Skip to main content

The Cancer Biology of Molecular Imaging

  • Chapter
  • First Online:
  • 2407 Accesses

Abstract

Cancer is a complex series of stepwise genetic alterations resulting in common biologic changes in the transformed cells. Distinguishing features of cancer include rapid proliferation of cells, immortality, resistance to apoptosis, resistance to suppression of proliferation, metastatic behavior, characteristic changes in metabolism, and resistance to immunologic attack. Cancer cells recruit normal host tissues to support growth of the tumor mass. Fibrocytes and collagen producing cells provide structure for the tumor cells. Endothelial cells are recruited to form blood vessels. Tumor blood vessels have incomplete endothelium, making the vessels leaky. This allows large molecules to leak into the tumor interstitium. The middle of the tumor mass has few, if any, lymphatic vessels. The combination of vessel leakiness and few lymphatics results in an increased interstitial pressure in the tumor, making it difficult for chemotherapy to diffuse into the tumor mass.

A common anatomic approach to measure tumor response (RECIST) employs measurements of the size of the mass on CT before and 4 weeks after therapy. Total disappearance of the lesion is required for a complete response, a 30% reduction in the sum of long dimensions defines a partial response, and >20% increase in the sum of long diameters identifies progressive disease. Adding metabolic information recorded with [18F]FDG-PET/CT and the PERCIST criteria may refine these measurements. In addition to [18F]FDG, radiopharmaceuticals are available to measure other attributes of the tumor. Depending on the radiopharmaceutical, images can provide information on tumor hypoxia, expression of integrins, or specific tumor markers that are overexpressed by the lesion, such as carbonic anhydrase, expressed by renal cell cancer, or receptors, such as somatostatin, expressed on neuroendocrine tumors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Luo J, Solimini NL, Elledge SJ. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell. 2009;136:823–37.

    Article  PubMed  CAS  Google Scholar 

  2. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  PubMed  CAS  Google Scholar 

  3. Young H, Baum R, Cremerius U, et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European organization for research and treatment of cancer (EORTC) PET study group. Eur J Cancer. 1999;35:1773–82.

    Article  PubMed  CAS  Google Scholar 

  4. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50 Suppl 1:122S–50.

    Article  PubMed  CAS  Google Scholar 

  5. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.

    Article  PubMed  CAS  Google Scholar 

  6. Beer AJ, Grosu AL, Carlsen J, et al. [18F]Galacto-RGD positron emission tomography for imaging of alphavbeta3 expression on the neovasculature in patients with squamous cell carcinoma of the head and neck. Clin Cancer Res. 2007;13:6610–6.

    Article  PubMed  CAS  Google Scholar 

  7. Schliemann C, Neri D. Antibody-based targeting of the tumor vasculature. Biochim Biophys Acta. 2007;1776:175–92.

    PubMed  CAS  Google Scholar 

  8. Rajendran JG, Wilson DC, Conrad EU, et al. [(18)F]FMISO and [(18)F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med Mol Imaging. 2003;30:695–704.

    Article  PubMed  CAS  Google Scholar 

  9. Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. 2010;7:653–64.

    Article  PubMed  CAS  Google Scholar 

  10. Carlin S, Khan N, Ku T, Longo VA, Larson SM, Smith-Jones PM. Molecular targeting of carbonic anhydrase IX in mice with hypoxic HT29 colorectal tumor xenografts. PLoS One. 2010;5:e10857.

    Article  PubMed  Google Scholar 

  11. Garcia-Barros M, Paris F, Cordon-Cardo C, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science. 2003;300:1155–9.

    Article  PubMed  CAS  Google Scholar 

  12. Levchenko A, Mehta BM, Niu X, et al. Intercellular transfer of P-glycoprotein mediates acquired multidrug resistance in tumor cells. Proc Natl Acad Sci USA. 2005;102:1933–8.

    Article  PubMed  CAS  Google Scholar 

  13. Moskowitz CH, Schoder H, Teruya-Feldstein J, et al. Risk-adapted dose-dense immunochemotherapy determined by interim FDG-PET in advanced-stage diffuse large B-Cell lymphoma. J Clin Oncol. 2010;28:1896–903.

    Article  PubMed  CAS  Google Scholar 

  14. Wolchok JD, Weber JS, Hamid O, et al. Ipilimumab efficacy and safety in patients with advanced melanoma: a retrospective analysis of HLA subtype from four trials. Cancer Immun. 2010;10:9.

    PubMed  Google Scholar 

  15. Kang Y, He W, Tulley S, et al. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci USA. 2005;102:13909–14.

    Article  PubMed  CAS  Google Scholar 

  16. Minn AJ, Kang Y, Serganova I, et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest. 2005;115:44–55.

    PubMed  CAS  Google Scholar 

  17. Bos PD, Zhang XH, Nadal C, et al. Genes that mediate breast cancer metastasis to the brain. Nature. 2009;459:1005–9.

    Article  PubMed  CAS  Google Scholar 

  18. Comen E, Norton L, Massague J. Clinical implications of cancer self-seeding. Nat Rev Clin Oncol. 2011;8:369–77.

    PubMed  Google Scholar 

  19. Kim MY, Oskarsson T, Acharyya S, et al. Tumor self-seeding by circulating cancer cells. Cell. 2009;139:1315–26.

    Article  PubMed  Google Scholar 

  20. Bollag G, Hirth P, Tsai J, et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 2010;467:596–9.

    Article  PubMed  CAS  Google Scholar 

  21. Divgi CR, Pandit-Taskar N, Jungbluth AA, et al. Preoperative characterisation of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: a phase I trial. Lancet Oncol. 2007;8:304–10.

    Article  PubMed  CAS  Google Scholar 

  22. Chakravarty D, Santos E, Ryder M, et al. Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J Clin Invest. 2011;121(12):4700–11.

    Article  PubMed  CAS  Google Scholar 

  23. Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.

    Article  PubMed  CAS  Google Scholar 

  24. Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006;9:425–34.

    Article  PubMed  CAS  Google Scholar 

  25. Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB. Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev. 2008;18:54–61.

    Article  PubMed  CAS  Google Scholar 

  26. Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell. 2008;134:703–7.

    Article  PubMed  CAS  Google Scholar 

  27. Wise DR, DeBerardinis RJ, Mancuso A, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA. 2008;105:18782–7.

    Article  PubMed  CAS  Google Scholar 

  28. Thompson CB. Metabolic enzymes as oncogenes or tumor suppressors. N Engl J Med. 2009;360:813–5.

    Article  PubMed  CAS  Google Scholar 

  29. Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462:739–44.

    Article  PubMed  CAS  Google Scholar 

  30. Zasadny KR, Wahl RL. Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-d-glucose: variations with body weight and a method for correction. Radiology. 1993;189:847–50.

    PubMed  CAS  Google Scholar 

  31. Reshef A, Shirvan A, Akselrod-Ballin A, Wall A, Ziv I. Small-molecule biomarkers for clinical PET imaging of apoptosis. J Nucl Med. 2010;51:837–40.

    Article  PubMed  CAS  Google Scholar 

  32. Downey RJ, Akhurst T, Gonen M, et al. Preoperative F-18 fluorodeoxyglucose-positron emission tomography maximal standardized uptake value predicts survival after lung cancer resection. J Clin Oncol. 2004;22:3255–60.

    Article  PubMed  Google Scholar 

  33. Pandit N, Gonen M, Krug L, Larson SM. Prognostic value of [18F]FDG-PET imaging in small cell lung cancer. Eur J Nucl Med Mol Imaging. 2003;30:78–84.

    Article  PubMed  Google Scholar 

  34. Cachin F, Prince HM, Hogg A, Ware RE, Hicks RJ. Powerful prognostic stratification by [18F]fluorodeoxyglucose positron emission tomography in patients with metastatic breast cancer treated with high-dose chemotherapy. J Clin Oncol. 2006;24:3026–31.

    Article  PubMed  Google Scholar 

  35. Robbins RJ, Wan Q, Grewal RK, et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-d-glucose-positron emission tomography scanning. J Clin Endocrinol Metab. 2006;91:498–505.

    Article  PubMed  CAS  Google Scholar 

  36. Pan L, Gu P, Huang G, Xue H, Wu S. Prognostic significance of SUV on PET/CT in patients with esophageal cancer: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol. 2009;21:1008–15.

    Article  PubMed  Google Scholar 

  37. Patronas NJ, Di Chiro G, Kufta C, et al. Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg. 1985;62:816–22.

    Article  PubMed  CAS  Google Scholar 

  38. Schoder H, Noy A, Gonen M, et al. Intensity of 18fluorodeoxyglucose uptake in positron emission tomography distinguishes between indolent and aggressive non-Hodgkin’s lymphoma. J Clin Oncol. 2005;23:4643–51.

    Article  PubMed  Google Scholar 

  39. Meirelles GS, Schoder H, Ravizzini GC, et al. Prognostic value of baseline [18F]fluorodeoxyglucose positron emission tomography and 99mTc-MDP bone scan in progressing metastatic prostate cancer. Clin Cancer Res. 2010;16:6093–9.

    Article  PubMed  CAS  Google Scholar 

  40. Smith-Jones PM, Solit D, Afroze F, Rosen N, Larson SM. Early tumor response to Hsp90 therapy using HER2 PET: comparison with 18F-FDG PET. J Nucl Med. 2006;47:793–6.

    PubMed  CAS  Google Scholar 

  41. Smith-Jones PM, Solit DB, Akhurst T, Afroze F, Rosen N, Larson SM. Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat Biotechnol. 2004;22:701–6.

    Article  PubMed  CAS  Google Scholar 

  42. Kramer K, Kushner BH, Modak S, et al. Compartmental intrathecal radioimmunotherapy: results for treatment for metastatic CNS neuroblastoma. J Neurooncol. 2010;97:409–18.

    Article  PubMed  Google Scholar 

  43. Modak S, Guo HF, Humm JL, Smith-Jones PM, Larson SM, Cheung NK. Radioimmunotargeting of human rhabdomyosarcoma using monoclonal antibody 8H9. Cancer Biother Radiopharm. 2005;20:534–46.

    Article  PubMed  CAS  Google Scholar 

  44. Jurcic JG, Larson SM, Sgouros G, et al. Targeted alpha particle immunotherapy for myeloid leukemia. Blood. 2002;100:1233–9.

    PubMed  CAS  Google Scholar 

  45. Abdelnour AF, Nehmeh SA, Pan T, et al. Phase and amplitude binning for 4D-CT imaging. Phys Med Biol. 2007;52:3515–29.

    Article  PubMed  CAS  Google Scholar 

  46. Holland JP, Divilov V, Bander NH, Smith-Jones PM, Larson SM, Lewis JS. 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J Nucl Med. 2010;51:1293–300.

    Article  PubMed  CAS  Google Scholar 

  47. McArthur GA, Puzanov I, Amaravadi R, et al. Marked, homogeneous, and early [18F]fluorodeoxyglucose-positron emission tomography responses to vemurafenib in BRAF-mutant advanced melanoma. J Clin Oncol. 2012;30:1628–34.

    Article  PubMed  CAS  Google Scholar 

  48. Scher HI, Beer TM, Higano CS, et al. Prostate Cancer Foundation/Department of Defense Prostate Cancer Clinical Trials Consortium. Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1-2 study. Lancet. 2010;375(9724):1437–46.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Larson MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Larson, S.M. (2013). The Cancer Biology of Molecular Imaging. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48894-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-48894-3_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-48893-6

  • Online ISBN: 978-0-387-48894-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics