MS, Zasadny KR, Francis IR, et al. Iodine-131-anti-B1 radioimmunotherapy for B-cell lymphoma. J Clin Oncol. 1996;14:1974–81.

    CAS  PubMed  Google Scholar 

  262. Wahl RL, Kroll S, Zasadny KR. Patient-specific whole-body dosimetry: principles and a simplified method for clinical implementation. J Nucl Med. 1998;39(8 Suppl):14S–20.

    CAS  PubMed  Google Scholar 

  263. Buchsbaum DJ, Wahl RL, Glenn SD, Normolle DP, Kaminski MS. Improved delivery of radiolabeled anti-B1 monoclonal antibody to Raji lymphoma xenografts by predosing with unlabeled anti-B1 monoclonal antibody. Cancer Res. 1992;52:637–42.

    CAS  PubMed  Google Scholar 

  264. Gopal AK, Press OW, Wilbur SM, Maloney DG, Pagel JM. Rituximab blocks binding of radiolabeled anti-CD20 antibodies (Ab) but not radiolabeled anti-CD45 Ab. Blood. 2008;112:830–5.

    Article  CAS  PubMed  Google Scholar 

  265. Illidge TM, Bayne M, Brown NS, et al. Phase 1/2 study of fractionated 131I-rituximab in low-grade B-cell lymphoma: the effect of prior rituximab dosing and tumor burden on subsequent radioimmunotherapy. Blood. 2009;113:1412–21.

    Article  CAS  PubMed  Google Scholar 

  266. Jacene HA, Filice R, Kasecamp W, Wahl RL. Comparison of 90Y-ibritumomab tiuxetan and 131I-tositumomab in clinical practice. J Nucl Med. 2007;48:1767–76.

    Article  CAS  PubMed  Google Scholar 

  267. Song H, Du Y, Sgouros G, Prideaux A, Frey E, Wahl RL. Therapeutic potential of 90Y- and 131I-labeled anti-CD20 monoclonal antibody in treating non-Hodgkin’s lymphoma with pulmonary involvement: a Monte Carlo-based dosimetric analysis. J Nucl Med. 2007;48:150–7.

    PubMed  Google Scholar 

  268. Ansell SM, Ristow KM, Habermann TM, Wiseman GA, Witzig TE. Subsequent chemotherapy regimens are well tolerated after radioimmunotherapy with yttrium-90 ibritumomab tiuxetan for non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20:3885–90.

    Article  CAS  PubMed  Google Scholar 

  269. Dosik AD, Coleman M, Kostakoglu L, et al. Subsequent therapy can be administered after tositumomab and iodine I-131 tositumomab for non-Hodgkin lymphoma. Cancer. 2006;106:616–22.

    Article  CAS  PubMed  Google Scholar 

  270. Gisselbrecht C, Vose J, Nademanee A, Gianni AM, Nagler A. Radioimmunotherapy for stem cell transplantation in non-Hodgkin’s lymphoma: in pursuit of a complete response. Oncologist. 2009;14 Suppl 2:41–51.

    Article  CAS  PubMed  Google Scholar 

  271. ClinicalTrials.gov. Phase III Rituxan/BEAM vs. Bexxar/BEAM with autologous hematopoietic stem cell transplantation (ASCT) for persistent or relapsed chemotherapy sensitive diffuse large B-cell non-Hodgkin’s lymphoma (BMT CTN #0401). http://www.clinicaltrials.gov/ct2/show/NCT0032903. Accessed 19 Apr 2010.

  272. Cazaentre T, Morschhauser F, Vermandel M, et al. Pre-therapy 18F-FDG PET quantitative parameters help in predicting the response to radioimmunotherapy in non-Hodgkin lymphoma. Eur J Nucl Med Mol Imaging. 2010;37:494–504.

    Article  CAS  PubMed  Google Scholar 

  273. Lopci E, Burnelli R, Ambrosini V, et al. 18F-FDG PET in pediatric lymphomas: a comparison with conventional imaging. Cancer Biother Radiopharm. 2008;23:1–10.

    Article  Google Scholar 

  274. Okada J, Yoshikawa K, Itami M, et al. Positron emission tomography using fluorine-18-fluorodeoxyglucose in malignant lymphoma: a comparison with proliferative activity. J Nucl Med. 1992;33:325–9.

    CAS  PubMed  Google Scholar 

  275. Storto G, De RA, Pellegrino T, et al. Assessment of metabolic response to radioimmunotherapy with 90Y-ibritumomab tiuxetan in patients with relapsed or refractory B-cell non-Hodgkin lymphoma. Radiology. 2010;254:245–52.

    Article  PubMed  Google Scholar 

  276. Ulaner GA, Colletti PM, Conti PS. B-cell non-Hodgkin ­lymphoma: PET/CT evaluation after 90Y-ibritumomab tiuxetan radioimmunotherapy—initial experience. Radiology. 2008;246:895–902.

    Article  PubMed  Google Scholar 

  277. Bodet-Milin C, Kraeber-Bodere F, Dupas B, et al. Evaluation of response to fractionated radioimmunotherapy with 90Y-epratuzumab in non-Hodgkin’s lymphoma by 18F-fluorodeoxyglucose positron emission tomography. Haematologica. 2008;93:390–7.

    Article  PubMed  Google Scholar 

  278. Aviles A, Neri N, Delgado S, et al. Residual disease after chemotherapy in aggressive malignant lymphoma: the role of radiotherapy. Med Oncol. 2005;22:383–7.

    Article  CAS  PubMed  Google Scholar 

  279. Castillo J, Winer E, Quesenberry P. Newer monoclonal antibodies for hematological malignancies. Exp Hematol. 2008;36:755–68.

    Article  CAS  PubMed  Google Scholar 

  280. Sharkey RM, Karacay H, Goldenberg DM. Improving the treatment of non-Hodgkin lymphoma with antibody-targeted radionuclides. Cancer. 2010;116(4 Suppl):1134–45.

    Article  CAS  PubMed  Google Scholar 

  281. Morschhauser F, Leonard JP, Fayad L, et al. Humanized anti-CD20 antibody, veltuzumab, in refractory/recurrent non-Hodgkin’s lymphoma: phase I/II results. J Clin Oncol. 2009;27:3346–53.

    Article  CAS  PubMed  Google Scholar 

  282. Linden O, Tennvall J, Hindorf C, et al. 131I-labelled anti-CD22 MAb (LL2) in patients with B-cell lymphomas failing chemotherapy. Treatment outcome, haematological toxicity and bone marrow absorbed dose estimates. Acta Oncol. 2002;41:297–303.

    Article  CAS  PubMed  Google Scholar 

  283. Linden O, Hindorf C, Cavallin-Stahl E, et al. Dose-fractionated radioimmunotherapy in non-Hodgkin’s lymphoma using DOTA-conjugated, 90Y-radiolabeled, humanized anti-CD22 monoclonal antibody, epratuzumab. Clin Cancer Res. 2005;11:5215–22.

    Article  CAS  PubMed  Google Scholar 

  284. Postema EJ, Raemaekers JM, Oyen WJ, et al. Final results of a phase I radioimmunotherapy trial using 186Re-epratuzumab for the treatment of patients with non-Hodgkin’s lymphoma. Clin Cancer Res. 2003;9(10 Pt 2):3995S–4002.

    CAS  PubMed  Google Scholar 

  285. Gopal AK, Pagel JM, Fromm JR, Wilbur S, Press OW. 131I anti-CD45 radioimmunotherapy effectively targets and treats T-cell non-Hodgkin lymphoma. Blood. 2009;113:5905–10.

    Article  CAS  PubMed  Google Scholar 

  286. Pagel JM, Hedin N, Subbiah K, et al. Comparison of anti-CD20 and anti-CD45 antibodies for conventional and pretargeted ­radioimmunotherapy of B-cell lymphomas. Blood. 2003;101:2340–8.

    Article  CAS  PubMed  Google Scholar 

  287. ClinicalTrials.gov. Iodine I-131 monoclonal antibody BC8 and autologous stem cell transplant in treating patients with lymphoma that has relapsed or not responded to treatment. http://www.clinicaltrials.gov/ct2/show/NCT00860171. Accessed 19 Apr 2010.

  288. Zevalin. [package insert]. Irvine, CA: Spectrum Pharmaceuticals, Inc. 2010.

    Google Scholar 

Suggested Readings

  • Gisselbrecht C, et al. Radioimmunotherapy for stem cell transplantation in non-Hodgkin’s lymphoma: in pursuit of a complete response. Oncologist. 2009;14 Suppl 2:41–51.

    Article  CAS  PubMed  Google Scholar 

  • Hutchings M, Barrington SF. PET/CT for therapy response assessment in lymphoma. J Nucl Med. 2009;50:21S–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather A. Jacene MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jacene, H.A., Wahl, R.L. (2013). Lymphomas. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48894-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-48894-3_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-48893-6

  • Online ISBN: 978-0-387-48894-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics