Skip to main content

Functional Electrical Stimulation

  • Chapter
Bioelectricity
  • 6282 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnew WF, McCreery DB, eds. 1990. Neural prostheses. Englewood Cliffs, NJ: Prentice-Hall. Chapters 6, 9, 11.

    Google Scholar 

  2. Bard AJ, Faulkner LR. 1980. Electrochemical methods: fundamentals and applications. New York: Wiley.

    Google Scholar 

  3. Johnson CR. 2005. A mathematical model of peripheral nerve stimulation in regional anesthesia, pp. 359–367. PhD dissertation. Department of Biomedical Engineering, Duke University.

    Google Scholar 

  4. Dymond AM. 1976. Characteristics of the metal–tissue interface of stimulation electrodes. IEEE Trans Biomed Eng 23:274–280.

    Article  Google Scholar 

  5. Frankenhaeuser B, Huxley A. 1964. The action potential in the myelinated nerve fiber of Xenopus laevis as computed on the basis of voltage clamp data. J Physiol 171:302–315.

    Google Scholar 

  6. Fang ZP, Mortimer JT. 1991. A method to effect physiological recruitment order in electrically activated muscle. IEEE Trans Biomed Eng 38:175–179.

    Article  Google Scholar 

  7. Frijns JH, Mooij J, ten Kate JH. 1994. A quantitative approach to modeling mammalian myelinated nerve fibers for electrical prosthesis design. IEEE Trans Biomed Eng 41:556–566.

    Article  Google Scholar 

  8. Grill WM, Snyder AN, Miocinovic S. 2004. Deep brain stimulation creates an informational lesion of the stimulated nucleus. NeuroReport 15:1137-1140.

    Article  Google Scholar 

  9. Grill WM, Mortimer JT. 1996. Quantification of recruitment properties of multiple contact cuff electrodes. IEEE Trans Rehab Eng 4:49–62.

    Article  Google Scholar 

  10. Guyton DL, Hambrecht FT. 1974. Theory and design of capacitor electrodes for chronic stimulation. Med Biol Eng 12:613–619.

    Article  Google Scholar 

  11. Henneberg K, Plonsey R. 1993. Boundary element analysis in bioelectricity. In Industrial applications of the boundary element method. Ed CA Brebbia, MH Aliabadi. Southampton: Computational Mechanics Publications.

    Google Scholar 

  12. Karkar M. 1975. Nerve excitation with a cuff electrode—a model. MS thesis. Case Western Reserve University, Cleveland, Ohio.

    Google Scholar 

  13. Koole P, Holsheimer J, Struijk JJ, Verloop AJ. 1997. Recruitment characteristics of nerve fascicles stimulated by a multigroove electrode. IEEE Trans Rehab Eng 5:40–50.

    Article  Google Scholar 

  14. Kuffler SW, Vaughn Williams EM. 1953. Small nerve functional potentials: the distribution of small motor nerves to frog skeletal muscle, and the membrane characteristics of the fibers they innervate. J Physiol 121:289–317.

    Google Scholar 

  15. Kuncel AM, Grill WM. 2004. Selection of stimulus parameters for deep brain stimulation. Clin Neurophysiol 115:2431–2441.

    Article  Google Scholar 

  16. Lundborg G. 1988. Nerve injury and repair. London: Churchill-Livingston.

    Google Scholar 

  17. Marks WB. 1977. Polarization changes of stimulated cortical neurons caused by electrical stimulation at the cortical surface. In Functional electrical stimulation. Ed JB Reswick, FT Hambrecht. New York: Academic Press.

    Google Scholar 

  18. McNeal D. 1976. Analysis of a model for excitation of myelinated nerve. IEEE Trans Biomed Eng 23:329–337.

    Article  Google Scholar 

  19. Mortimer T. 1981. Motor prostheses. In Handbook of physiology, Section I: The nervous system, Volume II: Motor control, Part I, pp. 155–187. Bethesda, MD: American Physiological Society.

    Google Scholar 

  20. Naples G, Mortimer JT, Yuen TG. 1990. Overview of peripheral nerve electrode design and implantation. In Neural prostheses. Ed WF Agnew, DB McCreery. Englewood, Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  21. Pancrazio JJ, Bey Jr PP, Loloee A, Manne S, Chao HC, Howard LL, Gosney WM, Borkholder DA, Kovacs GT, Manos P, Cuttino DS, A. Stenger D. 1998. Description and demonstration of a CMOS amplifier-based system with measurement and stimulation capability for bioelectrical signal transduction. Biosens Bioelectron 13:971–979.

    Article  Google Scholar 

  22. Rattay F, Aberham M. 1993. Modeling axon membranes for functional electrical stimulation. IEEE Trans Biomed Eng 40:1201–1209.

    Article  Google Scholar 

  23. Reilly JH. 1988. Electrical models for neural excitation studies. APL Digest 9:44–58.

    Google Scholar 

  24. Reilly JP. 1998. Applied electricity. New York: Springer-Verlag.

    Google Scholar 

  25. Robblee LS, Rose TL. 1990. Electrochemical guidelines for selection of protocols and electrode materials for neural stimulation. In Neural prostheses. Ed WF Agnew, DB McCreery. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Plonsey, R., Barr, R.C. (2007). Functional Electrical Stimulation. In: Bioelectricity. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-48865-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-48865-3_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-48864-6

  • Online ISBN: 978-0-387-48865-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics