Skip to main content

The Response of the Middle Atmosphere to Solar Cycle Forcing in the Hamburg Model of the Neutral and Ionized Atmosphere

  • Chapter
Solar Variability and Planetary Climates

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 23))

  • 1028 Accesses

Abstract

This paper studies the response of the middle atmosphere to the 11-year solar cycle. The study is based on numerical simulations with the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), a chemistry climate model that resolves the atmosphere from the Earth’s surface up to about 250 km. Results presented here are obtained in two multi-year time-slice runs for solar maximum and minimum conditions, respectively. The magnitude of the simulated annual and zonal mean stratospheric response in temperature and ozone corresponds well to observations. The dynamical model response is studied for northern hemisphere winter. Here, the zonal mean wind change differs substantially from observations. The statistical significance of the model’s dynamical response is, however, poor for most regions of the atmosphere. Finally, we discuss several issues that render the evaluation of model results with available analyses of observational data of the stratosphere and mesosphere difficult. This includes the possibility that the atmospheric response to solar variability may depend strongly on longitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banks, P. M., and Kockarts, G.: 1973, Aeronomy, Part B, New York, Academic Press.

    Google Scholar 

  • Beres, J. H., Garcia, R. R., Boville, B. A., and Sassi, F.: 2005, ‘Implementation of a gravity wave source spectrum parameterization dependent on the properties of convection in the whole atmosphere community climate model (WACCM)’, J. Geophys. Res. 110, doi:10.1029/2004JD005504.

    Google Scholar 

  • Chanin, M.-L.: 2006, ‘Signature of the 11-year cycle in the upper atmosphere’, Space Sci. Rev., this volume, doi: 10.1007/s11214-006-9062-5.

    Google Scholar 

  • Crooks, S. A., and Gray, L. J.: 2005, ‘Characterization of the 11-year solar signal using a multiple regression analysis of the ERA-40 dataset’, J. Climate 18, 996–1015.

    Article  ADS  Google Scholar 

  • Fomichev, V. I., and Blanchet, J.-P.: 1995, ‘Development of the new CCC/GCM longwave radiation model for extension into the middle atmosphere’, Atmos. Ocean 33, 513–531.

    Google Scholar 

  • Fomichev, V. I., Blanchet, J.-P., and Turner, D. S.: 1998, ‘Matrix parameterization of the 15 µm CO2 band cooling in the middle and upper atmosphere for variable CO2 concentration’, J. Geophys. Res. 103, 11,505–11,528.

    Article  ADS  Google Scholar 

  • Fomichev, V. I., Ward, W. E., Beagley, S. R., McLandress, C., McConnell, J. C., McFarlane, N. A., Shepherd, T. G.: 2002, ‘The extended Canadian middle atmosphere model: Zonal mean climatology and physical parameterizations’, J. Geophys. Res. 107, doi:10.1029/2001JD000479.

    Google Scholar 

  • Froehlich, C.: 2004, ‘Solar irradiance variability’, in J. M. Pap and P. Fox (eds.), Solar Variability and its Effects on Climate, No. 141 in Geophys. Monogr. Ser., Washington, DC: AGU, pp. 97–110.

    Google Scholar 

  • Garcia, R. R., and Sassi, F.: 1999, ‘Modulation of the mesospheric semiannual oscillation by the quasi-biennial oscillation’, Earth Planets Space 51, 563–569.

    ADS  Google Scholar 

  • Giorgetta, M. A., Manzini, E., and Roeckner, E.: 2002, ‘Forcing of the quasi-biennial oscillation from a broad spectrum of atmospheric waves’, Geophys. Res. Lett. 29, doi:10.1029/2002GL014756.

    Google Scholar 

  • Haigh, J. D.: 1994, ‘The role of stratospheric ozone in modulating the solar radiative forcing of climate’, Nature 370, 544–546.

    Article  ADS  Google Scholar 

  • Haigh, J. D.: 1999, ‘A GCM study of climate change in response to the 11-year solar cycle’, Quart. J. Roy. Meteor. Soc. 125, 871–892.

    Article  ADS  Google Scholar 

  • Hampson, J., Keckhut, P., Hauchecorne, A., and Chanin, M.-L.: 2005, ‘The effect of the 11-year solar-cycle on the temperature in the upper-stratosphere and mesosphere: Part III investigations of zonal asymmetry’, submitted to J. Atm. Sol. Terr. Phys.

    Google Scholar 

  • Hines, C. O.: 1997a, ‘Doppler-spread parameterization of gravity wave momentum deposition in the middle atmosphere. Part 1: Basic formulation’, J. Atm. Sol. Terr. Phys. 59, 371–386.

    Article  ADS  Google Scholar 

  • Hines, C. O.: 1997b, ‘Doppler-spread parameterization of gravity wave momentum deposition in the middle atmosphere. Part 2: Broad and quasi monochromatic spectra, and implementation’, J. Atm. Sol. Terr. Phys. 59, 387–400.

    Article  ADS  Google Scholar 

  • Hong, S. S., and Lindzen, R. S.: 1976, ‘Solar semidiurnal tide in the thermosphere’. J. Atm. Sc. 33, 135–153.

    Article  ADS  Google Scholar 

  • Hood, L.: 2004, ‘Effects of solar UV variability on the stratosphere’, in J. M. Pap and P. Fox (eds.), Solar Variability and its Effects on Climate, No. 141 in Geophys. Monogr. Ser., Washington, DC: AGU, pp. 283–304.

    Google Scholar 

  • Keckhut, P., Cagnazzo, C., Chanin, M.-L., Claud C., and Hauchecorne A.: 2005, ‘Midlatitude longterm variability of the atmosphere: Trends and cyclic and episodic changes’, J. Atm. Sol. Terr. Phys. 67, 940–947.

    Article  ADS  Google Scholar 

  • Kinnison, D. E., Brasseur, G. P., Walters, S., Garcia, R. R., Sassi, F., Boville, B., Marsh, D., Harvey, L., Randall, C., Emmons, L., and Pan, R. W. L.: 2005, ‘Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model’, submitted to J. Geophys. Res.

    Google Scholar 

  • Kodera, K., and Kuroda, Y.: 2002, ‘Dynamical response to the solar cycle’, J. Geophys. Res. 107, doi:10.1029/2002JD002224.

    Google Scholar 

  • Labitzke, K.: 2003, ‘The global signal of the 11-year sunspot cycle in the atmosphere: When do we need the QBO?’, Meteorol. Z. 12, 209–216.

    Article  Google Scholar 

  • Labitzke, K., and van Loon, H.: 1988, ‘Associations between the 11-year solar cycle, the QBO and the atmosphere, part I: The troposphere and the stratosphere in the northern hemisphere winter’, J. Atmos. Terr. Phys. 64, 203–210.

    ADS  Google Scholar 

  • Lean, J.: 2000, “Evolution of the Sun’s spectral irradiance since the Maunder minimum”, Geophys. Res. Lett. 27, 2425–2428.

    Article  ADS  Google Scholar 

  • Lean, J., Rottman, J., Kyle, G. J., Woods, H. L., Hickey, T. N., and Pugga, J. R.: 1997, ‘Detection and parameterization of variations in solar mid and near-ultraviolet radiation (200–400 nm)’, J. Geophys. Res. 102, 29,939–29,956.

    Article  ADS  Google Scholar 

  • Lee, H., and Smith, A. K.: 2003, ‘Simulation of the combined effects of solar cycle, quasi-biennial oscillation, and volcanic forcing on stratospheric ozone changes in recent decades’, J. Geophys. Res. 108, doi:10.1029/2001JD001503.

    Google Scholar 

  • Manzini, E., McFarlane, N. A., and McLandress, C.: 1997, ‘Impact of the Doppler spread parameterization on the simulation of the middle atmosphere circulation using the MA/ECHAM4 general circulation model’, J. Geophys. Res. 102, 25,751–25,762.

    Article  ADS  Google Scholar 

  • Matthes, K., Kodera, K., Haigh, J. D., Shindell, D. T., Shibata K., Langematz, U., and Rozanov, E.: 2003, ‘GRIPS solar experiments intercomparison project: Initial results’, Papers in Meteorol. Geophys. 54, 71–90.

    Article  Google Scholar 

  • Matthes, K., Langematz, U., Gray, L. J., Kodera, K., and Labitzke, K.: 2004, ‘Improved 11-year solar signal in the Freie Universität Berlin Climate Middle Atmosphere Model (FUB-CMAM)’, J. Geophys. Res. 109, doi:10.1029/2003JD004012.

    Google Scholar 

  • McCormack, J. P., and Hood, L.: 1996, ‘Apparent solar cycle variations of upper tratospheric ozone and temperature: Latitude and seasonal dependence’, J. Geophys. Res. 101, 20,933–20,944.

    Article  ADS  Google Scholar 

  • Richards, P. G., Fennelly, J. A., and Torr, D. G.: 1994, ‘A solar EUV flux model for aeronomic calculations’, J. Geophys. Res. 99, 8981–8992. (Correction, JGR, 99, 13283, 1994).

    Article  ADS  Google Scholar 

  • Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E., Rhodin, A., Schlese, U., Schulzweida, U., and T. A.: 2003, ‘The atmospheric general circulation model ECHAM 5. Part I: Model description’, Technical Report 349, MPI for Meteorology, Hamburg, Germany.

    Google Scholar 

  • Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kornblueh, L., Manzini, E., Schlese, U., and Schulzweida, U.: 2006, ‘Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model’, J. Climate, in press.

    Google Scholar 

  • Rottman, G.: 2000, ‘Variations of solar ultraviolet irradiance observed by the UARS SOLSTICE — 1991 to 1999’, Space Sc. Rev. 94, 83–91.

    Article  ADS  Google Scholar 

  • Rozanov, E. V., Schlesinger, M. E., Egorova, T. A., Li, B., Andronova, N., and Zubov, V. A.: 2004, ‘Atmospheric response to the observed increase of solar UV radiation from solar minimum to solar maximum simulated by the University of Illinois at Urbana-Champaign climate-chemistry model’, J. Geophys. Res. 109, doi:10.1029/2003JD003796.

    Google Scholar 

  • Salby, M., and Callaghan, P.: 2000, ‘Connection between the solar cycle and the QBO: The missing link’, J. Climate 13, 2652–2662.

    Article  ADS  Google Scholar 

  • Scaife, A., Austin, J., Butchart, N., Pawson, S., Keil, M., Nash, J., and James, I. N.: 2000, ‘Seasonal and interannual variability of the stratosphere diagnosed from UKMO TOVS analyses’, Quart. J. Roy. Meteor. Soc. 126, 2585–2604.

    Article  ADS  Google Scholar 

  • Schmidt, H., Brasseur, G. P., Charron, M., Manzini, E., Giorgetta, M. A., Fomichev, V. I., Kinnison, D., Marsh, D., and Walters, S.: 2006, ‘The HAMMONIA chemistry climate model: Sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling’, J. Climate 19, 3903–3931.

    Article  ADS  Google Scholar 

  • Shibata, K., and Kodera, K.: 2005, ‘Simulation of radiative and dynamical responses of the middle atmosphere to the 11-year solar cycle’, J. Atm. Sol. Terr. Phys. 67, 125–143.

    Article  ADS  Google Scholar 

  • Shindell, D., Rind, D., Balachandran, N., Lean, J., and Lonergan, J.: 1999, ‘Solar cycle variability, ozone, and climate’, Science 284, 305–308.

    Article  ADS  Google Scholar 

  • Simmons, A. J., et al.: 1989, ‘The ECMWF medium-range prediction model: Development of the numerical formulations and the impact of increased resolution’, Meteorol. Atmos. Phys. 40, 28–60.

    Article  ADS  Google Scholar 

  • Siskind, D. E.: 2000, ‘On the coupling between middle and upper atmospheric odd nitrogen’, in D. E. Siskind, S. D. Eckermann, and M. E. Summers (eds.), Atmospheric Science Across the Stratopause, No. 123 in Geophys. Monogr. Ser., Washington, DC: AGU, pp. 101–116.

    Google Scholar 

  • Soukharev, B., and Hood, L.: 2005, ‘The 11-year solar cycle variation of stratospheric ozone as obtained from the SBUV and HALO Eozone profile measurements’, Oral presentation IAGA2005-A-01264, at the IAGA assembly, Toulouse.

    Google Scholar 

  • Tourpali, K., Schuurmans, C. J. E., van Dorland, R., Steil, B., and Brühl, C.: 2003, ‘Stratospheric and tropospheric response to enhanced solar UV-radiation: A model study’, Geophys. Res. Lett. 30, doi:10.1029/2002GL016650.

    Google Scholar 

  • Wang, H. J., Cunnold, D. M., and Bao, X.: 1996, ‘A critical analysis of stratospheric aerosol and gas experiment ozone trends’, J. Geophys. Res. 101, 12,495–12,514.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Schmidt, H., Brasseur, G.P. (2006). The Response of the Middle Atmosphere to Solar Cycle Forcing in the Hamburg Model of the Neutral and Ionized Atmosphere. In: Calisesi, Y., Bonnet, R.M., Gray, L., Langen, J., Lockwood, M. (eds) Solar Variability and Planetary Climates. Space Sciences Series of ISSI, vol 23. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48341-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-48341-2_27

  • Received:

  • Accepted:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-48339-9

  • Online ISBN: 978-0-387-48341-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics