Influenza Viral Infection: Stress-induced Modulation of Innate Resistance and Adaptive Immunity

  • Michael T. Bailey
  • David A. Padgett
  • John F. Sheridan


If you believe what you read in the newspapers, the world is poised for a pandemic. The scourge is likely to be infection with the influenza A virus. Although there may be some doubt concerning these cataclysmic predictions, they are based on solid epidemiological and historical data. It is well documented that during the past several centuries, an influenza virus pandemic has raced through the human population every 20–40 years or so. In 1918–1919, a pandemic due to influenza virus infected one out of every five humans. This “Spanish Flu,” which was also known as “La Grippe,” is estimated to have killed more than 30 million people in less than 2 years (Mills et al., 2004). To put this in perspective, this influenza pandemic killed one out of every four soldiers that died during World War I (Oxford et al., 2005). Luckily, there has not been a repeat of the 1918–1919 pandemic. However, recent events such as the emergence of the avian influenza that is currently causing mortality in Asia may signal the evolution of a new, highly virulent influenza virus that might cause a serious worldwide influenza epidemic.


Natural Killer Natural Killer Cell Drain Lymph Node Restraint Stress Follicular Dendritic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, N.E., Boyce, T., Chesney, M.A., Cohen, S., Folkman, S., Kahn, R.L., and Syme, L.S. (1994). Socioeconomic status and health: The challenge of the gradient. Am. Psychol. 49:15–24.PubMedCrossRefGoogle Scholar
  2. Anderson, R.N., and Smith, B.L. (2005). Deaths: Leading causes for 2002. National Vital Statistics Report 53:1–89.Google Scholar
  3. Avitsur, R., Stark, J.L., and Sheridan, J.F. (2001). Social stress induces glucocorticoid resistance in subordinate animals. Horm. Behav. 39:247–257.PubMedCrossRefGoogle Scholar
  4. Avitsur, R., Padgett, D.A., Dhabhar, F.S., Stark, J.L., Kramer, K.A., Engler, H., and Sheridan, J.F. (2003a). Expression of glucocorticoid resistance following social stress requires a second signal. J. Leukoc. Biol. 74:507–513.PubMedCrossRefGoogle Scholar
  5. Avitsur, R., Stark, J.L., Dhabhar, F.S., Kramer, K.A., and Sheridan, J.F. (2003b). Social experience alters the response to social stress in mice. Brain Behav. Immun. 17:426–437.PubMedCrossRefGoogle Scholar
  6. Badovinac, V.P., Tvinnereim, A.R., and Harty, J.T. (2000). Regulation of antigen-specific CD8+ T cell homeostasis by perforin and interferon-gamma. Science 290: 1354–1358.PubMedCrossRefGoogle Scholar
  7. Bailey, M., Engler, H., Hunzeker, J., and Sheridan, J.F. (2003). The hypothalamic-pituitary-adrenal axis and viral infection. Viral Immunol. 16:141–157.PubMedCrossRefGoogle Scholar
  8. Barchet, W., Krug, A., Cella, M., Newby, C., Fischer, J.A., Dzionek, A., Pekosz, A., and Colonna, M. (2005). Dendritic cells respond to influenza virus through TLR7-and PKR-independent pathways. Eur. J. Immunol. 35:236–242.PubMedCrossRefGoogle Scholar
  9. Barnes, B., Lubyova, B., and Pitha, P.M. (2002). On the role of IRF in host defense. J. Interferon Cytokine Res. 22:59–71.PubMedCrossRefGoogle Scholar
  10. Biron, C.A., Nguyen, K.B., Pien, G.C., Cousens, L.P., and Salazar-Mather, T.P. (1999). Natural killer cells in antiviral defense: Function and regulation by innate cytokines. Annu. Rev. Immunol. 17:189–220.PubMedCrossRefGoogle Scholar
  11. Bonneau, R.H., Sheridan, J.F., Feng, N., and Glaser, R. (1991). Stress-induced suppression of herpes simplex virus (HSV)-specific cytotoxic T lymphocyte and natural killer cell activity and enhancement of acute pathogenesis following local HSV infection. Brain Behav. Immun. 5:170–192.PubMedCrossRefGoogle Scholar
  12. Brokstad, K.A., Cox, R.J., Major, D., Wood, J.M., and Haaheim, L.R. (1995). Crossreaction but no avidity change of the serum antibody response after influenza vaccination. Vaccine 13:1522–1528.PubMedCrossRefGoogle Scholar
  13. Cella, M., Facchetti, F., Lanzavecchia, A., and Colonna, M. (2000). Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nat. Immunol. 1:305–310.PubMedCrossRefGoogle Scholar
  14. Chambers, B.J., Wilson, J.L., Salcedo, M., Markovic, K., Bejarano, M.T., and Ljunggren, H.G. (1998). Triggering of natural killer cell mediated cytotoxicity by costimulatory molecules. Curr. Topics Microbiol. Immunol. 23:53–61.Google Scholar
  15. Chambers, C.A., and Allison, J.P. (1997). Co-stimulation in T cell responses. Curr. Opin. Immunol. 9:396–404.PubMedCrossRefGoogle Scholar
  16. Conn, C.A., McClellan, J.L., Maassab, H.F., Smitka, C.W., Majde, J.A., and Kluger, M.J. (1995). Cytokines and the acute phase response to influenza virus in mice. Am. J. Physiol. 268:R78–R84.PubMedGoogle Scholar
  17. Cook, D., Beck, M.A., Coffman, T.M., Kirby, S.L., Sheridan, J.F., Pragnell, I.B., and Smithies, O. (1995). Requirement of MIP-1α for an inflammatory response to viral infection. Science 269:1583–1585.PubMedCrossRefGoogle Scholar
  18. Cox, R.J., Brokstad, K.A., Zuckerman, M.A., Wood, J.M., Haaheim, L.R., and Oxford, J.S. (1994). An early humoral immune response in peripheral blood following parenteral inactivated influenza vaccination. Vaccine 12:993–999.PubMedCrossRefGoogle Scholar
  19. Darnell, J.E. Jr, Kerr, I.M., and Stark, G.R. (1994). Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415–1421.PubMedCrossRefGoogle Scholar
  20. Debes, G.F., Bonhagen, K., Wolff, T., Kretschmer, U., Krautwald, S., Kamradt, T., and Hamann, A. (2004). CC chemokine receptor 7 expression by effector/memory CD4+ T cells depends on antigen specificity and tissue localization during influenza A virus infection. J. Virol. 78:7528–7535.PubMedCrossRefGoogle Scholar
  21. Deng, Y., Jing, Y., Campbell, A.E., and Gravenstein, S. (2004). Age-related impaired type 1 T cell responses to influenza: reduced activation ex vivo, decreased expansion in CTL culture in vitro, and blunted response to influenza vaccination in vivo in the elderly. J. Immunol. 172:3437–3446.PubMedGoogle Scholar
  22. Diebold, S.S., Kaisho, T., Hemmi, H., Akira, S., and Reis e Sousa, C. (2004). Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529–1531.PubMedCrossRefGoogle Scholar
  23. Dobbs, C.M., Vasquez, M., Glaser, R., and Sheridan, J.F. (1993). Mechanisms of stress-induced modulation of viral pathogenesis and immunity. J. Neuroimmunol. 48:151–160.PubMedCrossRefGoogle Scholar
  24. Dobbs, C.M., Feng, N., Beck, F.M., and Sheridan, J.F. (1996). Neuroendocrine regulation of cytokine production during experimental influenza viral infection: Effects of restraint stress-induced elevation in endogenous corticosterone. J. Immunol. 157:1870–1877.PubMedGoogle Scholar
  25. Doherty, P.C., Riberdy, J.M., and Belz, G.T. (2000). Quantitative analysis of the D8+ T-cell response to readily eliminated and persistent viruses. Philos. Trans. R. Soc. London B Biol. Sci. 355:1093–1101.PubMedCrossRefGoogle Scholar
  26. el Madhun, A.S., Cox, R.J., Soreide, A., Olofsson, J., and Haaheim, L.R. (1998). Systemic and mucosal immune responses in young children and adults after parenteral influenza vaccination. J. Infect. Dis. 178:933–939.PubMedGoogle Scholar
  27. Feng, N., Pagniano, R., Tovar, C.R., Bonneau, R.H., Glaser, R., and Sheridan, J.F. (1991). The effect of restraint stress on the kinetics, magnitude, and isotype of the humoral immune response to influenza virus infection. Brain Behav. Immun. 5: 370–382.PubMedCrossRefGoogle Scholar
  28. Finberg, R.W., and Kurt-Jones, E.A. (2004). Viruses and Toll-like receptors. Microbes Infect. 6:1356–1360.PubMedCrossRefGoogle Scholar
  29. Flynn, K.J., Riberdy, J.M., Christensen, J.P., Altman, J.D., and Doherty, P.C. (1999). In vivo proliferation of naive and memory influenza-specific CD8(+) T cells. Proc. Natl. Acad. Sci. U.S.A. 96:8597–8602.PubMedCrossRefGoogle Scholar
  30. Fonteneau, J.F., Gilliet, M., Larsson, M., Dasilva, I., Munz, C., Liu, Y.J., and Bhardwaj, N. (2003). Activation of influenza virus-specific CD4+ and CD8+ T cells: A new role for plasmacytoid dendritic cells in adaptive immunity. Blood 101:3520–3526.PubMedCrossRefGoogle Scholar
  31. Forster, R., Mattis, A.E., Kremmer, E., Wolf, E., Brem, G., and Lipp, M. (1996). A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87:1037–1047.PubMedCrossRefGoogle Scholar
  32. Geginat, J., Lanzavecchia, A., and Sallusto, F. (2003a). Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood 101:4260–4266.PubMedCrossRefGoogle Scholar
  33. Geginat, J., Sallusto, F., and Lanzavecchia, A. (2003b). Cytokine-driven proliferation and differentiation of human naive, central memory and effector memory CD4+ T cells. Pathol. Biol. (Paris), 51:64–66.Google Scholar
  34. Gerhard, W., Mozdzanowska, K., Furchner, M., Washko, G., and Maiese, K. (1997). Role of the B-cell response in recovery of mice from primary influenza virus infection. Immunol. Rev. 159:95–103.PubMedCrossRefGoogle Scholar
  35. Glaser, R., Kiecolt-Glaser, J.K., Bonneau, R., Malarkey, W., and Hughes, J. (1992). Stress-induced modulation of the immune response to recombinant hepatitis B vaccine. Psychosom. Med. 54:22–29.PubMedGoogle Scholar
  36. Glaser, R., Sheridan, J.F., Malarkey, W.B., MacCallum, R.C., and Kiecolt-Glaser, J.K. (2000). Chronic stress modulates the immune response to a pneumococcal pneumonia vaccine. Psychosom. Med. 62:804–807.PubMedGoogle Scholar
  37. Hashimoto, G., Wright, P.F., and Karzon, D.T. (1983). Antibody-dependent cell-mediated cytotoxicity against influenza virus-infected cells. J. Infect. Dis. 148: 785–794.PubMedGoogle Scholar
  38. Hermann, G., Tovar, C.A., Beck, F.M., Allen, C., and Sheridan, J.F. (1993). Restraint stress differentially affects the pathogenesis of an experimental influenza viral infection in three inbred strains of mice. J. Neuroimmunol. 47:83–94PubMedCrossRefGoogle Scholar
  39. Hermann, G., Beck, F.M., and Sheridan, J.F. (1995). Stress-induced glucocorticoid response modulates mononuclear cell trafficking during an experimental influenza viral infection. J. Neuroimmunol. 56:179–186.PubMedCrossRefGoogle Scholar
  40. Hordijk, P. (2003). Endothelial signaling in leukocyte transmigration. Cell Biochem. Biophys. 38:305–322.PubMedCrossRefGoogle Scholar
  41. Hornung, V., Schlender, J., Guenthner-Biller, M., Rothenfusser, S., Endres, S., Conzelmann, K.K., and Hartmann, G. (2004). Replication-dependent potent IFN-alpha induction in human plasmacytoid dendritic cells by a single-stranded RNA virus. J. Immunol. 173:5935–5943.PubMedGoogle Scholar
  42. Hou, S., Hyland, L., Ryan, K.W., Portner, A., and Doherty, P.C. (1994). Virus-specific CD8+ T-cell memory determined by clonal burst size. Nature 369:652–654.PubMedCrossRefGoogle Scholar
  43. Hovanessian, A.G. (1991). Interferon-induced and double-stranded RNA-activated enzymes: a specific protein kinase and 2′,5′-oligoadenylate synthetases. J. Interferon Res. 11:199–205.PubMedGoogle Scholar
  44. Hunzeker, J. (2004). Differential Effects of Stress on the Immune Response to Influenza A/PR8 Virus Infection in Mice. Ph.D. dissertation, The Ohio State University, Columbus.Google Scholar
  45. Hunzeker, J., Padgett, D.A., Sheridan, P.A., Dhabhar, F.S., and Sheridan, J.F. (2004). Modulation of natural killer cell activity by restraint stress during an influenza A/PR8 infection in mice. Brain Behav. Immun. 18:526–535.PubMedCrossRefGoogle Scholar
  46. Iezzi, G., Karjalainen, K., and Lanzavecchia, A. (1998). The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity 8:89–95.PubMedCrossRefGoogle Scholar
  47. Ishigami, T. (1919). The influence of psychic acts on the progress of pulmonary tuberculosis. Am. Rev. Tuberculosis 2:470–484.Google Scholar
  48. Jegerlehner, A., Schmitz, N., Storni, T., and Bachmann, M.F. (2004). Influenza A vaccine based on the extracellular domain of M2: weak protection mediated via antibody-dependent NK cell activity. J. Immunol. 172:5598–5605.PubMedGoogle Scholar
  49. Jelley-Gibbs, D.M., Lepak, N.M., Yen, M., and Swain, S.L. (2000). Two distinct stages in the transition from naive CD4 T cells to effectors, early antigen-dependent and late cytokine-driven expansion and differentiation. J. Immunol. 165:5017–5026.PubMedGoogle Scholar
  50. Johansson, B.E., Bucher, D.J., and Kilbourne, E.D. (1989). Purified influenza virus hemagglutinin and neuraminidase are equivalent in stimulation of antibody response but induce contrasting types of immunity to infection. J. Virol. 63: 1239–1246.PubMedGoogle Scholar
  51. Johansson, B.E., Matthews, J.T., and Kilbourne, E.D. (1998). Supplementation of conventional influenza A vaccine with purified viral neuraminidase results in a balanced and broadened immune response. Vaccine 16:1009–1015.PubMedCrossRefGoogle Scholar
  52. Johansson, B.E., Pokorny, B.A., and Tiso, V.A. (2002). Supplementation of conventional trivalent influenza vaccine with purified viral N1 and N2 neuraminidases induces a balanced immune response without antigenic competition. Vaccine 20: 1670–1674.PubMedCrossRefGoogle Scholar
  53. Julkunen, I., Melen, K., Nyqvist, M., Pirhonen, J., Sareneva, T., and Matikainen, S. (2000). Inflammatory responses in influenza A virus infection. Vaccine 19(Suppl 1): S32–S37.PubMedCrossRefGoogle Scholar
  54. Julkunen, I., Sareneva, T., Pirhonen, J., Ronni, T., Melen, K., and Matikainen, S. (2001). Molecular pathogenesis of influenza A virus infection and virus-induced regulation of cytokine gene expression. Cytokine Growth Factor Rev. 12:171–180.PubMedCrossRefGoogle Scholar
  55. Kaech, S.M., and Ahmed, R. (2001). Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat. Immunol. 2:415–422.PubMedGoogle Scholar
  56. Kaech, S.M., Wherry, E.J., and Ahmed, R. (2002). Effector and memory T-cell differentiation: Implications for vaccine development. Nat. Rev. Immunol. 2:251–262.PubMedCrossRefGoogle Scholar
  57. Kaech, S.M., Tan, J.T., Wherry, E.J., Konieczny, B.T., Surh, C.D., and Ahmed, R. (2003). Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat. Immunol. 4:1191–1198.PubMedCrossRefGoogle Scholar
  58. Kagi, D., Odermatt, B., and Mak, T.W. (1999). Homeostatic regulation of CD8+ T cells by perforin. Eur. J. Immunol. 29:3262–3272.PubMedCrossRefGoogle Scholar
  59. Kaisho, T., and Akira, S. (2004). Pleiotropic function of Toll-like receptors. Microbes Infect. 6:1388–1394.PubMedCrossRefGoogle Scholar
  60. Katze, M.G., He, Y., and Gale, M. Jr. (2002). Viruses and interferon: A fight for supremacy. Nat. Rev. Immunol. 2:675–687.PubMedCrossRefGoogle Scholar
  61. Kaufmann, A., Salentin, R., Meyer, R.G., Bussfeld, D., Pauligk, C., Fesq, H., Hofmann, P., Nain, M., Gemsa, D., and Sprenger, H. (2001). Defense against influenza A virus interferon: Essential role of the chemokine system. Immunobiology 204:603–613.PubMedCrossRefGoogle Scholar
  62. Kiecolt-Glaser, J., Glaser, R., Gravenstein, S., Malarkey, W.B., and Sheridan, J.F. (1996). Chronic stress alters the immune response to influenza virus vaccine in older adults. Proc. Natl. Acad. Sci. U.S.A. 93:3043–3047.PubMedCrossRefGoogle Scholar
  63. Koolhass, J.M., De Boer, S.F., De Ruiter, A.J.H., Meerlo, P., and Sgoifo, A. (1997). Social stress in rats and mice. Acta Physiol. Scand. 161(S640):69–72.Google Scholar
  64. Knossow, M., Gaudier, M., Douglas, A., Barrere, B., Bizebard, T., Barbey, C., Gigant, B., and Skehel, J.J. (2002). Mechanism of neutralization of influenza virus infectivity by antibodies. Virology 302:294–298.PubMedCrossRefGoogle Scholar
  65. Konstantinos, A.P., and Sheridan, J.F. (2001). Stress and influenza viral infection: Modulation of proinflammatory cytokine responses in the lung. Respir. Physiol. 128:71–77.PubMedCrossRefGoogle Scholar
  66. Lanier, L.L. (1998). NK cell receptors. Annu. Rev. Immunol. 16:359–393.PubMedCrossRefGoogle Scholar
  67. Lanzavecchia, A., Lezzi, G., and Viola, A. (1999). From TCR engagement to T cell activation: A kinetic view of T cell behavior. Cell 96:1–4.PubMedCrossRefGoogle Scholar
  68. Lenz, D.C., Kurz, S.K., Lemmens, E., Schoenberger, S.P., Sprent, J., Oldstone, M.B., and Homann, D. (2004). IL-7 regulates basal homeostatic proliferation of antiviral CD4+T cell memory. Proc. Natl. Acad. Sci. U.S.A. 101:9357–9362.PubMedCrossRefGoogle Scholar
  69. Leung, K.N., and Ada, G.L. (1981). Induction of natural killer cells during murine influenza virus infection. Immunobiology 160:352–366.PubMedGoogle Scholar
  70. Liu, B., Mori, I., Hossain, M.J., Dong, L., Chen, Z., and Kimura, Y. (2003). Local immune responses to influenza virus infection in mice with a targeted disruption of perforin gene. Microb. Pathogen. 34:161–167.CrossRefGoogle Scholar
  71. Lodolce, J.P., Burkett, P.R., Boone, D.L., Chien, M., and Ma, A. (2001). T cell-independent interleukin 15Ralpha signals are required for bystander proliferation. J. Exp. Med. 194:1187–1194.PubMedCrossRefGoogle Scholar
  72. Lopez, C.B., Moran, T.M., Schulman, J.L., and Fernandez-Sesma, A. (2002). Antiviral immunity and the role of dendritic cells. Int. Rev. Immunol. 21:339–353.PubMedCrossRefGoogle Scholar
  73. Lund, J.M., Alexopoulou, L., Sato, A., Karow, M., Adams, N.C., Gale, N.W., Iwasaki, A., and Flavell, R.A. (2004). Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl. Acad. Sci. U.S.A. 101:5598–5603.PubMedCrossRefGoogle Scholar
  74. Ma, A., Boone, D.L., and Lodolce, J.P. (2000). The pleiotropic functions of interleukin 15: Not so interleukin 2-like after all. J. Exp. Med. 191:753–756.PubMedCrossRefGoogle Scholar
  75. MacArthur Network on Socioeconomic Status and Health. (1997). Revised 6/3/2003. Available at
  76. MacLennan, I.C. (1994). Germinal centers. Annu. Rev. Immunol. 12:117–139.PubMedCrossRefGoogle Scholar
  77. Mailliard, R.B., Egawa, S., Cai, Q., Kalinska, A., Bykovskaya, S.N., Lotze, M.T., Kapsenberg, M.L., Storkus, W.J., and Kalinski, P. (2002). Complementary dendritic cell-activating function of CD8+ and CD4+ T cells: Helper role of CD8+ T cells in the development of T helper type 1 responses. J. Exp. Med. 195:473–483.PubMedCrossRefGoogle Scholar
  78. Matloubian, M., Suresh, M., Glass, A., Galvan, M., Chow, K., Whitmire, J.K., Walsh, C.M., Clark, W.R., and Ahmed, R. (1999). A role for perforin in downregulating T-cell responses during chronic viral infection. J. Virol. 73:2527–2536.PubMedGoogle Scholar
  79. Matrosovich, M.N., Matrosovich, T.Y., Gray, T., Roberts, N.A., and Klenk, H.D. (2004). Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc. Natl. Acad. Sci. U.S.A. 101:4620–4624.PubMedCrossRefGoogle Scholar
  80. McEwen, B.S. Protective and damaging effects of stress mediators. (1998). N. Engl. J. Med. 338:171–179.Google Scholar
  81. McHale, J.F., Harari, O.A., Marshall, D., and Haskard, D.O. (1999). TNF-alpha and IL-1 sequentially induce endothelial ICAM-1 and VCAM-1 expression in MRL/lpr lupus-prone mice. J. Immunol. 163:3993–4000.PubMedGoogle Scholar
  82. Mellon, R.D., and Bayer, B.M. (1998). Role of central opioid receptor subtypes in morphine induced alterations in peripheral lymphocyte activity. Brain Res. 789: 56–67.PubMedCrossRefGoogle Scholar
  83. Mills, C.E., Robins, J.M., and Lipsitch, M. (2004). Transmissibility of 1918 pandemic influenza. Nature 432:904–906.PubMedCrossRefGoogle Scholar
  84. Nelson, C.J., and Lysle, D.T. (2001). Involvement of substance P and central opioid receptors in morphine modulation of the CHS response. J. Neuroimmunol. 115: 101–110.PubMedCrossRefGoogle Scholar
  85. Nieto, M., Rodriguez-Fernandez, J.L., Navarro, F., Sancho, D., Frade, J.M., Mellado, M., Martinez-A, C., Cabanas, C., and Sanchez-Madrid, F. (1999). Signaling through CD43 induces natural killer cell activation, chemokine release, and PYK-2 activation. Blood 94:2767–2777.PubMedGoogle Scholar
  86. Okada, T., Ngo, V.N., Ekland, E.H., Forster, R., Lipp, M., Littman, D.R., and Cyster, J.G. (2002). Chemokine requirements for B cell entry to lymph nodes and Peyer’s patches. J. Exp. Med. 196:65–75.PubMedCrossRefGoogle Scholar
  87. Oran, A.E., and Robinson, H.L. (2004). DNA vaccines: influenza virus challenge of a Th2/Tc2 immune response results in a Th2/Tc1 response in the lung. J. Virol. 78:4376–4380.PubMedCrossRefGoogle Scholar
  88. Oxford, J.S., Lambkin, R., Sefton, A., Daniels, R., Elliot, A., Brown, R., and Gill, D. (2005). A hypothesis: The conjunction of soldiers, gas, pigs, ducks, geese and horses in northern France during the Great War provided the conditions for the emergence of the “Spanish” influenza pandemic of 1918–1919. Vaccine 23:940–945.PubMedCrossRefGoogle Scholar
  89. Padgett, D.A., Loria, R.M. (1994). In vitro potentiation of lymphocyte activation by dehydroepiandrosterone, androstenediol, and androstenetriol. J. Immunol. 153: 1544–1552.PubMedGoogle Scholar
  90. Padgett, D.A., and Sheridan, J.F. (1999). Androstenediol (AED) prevents neuroendocrine-mediated suppression of the immune response to an influenza viral infection. J. Neuroimmunol. 98:121–129.PubMedCrossRefGoogle Scholar
  91. Pasare, C., and Medzhitov, R. (2004). Toll-like receptors: linking innate and adaptive immunity. Microbes Infect. 6:1382–1387.PubMedCrossRefGoogle Scholar
  92. Pevzner, V., Wolf, I., Burgstahler, R., Forster, R., and Lipp, M. (1999). Regulation of expression of chemokine receptor BLR1/CXCR5 during B cell maturation. Curr. Topics Microbiol. Immunol. 246:79–84.Google Scholar
  93. Proietti, E., Bracci, L., Puzelli, S., Di Pucchio, T., Sestili, P., De Vincenzi, E., Venditti, M., Capone, I., Seif, I., De Maeyer, E., Tough, D., Donatelli, I., and Belardelli, F. (2002). Type I IFN as a natural adjuvant for a protective immune response: Lessons from the influenza vaccine model. J. Immunol. 169:375–383.PubMedGoogle Scholar
  94. Qin, D., Wu, J., Vora, K.A., Ravetch, J.V., Szakal, A.K., Manser, T., and Tew, J.G. (2000). Fc gamma receptor IIB on follicular dendritic cells regulates the B cell recall response. J. Immunol. 164:6268–6275.PubMedGoogle Scholar
  95. Quan, N., Avitsur, R., Stark, J.L., He, L., Shah, M., Caliguiri, M., Padgett, D.A., Marucha, P.T., and Sheridan, J.F. (2001). Social stress increases the susceptibility to endotoxic shock. J. Neuroimmunol. 115:36–45.PubMedCrossRefGoogle Scholar
  96. Quan, N., Avitsur, R., Stark, J.L., He, L., Lai, W., Dhabhar, F.S., and Sheridan, J.F. (2003). Molecular mechanisms of glucocorticoid resistance in splenocytes of socially stressed male mice. J. Neuroimmunol. 137:51–58.PubMedCrossRefGoogle Scholar
  97. Randolph, G.J., and Furie, M.B. (1995). A soluble gradient of endogenous monocyte chemoattractant protein-1 promotes the transendothelial migration of monocytes in vitro. J. Immunol. 155:3610–3618.PubMedGoogle Scholar
  98. Rosseau, S., Selhorst, J., Wiechmann, K., Leissner, K., Maus, U., Mayer, K., Grimminger, F., Seeger, W., and Lohmeyer, J. (2000). Monocyte migration through the alveolar epithelial barrier: Adhesion molecule mechanisms and impact of chemokines. J. Immunol. 164:427–435.PubMedGoogle Scholar
  99. Sallusto, F., Geginat, J., and Lanzavecchia, A. (2004). Central memory and effector memory T cell subsets: Function, generation, and maintenance. Annu. Rev. Immunol. 22:745–763.PubMedCrossRefGoogle Scholar
  100. Samuel, C.E. (1991). Antiviral actions of interferon. Interferon-regulated cellular proteins and their surprisingly selective antiviral activities. Virology 183:1–11.PubMedCrossRefGoogle Scholar
  101. Selye, H. (1936). A syndrome produced by diverse nocuous agents. Nature (London) 138:32.Google Scholar
  102. Sheridan, J.F., Feng, N.G., Bonneau, R.H., Allen, C.M., Huneycutt, B.S., and Glaser, R. (1991). Restraint stress differentially affects antiviral cellular and humoral immune responses in mice. J. Neuroimmunol. 31:245–255.PubMedCrossRefGoogle Scholar
  103. Sprent, J., Zhang, X., Sun, S., and Tough, D. (2000). T-cell proliferation in vivo and the role of cytokines. Philos. Trans. R. Soc. London B Biol. Sci. 355:317–322.PubMedCrossRefGoogle Scholar
  104. Stark, J., Avitsur, R., Padgett, D.A., and Sheridan, J.F. (2001). Social stress induces glucocorticoid resistance in macrophages. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280:R1799–R1805.PubMedGoogle Scholar
  105. Stein-Streilein, J., and Guffee, J. (1986). In vivo treatment of mice and hamsters with antibodies to asialo GM1 increases morbidity and mortality to pulmonary influenza infection. J. Immunol. 136:1435–1441.PubMedGoogle Scholar
  106. Stein-Streilein, J., Guffee, J., and Fan, W. (1988). Locally and systemically derived natural killer cells participate in defense against intranasally inoculated influenza virus. Regional Immunol. 1:100–105.Google Scholar
  107. Strieter, R.M., Belperio, J.A., and Keane, M.P. (2003). Host innate defenses in the lung: The role of cytokines. Curr. Opin. Infect. Dis. 16:193–198.PubMedGoogle Scholar
  108. Tan, J.T., Dudl, E., LeRoy, E., Murray, R., Sprent, J., Weinberg, K.I., and Surh, C.D. (2001). IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc. Natl. Acad. Sci. U.S.A. 98:8732–8737.PubMedCrossRefGoogle Scholar
  109. Tew, J.G., Mandel, T.E., Phipps, R.P., and Szakal, A.K. (1984). Tissue localization and retention of antigen in relation to the immune response. Am. J. Anat. 170:407–420.PubMedCrossRefGoogle Scholar
  110. Tew, J.G., Wu, J., Fakher, M., Szakal, A.K., and Qin, D. (2001). Follicular dendritic cells: Beyond the necessity of T-cell help. Trends Immunol. 22:361–367.PubMedCrossRefGoogle Scholar
  111. Topham, D.J., Tripp, R.A., and Doherty, P.C. (1997). CD8+ T cells clear influenza virus by perforin or Fas-dependent processes. J. Immunol. 159:5197–5200.PubMedGoogle Scholar
  112. Tseng, R., Padgett, D.A., Dhabhar, F.S., Engler, H., and Sheridan, J.F. (2005). Stress-induced modulation of NK activity during influenza viral infection: Role of glucocorticoids and opioids. Brain Behav. Immun. 19:153–164.PubMedCrossRefGoogle Scholar
  113. Walzer, T., Galibert, L., Comeau, M.R., and De Smedt, T. (2005). Plexin C1 engagement on mouse dendritic cells by viral semaphorin A39R induces actin cytoskeleton rearrangement and inhibits integrin-mediated adhesion and chemokine-induced migration. J. Immunol. 174:51–59.PubMedGoogle Scholar
  114. Weber, K.S., von Hundelshausen. P., Clark-Lewis, I., Weber, P.C., and Weber, C. (1999). Differential immobilization and hierarchical involvement of chemokines in monocyte arrest and transmigration on inflamed endothelium in shear flow. Eur. J. Immunol. 29:700–712.PubMedCrossRefGoogle Scholar
  115. Zhang, X., Sun, S., Hwang, I., Tough, D.F., and Sprent, J. (1998). Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8: 591–599.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Michael T. Bailey
  • David A. Padgett
  • John F. Sheridan

There are no affiliations available

Personalised recommendations