Skip to main content

Size Effects on Deformation and Fracture of Nanostructured Metals

  • Chapter
Nanostructured Coatings

Part of the book series: Nanostructure Science and Technology ((NST))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Arzt, Overview No. 130—Size effects in materials due to microstructural and dimensional constraints: A comparative review, Acta Mater. 46, 5611–5626 (1998).

    CAS  Google Scholar 

  2. D. Jia, K. T. Ramesh, and E. Ma, Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron, Acta Mater. 51, 3495–3509 (2003).

    CAS  Google Scholar 

  3. H. Hahn and K. A. Padmanabhan, Mechanical response of nanostructured materials, Nanostruct. Mater. 6, 191–200 (1995).

    CAS  Google Scholar 

  4. Standard Test Methods for Tension Testing of Metallic Materials, ASTM E8-03 (ASTM International, 2003).

    Google Scholar 

  5. Standard Test Methods for Tension Testing of Metallic Materials (metric), ASTME8M-03(ASTM International, 2003).

    Google Scholar 

  6. G. W. Nieman, J. R. Weertman, and R. W. Siegel, Mechanical behavior of nanocrystalline Cu and Pd, J. Mater. Res. 6, 1012–1027 (1991).

    CAS  Google Scholar 

  7. M. T. A. Saif, S. Zhang, A. Haque, and K. J. Hsia, Effect of native Al2O3 on the elastic response of nanoscale Al films, Acta Mater. 50, 2779–2786 (2002).

    CAS  Google Scholar 

  8. W. N. Sharpe and R. O. Fowler, Novel miniature tension test machine, in Proceedings of the Symposium on Small Specimen Test Techniques Applied to Nuclear Reactor Vessel Thermal Annealing and Plant Life Extension, New Orleans, LA, January 29–31, 1992, pp. 386–401, 1993.

    Google Scholar 

  9. M. Legros, K. J. Hemker, D. A. LaVan, W. N. Sharpe, Jr., M. N. Rittner, and J. R. Weertman, Microtensile testing of nanocrystalline Al/Zr alloys, in Materials Research Society Symposium, 1997, pp. 273–278.

    Google Scholar 

  10. E. Mazza, G. Danuser, and J. Dual, Light optical deformation measurements in microbars with nanometer resolution, Microsyst. Technol. 2, 83–91 (1996).

    Google Scholar 

  11. M. A. Haque and M. T. A. Saif, A review of MEMS-based microscale and nanoscale tensile and bending testing, Exp. Mech. 43, 248–255 (2003).

    Google Scholar 

  12. M. A. Haque and M. T. A. Saif, In situ tensile testing of nanoscale specimens in SEM and TEM, Exp. Mech. 42, 123–128 (2002).

    CAS  Google Scholar 

  13. M. A. Haque and M. T. A. Saif, Microscale materials testing using MEMS actuators, J. Microelectromech. Syst. 10, 146–152 (2001).

    Google Scholar 

  14. M. A. Haque and M. T. A. Saif, Mechanical behavior of 30–50 nm thick aluminum films under uniaxial tension, Scr. Mater. 47, 863–867 (2002).

    CAS  Google Scholar 

  15. A. Haque and T. Saif, In situ mechanical characterization of a freestanding 100 nanometer thick aluminum film in SEM using MEMS sensors, in Thin Films: Stresses and Mechanical Properties IX, Boston, MA, November 26–30, 2001, pp. 361–364 (2002).

    Google Scholar 

  16. M. A. Haque and M. T. A. Saif, Application of MEMS force sensors for in situ mechanical characterization of nanoscale thin films in SEM and TEM, Sensors Actuators A 3245, 1–7 (2002)

    Google Scholar 

  17. Y.-S. Kang and P. S. Ho, Thickness dependent mechanical behavior of submicron aluminum films, J. Electron. Mater. 26, 805–813 (1997).

    CAS  Google Scholar 

  18. L. Schadler and I. C. Noyan, Quantitative measurement of the stress transfer function in nickel/polyimide thin film/copper thin film structures, Appl. Phys. Lett. 66, 22–24 (1995).

    CAS  Google Scholar 

  19. M. Hommel, O. Kraft, and E. Arzt, A new method to study cyclic deformation of thin films in tension and compression, J. Mater. Res. 14, 2373–2376 (1999).

    CAS  Google Scholar 

  20. R. Schwaiger, G. Dehm, and O. Kraft, Cyclic deformation of polycrystalline Cu films, Phil. Mag. A 83, 693–710 (2003).

    CAS  Google Scholar 

  21. O. Kraft and C. A. Volkert, Mechanical testing of thin films and small structures, Adv. Eng. Mater. 3, 99–110 (2001).

    CAS  Google Scholar 

  22. L. B. Freund and S. Suresh, Thin Film Materials Stress, Defect Formation, and Surface Evolution (Cambridge University Press, New York, 2003).

    Google Scholar 

  23. D. Tabor, Hardness of Metals (Clarendon Press, Oxford, UK, 1951).

    Google Scholar 

  24. D. Tabor, The hardness of solids, Rev. Phys. Technol. 1, 145–179 (1970).

    Google Scholar 

  25. A. C. Fischer-Cripps, Nanoindentation (Springer, New York, 2002).

    Google Scholar 

  26. W. C. Oliver and G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7, 1564–1583 (1992).

    CAS  Google Scholar 

  27. M. F. Doerner and W. D. Nix, A method for interpreting the data from depth-sensing indentation instruments, J. Mater. Res. 1, 601–609 (1986).

    Google Scholar 

  28. X. Li and B. Bhushan, A review of nanoindentation continuous stiffness measurement technique and its application, Mater. Charact. 48, 11–36 (2002).

    CAS  Google Scholar 

  29. A. Bolshakov and G. M. Pharr, Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques, J. Mater. Res. 13, 1049–1058 (1998).

    CAS  Google Scholar 

  30. N. X. Randall, Direct measurement of residual contact area and volume during the nanoindentation of coated materials as an alternative method of calculating hardness, in Second International Indentation Workshop, Cambridge, UK, July 15–20, 2002.

    Google Scholar 

  31. M. Dao, N. Chollacoop, K. J. Van Vliet, T. A. Venkatesh, and S. Suresh, Computational modeling of the forward and reverse problems in instrumented sharp indentation, Acta Mater. 49, 3899–3918 (2001).

    CAS  Google Scholar 

  32. A. Gouldstone, H. J. Koh, K. Y. Zeng, A. E. Giannakopoulos, and S. Suresh, Discrete and continuous deformation during nanoindentation of thin film, Acta Mater. 48, 2277–2295 (2000).

    CAS  Google Scholar 

  33. S. Suresh and A. E. Giannakopoulos, A new method for estimating residual stresses by instrumented sharp indentation, Acta Mater. 46, 5755–5767 (1998).

    CAS  Google Scholar 

  34. A. E. Giannakopoulos and S. Suresh, Determination of elastoplastic properties by instrumented sharp indentation, Scr. Mater. 40, 1191–1198 (1999).

    CAS  Google Scholar 

  35. Y. T. Cheng and C. M. Cheng, Relationships between hardness, elastic modulus, and the work of indentation, Appl. Phys. Lett. 73, 614–616 (1998).

    CAS  Google Scholar 

  36. Y. T. Cheng and C. M. Cheng, Can stress-strain relationships be obtained from indentation curves using conical and pyramidal indenters? J. Mater. Res. 14, 3493–3496 (1999).

    CAS  Google Scholar 

  37. Y. T. Cheng and C. M. Cheng, Scaling approach to conical indentation in elastic-plastic solids with work hardening, J. Appl. Phys. 84, 1284–1291 (1998).

    CAS  Google Scholar 

  38. K. Tunvisut, N. P. O’Dowd, and E. P. Busso, Use of scaling functions to determine mechanical properties of thin coatings from microindentation tests, Int. J. Solids Struct. 38, 335–351 (2001).

    Google Scholar 

  39. W. D. Nix and H. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity, J. Mech. Phys. Solids 46, 411–425 (1998).

    CAS  Google Scholar 

  40. K. L. Johnson, The correlation of indentation experiments, J. Mech. Phys. Solids 18, 115–126 (1970).

    Google Scholar 

  41. A. E. Giannakopoulos, P. L. Larsson, and R. Vestergaard, Analysis of Vickers indentation, Int. J. Solids Struct. 31, 2679–2708 (1994).

    Google Scholar 

  42. T. A. Venkatesh, K. J. Van Vliet, A. E. Giannakopoulos, and S. Suresh, Determination of elastoplastic properties by instrumented sharp indentation: Guidelines for property extraction, Scr. Mater. 42, 833–839 (2000).

    CAS  Google Scholar 

  43. T. W. Capehart and Y. T. Cheng, Determining constitutive models from conical indentation: Sensitivity analysis, J. Mater. Res. 18, 827–832 (2003).

    CAS  Google Scholar 

  44. J. L. Bucaille, S. Stauss, E. Felder, and J. Michler, Determination of plastic properties of metals by instrumented indentation using different sharp indenters, Acta Mater. 51, 1663–1678 (2003).

    CAS  Google Scholar 

  45. N. Chollacoop, M. Dao, and S. Suresh, Depth-sensing instrumented indentation with dual sharp indenters, Acta Mater. 51, 3713–3729 (2003).

    CAS  Google Scholar 

  46. Y. P. Cao and J. Lu, Depth-sensing instrumented indentation with dual sharp indenters: Stability analysis and corresponding regularization schemes, Acta Mater. 52, 1143–1153 (2004).

    CAS  Google Scholar 

  47. Y. Huang, Z. Xue, H. Gao, W. D. Nix, and Z. C. Xia, A study of microindentation hardness tests by mechanism-based strain gradient plasticity, J. Mater. Res. 15, 1786–1796 (2000).

    CAS  Google Scholar 

  48. J. Y. Shu and N. A. Fleck, The prediction of a size effect in microindentation, Int. J. Solids Struct. 35, 1363–1383 (1998).

    Google Scholar 

  49. T. Y. Zhang, W. H. Xu, and M. H. Zhao, The role of plastic deformation of rough surfaces in the size-dependent hardness, Acta Mater. 52, 57–68 (2004).

    CAS  Google Scholar 

  50. S. Suresh, T. G. Nieh, and B.W. Choi, Nanoindentation of copper thin films on silicon substrates, Scr. Mater. 41, 951–957 (1999).

    CAS  Google Scholar 

  51. A. Gouldstone, K. J. Van Vliet, and S. Suresh, Nanoindentation—Simulation of defect nucleation in a crystal, Nature 411, 656 (2001).

    CAS  Google Scholar 

  52. J. Li, K. J. Van Vliet, T. Zhu, S. Yip, and S. Suresh, Atomistic mechanisms governing elastic limit and incipient plasticity in crystals, Nature 418, 307–310 (2002).

    CAS  Google Scholar 

  53. O. Kraft, R. Schwaiger, and W. D. Nix, Measurement of mechanical properties in small dimensions by microbeam deflection, in Proceedings of the 1998 MRS Spring Symposium, San Francisco, CA, April 15–16, 1998, pp. 39–44.

    Google Scholar 

  54. T. P. Weihs, S. Hong, J. C. Bravman, and W. D. Nix, Mechanical deflection of cantilever microbeams—A new technique for testing the mechanical properties of thin films, J. Mater. Res. 3, 931–942 (1998).

    Google Scholar 

  55. S. P. Baker and W. D. Nix, Mechanical properties of compositionally modulated Au-Ni thin films—Nanoindentation and microcantilever deflection experiments, J. Mater. Res. 9, 3131–3145 (1994).

    CAS  Google Scholar 

  56. J. N. Florando and W. D. Nix, Study of the yielding and strain hardening behavior of a copper thin film on a silicon substrate using microbeam bending, in Dislocations and Deformation Mechanics in Thin Films and Small Structures, San Francisco, CA, April 17–19, 2001, pp. 1–9.

    Google Scholar 

  57. R. Schwaiger and O. Kraft, Analyzing the mechanical behavior of thin films using nanoindentation, cantilever microbeam deflection, and finite element modeling, J. Mater. Res. 19, 315–324 (2004).

    CAS  Google Scholar 

  58. R. Schwaiger and O. Kraft, Size effects in the fatigue behavior of thin Ag films, Acta Mater. 51, 195–206 (2003).

    CAS  Google Scholar 

  59. K. S. Kumar, S. Suresh, M. F. Chisholm, J. A. Horton, and P. Wang, Deformation of electrodeposited nanocrystalline nickel, Acta Mater. 51, 387–405 (2003).

    CAS  Google Scholar 

  60. M. Taher, A. Saif, and A. Haque, Bending response of a 100 nm thick free standing aluminum cantilever beam, in Materials Research Society Symposium—Proceedings, Thin Films-Stress and Mechanical Properties VIII, Boston, MA, USA, November 29–December 3, 1999, Vol. 594, pp. 207–211, 2000.

    Google Scholar 

  61. W. W. Milligan, S. A. Hackney, M. Ke, and E. C. Aifantis, In situ studies of deformation and fracture in nanophase materials, Nanostruct. Mater. 2, 267–276 (1993).

    CAS  Google Scholar 

  62. S. X. McFadden, A. V. Sergueeva, T. Kruml, J. L. Martin, and A. K. Mukherjee, Superplasticity in nanocrystalline Ni3Al and Ti alloys, in Materials Research Society Symposium, 2001, pp. B1.3.1–B1.3.6.

    Google Scholar 

  63. C. J. Youngdahl, J. R. Weertmann, R. C. Hugo, and H. H. Kung, Deformation behavior in nanocrystralline copper, Scr. Mater. 44, 1475–1478 (2001).

    CAS  Google Scholar 

  64. M. P. de Boer, B. D. Jensen, and F. Bitsie, A small area in situ MEMS test structure to measure fracture strength by electrostatic probing, in Proceedings of the SPIE—The International Society for Optical Engineering, Materials and Device Characterization in Micromachining II, Santa Clara, CA, USA, September 20–21, 1999, Vol. 3875, pp. 97–103.

    Google Scholar 

  65. A. M. Minor, J. W. Morris, and E. A. Stach, Quantitative in situ nanoindentation in an electron microscope, Appl. Phys. Lett. 79, 1625–1627 (2001).

    CAS  Google Scholar 

  66. E. A. Stach, T. Freeman, A. M. Minor, D. K. Owen, J. Cumings, M. A. Wall, T. Chraska, R. Hull, J.W., Morris, Jr., A. Zettl, and U. Dahmen, Development of a nanoindenter for in situ transmission electron microscopy, Microsc. Microanal. 7, 507–517 (2001).

    CAS  Google Scholar 

  67. C. C. Koch, Synthesis of nanostructured materials by mechanical milling: Problems and opportunities, Nanostruct. Mater. 9, 13–22 (1997).

    CAS  Google Scholar 

  68. X. Zhang, H. Wang, R. O. Scattergood, J. Narayan, and C. C. Koch, Evolution of microstructure and mechanical properties of in situ consolidated bulk ultra-fine-grained and nanocrystalline Zn prepared by ball milling, Mater. Sci. Eng. A 344, 175–181 (2003).

    Google Scholar 

  69. F. Zhou, X. Z. Liao, Y. T. Zhu, S. Dallek, and E. J. Lavernia, Microstructural evolution during recovery and recrystallization of a nanocrystalline Al-Mg alloy prepared by cryogenic ball milling, Acta Mater. 51, 2777–2791 (2003).

    CAS  Google Scholar 

  70. R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45, 103–189 (2000).

    CAS  Google Scholar 

  71. H. Gleiter, Nanocrystalline materials, Prog. Mater. Sci. 33, 223–315 (1989).

    CAS  Google Scholar 

  72. P. G. Sanders, G. E. Fougere, L. J. Thompson, J. A. Eastman, and J. R. Weertman, Improvements in the synthesis and compaction of nanocrystalline materials, Nanostruct. Mater. 8, 243–252 (1997).

    CAS  Google Scholar 

  73. P. G. Sanders, J. A. Eastman, and J. R. Weertman, Elastic and tensile behavior of nanocrystalline copper and palladium, Acta Mater. 45, 4019–4025 (1997).

    CAS  Google Scholar 

  74. U. Erb, Electrodeposited nanocrystrals: Synthesis, properties and industrial applications, Nanostruct. Mater. 6, 533–538 (1995).

    Google Scholar 

  75. F. Ebrahimi, Q. Zhai, and D. Kong, Deformation and fracture of electrodeposited copper, Scr. Mater. 39, 315–321 (1998).

    CAS  Google Scholar 

  76. A. M. El-Sherik and U. Erb, Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition, J. Mater. Sci. 30, 5743–5749 (1995).

    CAS  Google Scholar 

  77. U. Erb, G. Palumbo, B. Szpunar, and K. T. Aust, Electrodeposited versus consolidated nanocrystals: Differences and similarities, Nanostruct. Mater. 9, 261–270 (1997).

    CAS  Google Scholar 

  78. S. Van Petegem, F. Dalla Torre, D. Segers, and H. Van Swygenhoven, Free volume in nanostructured Ni, Scr. Mater. 48, 17–22 (2003).

    Google Scholar 

  79. K. S. Kumar, H. Van Swygenhoven, and S. Suresh, Mechanical behavior of nanocrystalline metals and alloys, Acta Mater. 51, 5743–5774 (2003).

    CAS  Google Scholar 

  80. P. Keblinski, D. Wolf, S. R. Phillpot, and H. Gleiter, Structure of grain boundaries in nanocrystalline palladium by molecular dynamics simulation, Scr. Mater. 41, 631–636 (1999).

    CAS  Google Scholar 

  81. S. Ranganathan, R. Divakar, and V. S. Raghunathan, Interface structures in nanocrystalline materials, Scr. Mater. 44, 1169–1174 (2001).

    CAS  Google Scholar 

  82. T. R. Haasz, K. T. Aust, G. Palumbo, A. M. El-Sherik, and U. Erb, Intercrystalline density of nanocrystalline nickel, Scr. Mater. 32, 423–426 (1995).

    CAS  Google Scholar 

  83. H. Van Swygenhoven, D. Farkas, and A. Caro, Grain boundary structures in polycrystalline metals at the nanoscale, Phys. Rev. B 62, 831–838 (2000).

    Google Scholar 

  84. H. Van Swygenhoven, A. Caro, and D. Farkas, A molecular dynamics study of polycrystalline fcc metals at the nanoscale: Grain boundary structure and its influence on plastic deformation, Mater. Sci. Eng. A 309–310, 440–444 (2001).

    Google Scholar 

  85. F. Dalla Torre, H. Van Swygenhoven, M. Victoria, R. Schaeublin, and W. Wagner, Mechanical properties of nanocrystalline Ni in relation to its microstructure, in Materials Research Society Symposium, 2001, pp. B2.8.1–B2.8.6.

    Google Scholar 

  86. S. X. McFadden, A. P. Zhilyaev, R. S. Mishra, and A. K. Mukherjee, Observations of lowtemperature superplasticity in electrodeposited ultrafine grained nickel, Mater. Lett. 45, 345–349 (2000).

    CAS  Google Scholar 

  87. R. Klemm, E. Thiele, C. Holste, J. Eckert, and N. Schell, Thermal stability of grain structure and defects in submicrocrystalline and nanocrystalline nickel, Scr. Mater. 46, 685–690 (2002).

    CAS  Google Scholar 

  88. H. Natter, M. Schmelzer, and R. Hempelmann, Nanocrystalline nickel and nickel-copper alloys: Synthesis, characterization, and thermal stability, J. Mater. Res. 13, 1186–1197 (1998).

    CAS  Google Scholar 

  89. G. D. Hibbard, J. L. McCrea, G. Palumbo, K. T. Aust, and U. Erb, An initial analysis of mechanisms leading to late stage abnormal grain growth in nanocrystalline Ni, Scr. Mater. 47, 83–87 (2002).

    CAS  Google Scholar 

  90. C. Xiao, R. A. Mirshams, S. H. Whang, and W. M. Yin, Tensile behavior and fracture in nickel and carbon doped nanocrystalline nickel, Mater. Sci. Eng. A 301, 35–43 (2001).

    Google Scholar 

  91. R. Suryanarayanan Iyer, C. A. Frey, S. M. Sastry, B. E. Waller, and W. E. Buhro, Plastic deformation of nanocrystalline Cu and Cu-0.2 wt.% B, Mater. Sci. Eng. A 264, 210–214 (1999).

    Google Scholar 

  92. R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, and S. Suresh, Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel, Acta Mater. 51, 5159–5172 (2003).

    CAS  Google Scholar 

  93. K. S. Kumar, unpublished research (2003).

    Google Scholar 

  94. S. Cheng, J. A. Spencer, and W. W. Milligan, Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals, Acta Mater. 51, 4505–4518 (2003).

    CAS  Google Scholar 

  95. J. D. Embury and D. J. Lahaie, The mechanical properties of fine scale metallic materials, in NATO Advanced Study Institute on Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, Porto Novo, Portugal, June 28–July 10, 1992, pp. 287–301, 1993.

    Google Scholar 

  96. K. A. Padmanabhan, Mechanical properties of nanostructured materials, Mater. Sci. Eng. A 304–306, 200–205 (2001).

    Google Scholar 

  97. J. R. Weertman, M. Niedzielka, and C. Youngdahl, Hall-Petch behavior in nanocrystalline metals, in NATO Advanced Study Institute on Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, Porto Novo, Portugal, June 28–July 10, 1992, pp. 241–254, 1993.

    Google Scholar 

  98. M. N. Rittner, J. R. Weertman, J. A. Eastman, K. B. Yoder, and D. S. Stone, Microhardness and elastic modulus of nanocrystalline Al-Zr, in Processing and Properties of Nanocrystalline Materials, Cleveland, OH, USA, October 29–November 2, 1995, pp. 399–405, 1996.

    Google Scholar 

  99. P. G. Sanders, J. A. Eastman, and J. R. Weertman, Tensile behavior of nanocrystalline copper, in Processing and Properties of Nanocrystalline Materials, Cleveland, OH, USA, October 29–November 2, 1995, pp. 379–386, 1996.

    Google Scholar 

  100. H. S. Cao, R. Bonnet, J. J. Hunsinger, and O. Elkedim, Determination of elastic properties of consolidated nanocrystalline alloys iron-copper by means of acoustic echography and interferometry, Scr. Mater. 48, 531–537 (2003).

    CAS  Google Scholar 

  101. U. Erb, G. Palumbo, R. Zugic, and K. T. Aust, Structure-property relationships for electrodeposited nanocrystals, in Materials Week, Cleveland, OH, October 29–November 2, 1995, pp. 93–111, 1996.

    Google Scholar 

  102. T. D. Shen, C. C. Koch, T. Y. Tsui, and G. M. Pharr, On the elastic moduli of nanocrystalline Fe, Cu, Ni, and Cu-Ni alloys prepared by mechanical milling/alloying, J. Mater. Res. 10, 2892–2896, (1995).

    CAS  Google Scholar 

  103. H. S. Kim and M. B. Bush, The effects of grain size and porosity on the elastic modulus of nanocrystalline materials, Nanostruct. Mater. 11, 361–367 (1999).

    CAS  Google Scholar 

  104. A. Latapie and D. Farkas, Effect of grain size on the elastic properties of nanocrystalline alphairon, Scr. Mater. 48, 611–615 (2003).

    CAS  Google Scholar 

  105. C. Suryanarayana, Nanocrystalline materials, Int. Mater. Rev. 40, 41–64 (1995).

    CAS  Google Scholar 

  106. R. A. Masumura, P. M. Hazzledine, and C. S. Pande, Yield stress of fine grained materials, Acta Mater. 46, 4527–4534 (1998).

    CAS  Google Scholar 

  107. M. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials (Prentice Hall, Upper Saddle River, NJ, 1999).

    Google Scholar 

  108. A. H. Chokshi, A. Rosen, J. Karch, and H. Gleiter, On the validity of the Hall-Petch relationship in nanocrystalline materials, Scr. Mater. 23, 1679–1684 (1989).

    CAS  Google Scholar 

  109. M. A. Morris-Munoz, A. Dodge, and D. G. Morris, Structure, strength, and toughness of nanocrystalline FeAl, Nanostruct. Mater. 11, 873–885 (1999).

    CAS  Google Scholar 

  110. T. Volpp, E. Goering, W. M. Kuschke, and E. Arzt, Grain size determination and limits to Hall-Petch behavior in nanocrystalline NiAl powders. Nanostruct. Mater. 8, 855–865 (1998).

    Google Scholar 

  111. M. S. Choudry, M. Dollar, and J. A. Eastman, Nanocrystalline NiAl-processing, characterization, and mechanical properties, Mater. Sci. Eng. A 256, 25–33 (1998).

    Google Scholar 

  112. E. Bonetti, E. G. Campari, L. D. Bianco, L. Pasquini, and E. Sampaolesi, Mechanical behaviour of nanocrystalline iron and nickel in the quasistatic and low frequency anelastic regime, Nanostruct. Mater. 11, 709–720 (1999).

    CAS  Google Scholar 

  113. S. E. Hadian and D. R. Gabe, Residual stresses in electrodeposits of nickel and nickel-iron alloys, Surf. Coat. Technol. 122, 118–135 (1999).

    CAS  Google Scholar 

  114. A. Hasnaoui, H. Van Swygenhoven, and P. M. Derlet, On nonequilibrium grain boundaries and their effect on thermal and mechanical behaviour: A molecular dynamics computer simulation, Acta Mater. 50, 3927–3939 (2002).

    CAS  Google Scholar 

  115. N. Wang, Z. Wang, K. T. Aust, and U. Erb, Room temperature creep behavior of nanocrystalline nickel produced by an electrodeposition technique, Mater. Sci. Eng. A 237, 150–158 (1997).

    Google Scholar 

  116. K. T. Aust, U. Erb, and G. Palumbo, Interfacial effects in nanocrystalline metals, in Materials Week’ 95, Cleveland, OH, October 29–November 2, 1995, pp. 11–22, 1996.

    Google Scholar 

  117. A. S. Khan, H. Zhang, and L. Takacs, Mechanical response and modeling of fully compacted nanocrystalline iron and copper, Int. J. Plast. 16, 1459–1476 (2000).

    CAS  Google Scholar 

  118. C. A. Schuh, T. G. Nieh, and H. Iwasaki, The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni, Acta Mater. 51, 431–443 (2003).

    CAS  Google Scholar 

  119. H. Hahn, P. Mondal, and K. A. Padmanabhan, Plastic deformation of nanocrystalline materials, Nanostruct. Mater. 9, 603–306 (1997).

    CAS  Google Scholar 

  120. H. Chang, C. J. Altstetter, and R. S. Averback, Characteristics of nanophase TiAl produced by inert gas condensation, J. Mater. Res. 7(11), 2962–2970 (1992).

    CAS  Google Scholar 

  121. A. Hasnaoui, H. Van Swygenhoven, and P. M. Derlet, Cooperative processes during plastic deformation in nanocrystalline fcc metals: A molecular dynamics simulation, Phys. Rev. B. 66, 184112-1–8 (2002).

    Google Scholar 

  122. Q. Wei, D. Jia, K. T. Ramesh, and E. Ma, Evolution and microstructure of shear bands in nanostructured Fe, Appl. Phys. Lett. 81, 1240–1242 (2002).

    CAS  Google Scholar 

  123. E. Ma, Instabilities and ductility of nanocrystalline and ultrafine-grained metals, Scr. Mater. 49, 663–668 (2003).

    CAS  Google Scholar 

  124. H. S. Kim, Y. Estrin, and M. B. Bush, Plastic deformation behavior of fine-grained materials, Acta Mater. 48, 493–504 (2000).

    CAS  Google Scholar 

  125. A. A. Fedorov, M. Y. Gutkin, and I. A. Ovid’ko, Triple junction diffusion and plastic flow in fine-grained materials, Scr. Mater. 47, 51–55 (2002).

    CAS  Google Scholar 

  126. H. Van Swygenhoven, M. Spaczer, and A. Caro, Microscopic description of plasticity in computer generated metallic nanophase samples: A comparison between Cu and Ni, Acta Mater. 47, 3117–3126 (1999).

    Google Scholar 

  127. H. Van Swygenhoven, M. Spaczer, and A. Caro, Role of lowand high angle grain boundaries in the deformation mechanism of nanophase Ni: A molecular dynamics simulation study, Nanostruct. Mater. 10, 819–828 (1998).

    Google Scholar 

  128. H. Van Swygenhoven, M. Spaczer, D. Farkas, and A. Caro, The role of grain size and the presence of low and high angle grain boundaries in the deformation mechanism of nanophase Ni: A molecular dynamics computer simulation, Nanostruct. Mater. 12, 323–326 (1999).

    Google Scholar 

  129. U. Erb, A. M. El-Sherik, G. Palumbo, and K. T. Aust, Synthesis, structure and properties of electroplated nanocrystalline materials, Nanostruct. Mater. 2, 383–390 (1993).

    CAS  Google Scholar 

  130. C. A. Schuh, T. G. Nieh, and T. Yamasaki, Hall-Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel, Scr. Mater. 46, 735–740 (2002).

    CAS  Google Scholar 

  131. J. Schiøtz, F. D. Di Tolla, and K. W. Jacobson, Softening of nanocrystalline metals at very small grain sizes, Nature 391, 561–563 (1998).

    Google Scholar 

  132. F. Ebrahimi, G. R. Bourne, M. S. Kelly, and T. E. Matthews, Mechanical properties of nanocrystalline nickel produced by electrodeposition, Nanostruct. Mater. 11, 343–350 (1999).

    CAS  Google Scholar 

  133. G. D. Hughes, S. D. Smith, C. S. Pande, H. R. Johnson, and R. W. Armstrong, Hall-Petch strengthening for the microhardness of 12 nanometer grain diameter electrodeposited nickel, Scr. Metal. 20, 93–97 (1986).

    CAS  Google Scholar 

  134. C. A. Schuh, unpublished research.

    Google Scholar 

  135. K. J. Van Vliet, S. Tsikata, and S. Suresh, Model experiments for direct visualization of grain boundary deformation in nanocrystalline metals, Appl. Phys. Lett. 83, 1441–1443 (2003).

    Google Scholar 

  136. K. J. Van Vliet, J. Li, T. Zhu, S. Yip, and S. Suresh, Quantifying the early stages of plasticity through nanoscale experiments and simulations, Phys. Rev. B. 67, 1–15 (2003).

    Google Scholar 

  137. K. L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, UK, 1985).

    Google Scholar 

  138. M. J. Mayo, R. W. Siegel, Y. X. Liao, and W. D. Nix, Nanoindentation of nanocrystalline ZnO, J. Mater. Res. 7, 973–979 (1992).

    CAS  Google Scholar 

  139. M. J. Mayo, R.W. Siegel, A. Narayanasamy, and W. D. Nix, Mechanical properties of nanophase TiO2 as determined by nanoindentation, J. Mater. Res. 5, 1073–1082 (1990).

    CAS  Google Scholar 

  140. T. Mukai, M. Kawazoe, and K. Higashi, Dynamic mechanical properties of a near-nano aluminum alloy processed by equal-channel-angular-extrusion, Nanostruct. Mater. 10, 755–765 (1998).

    CAS  Google Scholar 

  141. T. Mukai, S. Suresh, K. Kita, H. Sasaki, N. Kobayashi, K. Higashi, and A. Inoue, Nanostructured Al-Fe alloys produced by e-beam deposition: Static and dynamic tensile properties, Acta Mater. 51, 4197–4208 (2003).

    CAS  Google Scholar 

  142. L. Lu, S. X. Li, and K. Lu, An abnormal strain rate effect on tensile behavior in nanocrystalline copper, Scr. Mater. 45, 1163–1169 (2001).

    CAS  Google Scholar 

  143. D. Jia, K. T. Ramesh, E. Ma, L. Lu, and K. Lu, Compressive behavior of an electrodeposited nanostructured copper at quasistatic and high strain rates, Scr. Mater. 45, 613–620 (2001).

    CAS  Google Scholar 

  144. D. Jia, K. T. Ramesh, and E. Ma, Failure mode and dynamic behavior of nanophase iron under compression, Scr. Mater. 42, 73–78 (1999).

    Google Scholar 

  145. D. Jia, Y. M. Wang, K. T. Ramesh, and E. Ma, Deformation behavior and plastic instabilities of ultrafine-grained titanium, Appl. Phys. Lett. 79, 611–613 (2001).

    CAS  Google Scholar 

  146. F. A. Mohamed and Y. Li, Review—Creep and superplasticity in nanocrystalline materials: Current understanding and future prospects, Mater. Sci. Eng. A 298, 1–15 (2001).

    Google Scholar 

  147. V. Yamakov, D. Wolf, S. R. Phillpot, and H. Gleiter, Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulation, Acta Mater. 50, 61–73 (2002).

    CAS  Google Scholar 

  148. J. Schiøtz, T. Vegge, F. D. Di Tolla, and K. W. Jacobsen, Atomic-scale simulations of the mechanical deformation of nanocrystalline metals, Phys. Rev. B 60, 11971–11983 (1999).

    Google Scholar 

  149. H. Van Swygenhoven, M. Spaczer, A. Caro, and D. Farkas, Competing plastic deformation mechanisms in nanophase metals, Phys. Rev. B 60, 22–25 (1999).

    Google Scholar 

  150. F. Dalla Torre, H. Van Swygenhoven, and M. Victoria, Nanocrystalline electrodeposited Ni: Microstructure and tensile properties, Acta Mater. 50, 3957–3970 (2002).

    Google Scholar 

  151. M. Legros, B. R. Elliott, M. N. Rittner, J. R. Weertman, and K. J. Hemker, Microsample tensile testing of nanocrystalline metals, Phil. Mag. A 80, 1017–1026 (2000).

    CAS  Google Scholar 

  152. Y. Champion, C. Langlois, S. Guérin-Mailly, P. Langlois, J.-L. Bonnentien, and M. J. Hÿtch, Near-perfect elastoplasticity in pure nanocrystalline copper, Science 300, 310–311 (2003).

    CAS  Google Scholar 

  153. W. M. Yin, S. H. Whang, R. Mirshams, and C. H. Xiao, Creep behavior of nanocrystalline nickel at 290 and 373 K, Mater. Sci. Eng. A 301, 18–22 (2001).

    Google Scholar 

  154. X. Zhang, H. Wang, R. O. Scattergood, J. Narayan, C. C. Koch, A.V. Sergueeva, and A. K. Mukherjee, Studies of deformation mechanisms in ultra-fine-grained and nanostructured Zn, Acta Mater. 50, 4823–4830 (2002).

    CAS  Google Scholar 

  155. Y. R. Kolobov, G. P. Grabovetskaya, M. B. Ivanov, A. P. Zhilyaev, and R. Z. Valiev, Grain boundary diffusion characteristics of nanostructured nickel, Scr. Mater. 44, 873–878 (2001).

    CAS  Google Scholar 

  156. B. S. Bokstein, H. D. Brose, L. I. Trusov, and T. P. Khvostantseva, Diffusion in nanocrystalline nickel, Nanostruct. Mater. 6, 873–876 (1995).

    Google Scholar 

  157. C. Cheung, F. Djuanda, U. Erb, and G. Palumbo, Electrodeposition of nanocrystalline Ni-Fe alloy, Nanostruct. Mater. 5, 513–523 (1995).

    CAS  Google Scholar 

  158. C. J. Youngdahl, R. C. Hugo, H. Kung, and J. R. Weertman, TEM observation of nanocrystalline copper during deformation, in Materials Research Society Symposium, 2001, pp. B1.2.1–B1.2.6.

    Google Scholar 

  159. L. Priester and O. Khalfallah, Image force on a lattice dislocation due to a grain-boundary in anisotropic fcc materials, Phil. Mag. A 69, 471–484 (1994).

    CAS  Google Scholar 

  160. M. Chen, E. Ma, K. J. Hemker, H. Sheng, Y. Wang, and X. Cheng, Deformation twinning in nanocrystalline aluminum, Science 300, 1275–1277 (2003).

    CAS  Google Scholar 

  161. H. Van Swygenhoven, P. M. Derlet, and A. Hasnaoui, Atomic mechanism for dislocation emission from nanosized grain boundaries, Phys. Rev. B. 66, 024101-1–8 (2002).

    Google Scholar 

  162. R. A. Mirshams, C. H. Xiao, S. H. Whang, and W. M. Yin, R-curve characterization of the fracture toughness of nanocrystalline nickel thin sheets, Mater. Sci. Eng. A 315, 21–27 (2001).

    Google Scholar 

  163. D. Farkas, H. Van Swygenhoven, and P. M. Derlet, Intergranular fracture in nanocrystalline metals, Phys. Rev. B 66, 060101-1–4 (2002).

    Google Scholar 

  164. S. R. Agnew and J. R. Weertman, Cyclic softening of ultrafine grain copper, Mater. Sci. Eng. A 244, 145–153 (1998).

    Google Scholar 

  165. S. R. Agnew, A. Y. Vinogradov, S. Hashimoto, and J. R. Weertman, Overview of fatigue performance of Cu processed by severe plastic deformation, J. Electron. Mater. 28, 1038–1044 (1999).

    CAS  Google Scholar 

  166. H. Mughrabi and H.W. Hoeppel, Cyclic deformation and fatigue properties of ultrafine grain size materials: Current status and some criteria for improvement of the fatigue resistance, in Materials Research Society Symposium, 2001, pp. B2.1.1–B2.1.12.

    Google Scholar 

  167. C. E. Feltner and C. Laird, Cyclic stress-strain response of fcc metals and alloys—I: Phenomenological experiments, Acta Metall. 15, 1621–1632 (1967).

    CAS  Google Scholar 

  168. H. Z. Ding, H. Mughrabi, and H. W. Höppel, A low-cycle fatigue life prediction model of ultrafine-grained metals, Fatigue Fract. Eng. Mater. Struct. 25, 975–984 (2002).

    Google Scholar 

  169. E. Thiele, C. Holste, and R. Klemm, Influence of size effect on microstructural changes in cyclically deformed polycrystalline nickel, Z. Met. kd. 93, 730–736 (2002).

    CAS  Google Scholar 

  170. T. Hanlon, Y.-N. Kwon, and S. Suresh, Grain size effects on the fatigue response of nanocrystalline metals, Scr. Mater. 49, 675–680 (2003).

    CAS  Google Scholar 

  171. B. Q. Han, Z. Lee, S. R. Nutt, E. J. Lavernia, and F. A. Mohamed, Mechanical properties of an ultrafine-grained Al-7.5 pct Mg alloy, Metall. Mater. Trans. A 34, 603–613 (2003).

    Google Scholar 

  172. W. Klement, R. H. Willens, and P. Duwez, Noncrystalline structure in solidified gold-silicon alloys, Nature 187, 869–870 (1960).

    CAS  Google Scholar 

  173. A. C. Lund and C. A. Schuh, Plasticity in nanocrystalline and amorphous metals: Similarities at the atomic scale, in Materials Research Society Symposium, Boston, MA, 2004, pp. MM7.4.1–MM7.4.6.

    Google Scholar 

  174. C. S. Kiminami, N. D. Basim, M. J. Kaufman, M. F. Amateau, T. J. Eden, and J. M. Galbraith, Challenges in the development of aluminum-based bulk amorphous alloys, Key Eng. Mater. 189–191, 503–508 (2001).

    Google Scholar 

  175. W. S. Liu and W. L. Johnson, Precipitation of bcc nanocrystals in bulk Mg-Cu-Y amorphous alloys, J. Mater. Res. 11, 2388–2392 (1996).

    CAS  Google Scholar 

  176. A. Inoue, A. Makino, and T. Masumoto, Soft-magnetic properties of Cu-free Fe-based nanocrystalline alloys, Mat. Sci. Forum 179–181, 497–505 (1995).

    Google Scholar 

  177. C. Fan, A. Takeuchi, and A. Inoue, Preparation and mechanical properties of Zr-based bulk nanocrystalline alloys containing compound and amorphous phases, Mater. Trans. JIM 40, 42–51 (1999).

    CAS  Google Scholar 

  178. A. Inoue, H. M. Kimura, K. Sasamori, and T. Masumoto, Synthesis and high mechanical strength of Al-based alloys consisting mainly of nanogranular amorphous particles, Mater. Sci. Eng. A 217, 401–406 (1996).

    Google Scholar 

  179. C. A. Schuh and T. G. Nieh, A survey of instrumented indentation studies on metallic glasses, J. Mater. Res. 19, 46–57 (2004).

    CAS  Google Scholar 

  180. H. A. Bruck, T. Christman, A. J. Rosakis, and W. L. Johnson, Quasistatic constitutive behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk amorphous-alloys, Scr. Metall. Mater. 30, 429–434 (1994).

    CAS  Google Scholar 

  181. P. E. Donovan, A yield criterion for Pd40Ni40P20 metallic glass, Acta Metall. 37, 445–456 (1989).

    CAS  Google Scholar 

  182. P. Lowhaphandu, S. L. Montgomery, and J. J. Lewandowski, Effects of superimposed hydrostatic pressure on flow and fracture of a Zr-Ti-Ni-Cu-Be bulk amorphous alloy, Scr. Mater. 41, 19–24 (1999).

    CAS  Google Scholar 

  183. R. Vaidyanathan, M. Dao, G. Ravichandran, and S. Suresh, Study of mechanical deformation in bulk metallic glass through instrumented indentation, Acta Mater. 49, 3781–3789 (2001).

    CAS  Google Scholar 

  184. C. A. Schuh and A. C. Lund, Atomistic basis for the plastic yield criterion of metallic glass, Nat. Mater. 2, 449–452 (2003).

    CAS  Google Scholar 

  185. A. C. Lund and C. A. Schuh, Yield surface of a simulated metallic glass, Acta Mater. 51, 5399–5411 (2003).

    CAS  Google Scholar 

  186. Z. F. Zhang, J. Eckert, and L. Schultz, Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass, Acta Mater. 51, 1167–1179 (2003).

    CAS  Google Scholar 

  187. C. A. Pampillo and H. S. Chen, Comprehensive plastic deformation of a bulk metallic glass, Mater. Sci. Eng. 13, 181–188 (1974).

    CAS  Google Scholar 

  188. H. Kimura and T. Masumoto, A model of the mechanics of serrated flow in an amorphous alloy, Acta Metall. 31, 231–240 (1983).

    Google Scholar 

  189. W. J. Wright, R. B. Schwarz, and W. D. Nix, Localized heating during serrated plastic flow in bulk metallic glasses, Mater. Sci. Eng. A 319–321, 229–232 (2001).

    Google Scholar 

  190. J. G. Wang, B. W. Choi, T. G. Nieh, and C. T. Liu, Crystallization and nanoindentation behavior of a bulk Zr-Al-Ti-Cu-Ni amorphous alloy, J. Mater. Res. 15, 798–807 (2000).

    CAS  Google Scholar 

  191. Y. I. Golovin, V. I. Ivolgin, V. A. Khonik, K. Kitagawa, and A. I. Tyurin, Serrated plastic flow during nanoindentation of a bulk metallic glass, Scr. Mater. 45, 947–952 (2001).

    CAS  Google Scholar 

  192. W. J. Wright, R. Saha, and W. D. Nix, Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass, Mater. Trans. 42, 642–649 (2001).

    CAS  Google Scholar 

  193. C. A. Schuh, A. S. Argon, T. G. Nieh, and J. Wadsworth, The transition from localized to homogeneous plasticity during nanoindentation of an amorphous metal, Phil. Mag. A 83, 2585–2597 (2003).

    CAS  Google Scholar 

  194. C. A. Schuh, T. G. Nieh, and Y. Kawamura, Rate dependence of serrated flow during nanoindentation of a bulk metallic glass, J. Mater. Res. 17, 1651–1654 (2002).

    CAS  Google Scholar 

  195. C. A. Schuh and T. G. Nieh, A nanoindentation study of serrated flow in bulk metallic glasses, Acta Mater. 51, 87–99 (2003).

    CAS  Google Scholar 

  196. J. J. Kim, Y. Choi, S. Suresh, and A. S. Argon, Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature, Science 295, 654–657 (2002).

    CAS  Google Scholar 

  197. H. Chen, Y. He, G. J. Shiflet, and S. J. Poon, Deformation-induced nanocrystal formation in shear bands of amorphous alloys, Nature 367, 541–543 (1994).

    CAS  Google Scholar 

  198. Y. He, G. J. Shiflet, and S. J. Poon, Ball milling-induced nanocrystal formation in aluminum-based metallic glasses, Acta Metall. Mater. 43, 83–91 (1995).

    CAS  Google Scholar 

  199. K. Lu, Nanocrystalline metals crystallized from amorphous solids: Nanocrystallization, structure, and properties, Mater. Sci. Eng. R 16, 161–221 (1996).

    Google Scholar 

  200. Q. Y. Zhou, A. S. Argon, and R. E. Cohen, Enhanced case-II diffusion of diluents into glassy polymers undergoing plastic flow, Polymer 42, 613–621 (2001).

    CAS  Google Scholar 

  201. W.W. Mullins, The effect of thermal grooving on grain boundary motion, Acta Metall. 6, 414–427 (1958).

    Google Scholar 

  202. C. V. Thompson, Grain growth in thin films, Ann. Rev. Mater. Sci. 20, 245–268 (1990).

    CAS  Google Scholar 

  203. C. A. Neugebauer, J. B. Newkirk, and D. A. Vermilyea, eds., International Conference on Structure and Properties of Thin Films (Bolton Landing, Wiley NY, September 9–11, 1959).

    Google Scholar 

  204. W. D. Nix, Mechanical properties of thin films, Metall. Trans. A 20, 2217–2245 (1989).

    Google Scholar 

  205. W. D. Nix, Yielding and strain hardening of thin metal films on substrates, Scr. Mater. 39, 545–554 (1998).

    CAS  Google Scholar 

  206. C. V. Thompson, The yield stress of polycrystalline thin films, J. Mater. Res. 8, 237–238 (1993).

    Google Scholar 

  207. R. M. Keller, S. P. Baker, and E. Arzt, Quantitative analysis of strengthening mechanisms in thin Cu films: Effects of film thickness, grain size, and passivation, J. Mater. Res. 13, 1307–1317 (1998).

    CAS  Google Scholar 

  208. R. Venkatraman and J. C. Bravman, Separation of film thickness and grain boundary strengthening effects in Al thin films on Si, J. Mater. Res. 7, 2040–2048 (1992).

    CAS  Google Scholar 

  209. M. Ronay, Yield stress of thin fcc polycrystalline metal films bonded to rigid substrates, Phil. Mag. A- 40, 145–160 (1979).

    CAS  Google Scholar 

  210. Y. L. Shen, S. Suresh, M. Y. He, A. Bagchi, O. Kienzle, M. Ruhle, and A. G. Evans, Stress evolution in passivated thin films of Cu on silica substrates, J. Mater. Res. 13, 1928–1937 (1998).

    CAS  Google Scholar 

  211. M. Hommel and O. Kraft, Deformation behavior of thin copper films on deformable substrates, Acta Mater. 49, 3935–3947 (2001).

    CAS  Google Scholar 

  212. Y. Choi and S. Suresh, Size effects on the mechanical properties of thin polycrystalline metal films on substrates, Acta Mater. 50, 1881–1893 (2002).

    CAS  Google Scholar 

  213. D. Weiss, H. Gao, and E. Arzt, Constrained diffusional creep in UHV-produced copper thin films, Acta Mater. 49, 2395–2403 (2001).

    CAS  Google Scholar 

  214. A. K. Bhattacharya and W. D. Nix, Analysis of elastic and plastic deformation associated with indentation testing of thin films on substrates, Int. J. Solids Struct. 24, 1287–1298 (1998).

    Google Scholar 

  215. T.Y. Tsui and G.M. Pharr, Substrate effects on nanoindentation mechanical property measurement of soft films on hard substrates, J. Mater. Res. 14, 292–301 (1999).

    CAS  Google Scholar 

  216. X. Chen and J. J. Vlassak, Numerical study on the measurement of thin film mechanical properties by means of nanoindentation, J. Mater. Res. 16, 2974–2982 (2001).

    CAS  Google Scholar 

  217. R. Saha and W. D. Nix, Effects of the substrate on the determination of thin film mechanical properties by nanoindentation, Acta Mater. 50, 23–38 (2002).

    CAS  Google Scholar 

  218. Y. Choi and S. Suresh, Nanoindentation of patterned metal lines on a Si substrate, Scr. Mater. 48, 249–254 (2003).

    CAS  Google Scholar 

  219. Y. Choi, K. J. Van Vliet, J. Li, and S. Suresh, Size effects on the onset of plastic deformation during nanoindentation of thin films and patterned lines, J. Appl. Phys. 94, 6050–6058 (2003).

    CAS  Google Scholar 

  220. S. Hong and R. Weil, Low cycle fatigue of thin copper foils, Thin Solid Films 283, 175–181 (1996).

    CAS  Google Scholar 

  221. R. Schwaiger and O. Kraft, High cycle fatigue of thin silver films investigated by dynamic microbeam deflection, Scr. Mater. 41, 823–829 (1999).

    CAS  Google Scholar 

  222. O. Kraft, P. Wellner, M. Hommel, R. Schwaiger, and E. Arzt, Fatigue behavior of polycrystalline thin copper films, Z. Met. kd 93, 392–400 (2002).

    CAS  Google Scholar 

  223. D. T. Read, Tension-tension fatigue of copper thin films, Int. J. Fatigue 20, 203–209 (1998).

    CAS  Google Scholar 

  224. G. P. Zhang, R. Schwaiger, C. A. Volkert, and O. Kraft, Effect of film thickness and grain size on fatigue-induced dislocation structures in Cu thin films, Phil. Mag. Lett. 83, 477–483 (2003).

    CAS  Google Scholar 

  225. J. C. Grosskreutz and H. Mughrabi, Description of thework-hardened structure at lowtemperature in cyclic deformation, in Constitutive Equations in Plasticity, edited by A. S. Argon (The MIT Press, Cambridge, MA, 1975), pp. 251–325.

    Google Scholar 

  226. S. Suresh, Fatigue of Materials, 2nd edn (Cambridge University Press, New York, 1998).

    Google Scholar 

  227. O. Kraft, R. Schwaiger, and P. Wellner, Damage formation in Cu thin films due to mechanical fatigue, in Fatigue 2002, Stockholm, Sweden, 2002, pp. 2225–2232.

    Google Scholar 

  228. H. Mughrabi and R. Wang, Cyclic stress-strain response and high-cycle fatigue behavior of copper polycrystals, in Basic Mechanisms in Fatigue of Metals, Proceedings of the International Colloquium, Brno, Czechoslovakia, April 12–14, 1988, pp. 1–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Moser, B., Schwaiger, R., Dao, M. (2006). Size Effects on Deformation and Fracture of Nanostructured Metals. In: Cavaleiro, A., De Hosson, J.T.M. (eds) Nanostructured Coatings. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48756-4_2

Download citation

Publish with us

Policies and ethics