Skip to main content

Part of the book series: Operations Research/Computer Science Interfaces Series ((ORCS,volume 37))

Abstract

We present a branch-and-price framework for solving the graph multi-coloring problem. We propose column generation to implicitly optimize the linear programming relaxation of an independent set formulation (where there is one variable for each independent set in the graph) for graph multi-coloring. This approach, while requiring the solution of a difficult subproblem, is a promising method to obtain good solutions for small to moderate size problems quickly. Some implementation details and initial computational experience are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aardal, K.I., S.P.M. Van Hoesel, A.M.C.A. Koster, C. Manino, and A. Sassano. (2001). Models and Solution Techniques for Frequency Assignment Problems 4OR 1:4, 261–317.

    Google Scholar 

  2. Balas, E. and H. Samuelsson. (1977). A node covering algorithm, Naval Research Logistics Quarterly 24:2, 213–233.

    MATH  MathSciNet  Google Scholar 

  3. Balas, E. and J. Xue. (1991). Minimum weighted coloring of triangulated graphs, with application to maximum weight vertex packing and clique finding in arbitrary graphs, SIAM Journal on Computing 20:2, 209–221.

    Article  MATH  MathSciNet  Google Scholar 

  4. Balas, E. and C. S. Yu. (1986). Finding a maximum clique in an arbitrary graph, SIAM Journal on Computing 15:4, 1054–1068.

    Article  MATH  MathSciNet  Google Scholar 

  5. Barnhart, C., E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance. (1998). Branch-and-Price: Column Generation for Huge Integer Programs, Operations Research 46:3, 310–329.

    MathSciNet  Google Scholar 

  6. Carraghan, C. and P. M. Pardalos, (1990). An exact algorithm for the maximum clique problem, Operations Research Letters 9, 375–382.

    Article  MATH  Google Scholar 

  7. Coffman Jr., E.G., M.R. Garey, D.S. Johnson, and A.S. Lapaugh. (1985). Scheduling File Transfers SIAM Journal on Computing 14:4, 743–780.

    MathSciNet  Google Scholar 

  8. Jerrum, M. (1992). Large cliques elude the metropolis process, Random Structures and Algorithms 3:4, 347–360.

    MATH  MathSciNet  Google Scholar 

  9. Johnson, D.S. A. Mehrotra, and M.A. Trick. (2002). Computational Challenge on Graph Coloring and its Generalizations International Symposium on Mathematical Programming, Copenhagen, Denmark

    Google Scholar 

  10. Johnson, E.L. (1989). Modeling and strong linear programs for mixed integer programming, Algorithms and Model Formulations in Mathematical Programming, NATO ASI 51, S.W. Wallace (ed.), Springler-Verlag Berlin, Heidelberg, 1–43.

    Google Scholar 

  11. Khoury, B.N. and P. M. Pardalos. (1996). An algorithm for finding the maximum clique on an arbitrary graph, Second DIMACS Challenge: Cliques, Coloring, and Satisfiability, DIMACS Series on Discrete Mathematics and Theoritical Computer Science, D. S. Johnson and M. A. Trick (eds.), American Mathematical Society, Providence.

    Google Scholar 

  12. Mehrotra, A. and M. A. Trick. (1996). A column generation approach for exact graph coloring, INFORMS Journal on Computing, 8:4, 133–151.

    Google Scholar 

  13. Mehrotra, A. and M. A. Trick. (1998). Cliques and Clustering: A Combinatorial Approach, Operations Research Letters, 22:1, 1–12.

    Article  MATH  MathSciNet  Google Scholar 

  14. Narayanan, L. (2002). Channel Assignment and Graph Multi-coloring, in Handbook of Wireless Networks and Mobile Computing, Wiley.

    Google Scholar 

  15. Nemhauser, G.L. and L. E. Trotter. (1975). Vertex packings: Structural properties and algorithms, Mathematical Programming 8, 232–248.

    Article  MATH  MathSciNet  Google Scholar 

  16. Pittel, B. (1982). On the probable behaviour of some algorithms for finding the stability number of a graph, Mathematical Proceedings of the Cambridge Philosophical Society 92, 511–526.

    Article  MATH  MathSciNet  Google Scholar 

  17. Prestwich, S. (2006). Generalized Graph Coloring by a Hybrid of Local Search and Constraint Programming, Discrete Applied Mathematics, to appear.

    Google Scholar 

  18. Ryan, D.M. and B.A. Foster. (1981). An integer programming approach to scheduling, in Computer Scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling, North-Holland, Amsterdam, 269–280

    Google Scholar 

  19. Vanderbeck, F. (2005). Branching in Branch-and-Price: A Generic Scheme, manuscript, Applied Mathematics, University Bordeaux 1, F-33405 Talence Cedex, France.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mehrotra, A., Trick, M.A. (2007). A Branch-And-Price Approach for Graph Multi-Coloring. In: Baker, E.K., Joseph, A., Mehrotra, A., Trick, M.A. (eds) Extending the Horizons: Advances in Computing, Optimization, and Decision Technologies. Operations Research/Computer Science Interfaces Series, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-48793-9_2

Download citation

Publish with us

Policies and ethics