Skip to main content

Adrenergic Regulation of Adaptive Immunity

  • Chapter
  • 390 Accesses

Abstract

The early hypothesis that the brain and immune system communicated with each other was first proposed from the results of a study on the effect of taste aversion conditioning of humoral immune responsiveness (Ader and Cohen, 1975). Many studies have since confirmed the existence of such a bidirectional regulation [reviewed in (Besedovsky and Del Rey, 1996;Ader, 2000; Kohm and Sanders, 2001)] and provide plausible mechanisms by which the immune system alerts the brain that it is responding to an antigen, as well as mechanisms by which the brain regulates the level of immune cell activity that develops (Figure 5.1). Four key discoveries indicate that mechanisms exist by which the brain is able to communicate with cells of the peripheral immune system. First, primary and secondary lymphoid organs are innervated with sympathetic nerve fibers, and mechanisms exist by which signals are sent from the activated immune system to the brain. Second, the sympathetic neurotransmitter norepinephrine (NE) is released from nerve terminals residing within the parenchyma of lymphoid tissues after antigen or cytokine administration. Third, lymphoid cells, except for Th2 cells, express the α2-adrenergic receptor (β2AR) that binds NE to transduce extracellular signals to the cell interior. And finally, NE regulates lymphocyte activity at the level of gene expression. Although NE appears to regulate immune system activity overall, we will focus this chapter to a discussion of the role NE plays in regulating CD4+ T-cell and B-cell activity, with special emphasis placed on the role it plays in regulating the level of cytokine and antibody produced.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman, K.D., Bellinger, D.L., Felten, S.Y., and Felten, D.L. (1991a). Ontogeny and senescence of noradrenergic innervation of the rodent thymus and spleen. In R. Ader, N. Cohen, and D.L. Felten (eds.), Psychoneuroimmunology. New York: Academic Press, pp. 71–125.

    Google Scholar 

  • Ackerman, K.D., Madden, K.S., Livnat, S., Felten, S.Y., and Felten, D.L. (1991b). Neonatal sympathetic denervation alters the development of in vitro spleen cell proliferation and differentiation. Brain Behav. Immun. 5:235–261.

    Article  PubMed  CAS  Google Scholar 

  • Ader, R. (2000). On the development of psychoneuroimmunology. Eur. J. Pharmacol. 405:167–176.

    Article  PubMed  CAS  Google Scholar 

  • Ader, R., and Cohen, N. (1975). Behaviorally conditioned immunosuppression. Psychosom. Med. 37:333–340.

    PubMed  CAS  Google Scholar 

  • Alaniz, R.C., Thomas, S.A., Perez-Melgosa, M., Mueller, K., Farr, A.G., Palmiter, R.D., and Wilson, C.B. (1999). Dopamine beta-hydroxylase deficiency impairs cellular immunity. Proc. Natl. Acad. Sci. U.S.A. 96:2274–2278.

    Article  PubMed  CAS  Google Scholar 

  • Bellinger, D.L., Lorton, D., Felten, S.Y., and Felten, D.L. (1990). Noradrenergic and peptidergic neural-immune interactions in aging. In Stress and the Aging Brain G. Nappi (ed.), New York: Raven Press, pp. 143–140.

    Google Scholar 

  • Besedovsky, H.O., and Del Rey, A. (1996). Immune-neuro-endocrine interactions: Facts and hypotheses. Endocr. Rev. 17:64–102.

    Article  PubMed  CAS  Google Scholar 

  • Besedovsky, H.O., Del Rey, A., Sorkin, E., Da Prada, M., and Keller, H.H. (1979). Immunoregulation mediated by the sympathetic nervous system. Cell. Immunol. 48:346–355.

    Article  PubMed  CAS  Google Scholar 

  • Betz, M., and Fox, B.S. (1991). Prostaglandin E2 inhibits production of Th1 lymphokines but not of Th2 lymphokines. J. Immunol. 146:108–113.

    PubMed  CAS  Google Scholar 

  • Biondi, M., and Zannino, L.-G. (1997). Psychological stress, neuroimmunomodulation, and susceptibility to infectious diseases in animals and man: A review. Psychother. Psychosom. 66:3–26.

    Article  PubMed  CAS  Google Scholar 

  • Blomhoff, H.K., Smeland, E.B., Beiske, K., Blomhoff, R., Ruud, E., Bjoro, T., Pfeifer-Ohlsson, S., Watt, R., Funderud, S., Godal, T., and Ohlsson, R. (1987). Cyclic AMP-mediated suppression of normal and neoplastic B cell proliferation is associated with regulation of myc and Ha-ras protooncogenes. J. Cell. Physiol. 131:426–433.

    Article  PubMed  CAS  Google Scholar 

  • Borger, P., Kauffman, H.F., Postma, D.S., and Vellenga, E. (1996a). Interleukin-4 gene expression in activated human T lymphocytes is regulated by the cyclic adeno-sine monophosphate-dependent signaling pathway. Blood 87:691–698.

    PubMed  CAS  Google Scholar 

  • Borger, P., Kauffman, H.F., Postma, D.S., and Vellenga, E. (1996b). Interleukin-4 gene expression in activated human T lymphocytes is regulated by the cyclic adenosine monophosphate-dependent signaling pathway. Blood 87:691–698.

    PubMed  CAS  Google Scholar 

  • Cazaux, C.A., Sterin-Borda, L., Gorelik, G., and Cremaschi, G.A. (1995). Down-regulation of beta-adrenergic receptors induced by mitogen activation of intracellular signaling events in lymphocytes. FEBS Lett. 364:120–124.

    Article  PubMed  CAS  Google Scholar 

  • Chelmicka-Schorr, E., Checinski, M., and Arnason, B.G.W. (1988). Chemical sympathectomy augments the severity of experimental allergic encephalomyelitis. J. Neuroimmunol. 17:347–350.

    Article  PubMed  CAS  Google Scholar 

  • Chen, D., and Rothenberg, E.V. (1994). Interleukin 2 transcription factors as molecular targets of cAMP inhibition: Delayed inhibition kinetics and combinatorial transcription roles. J. Exp. Med. 179:931–942.

    Article  PubMed  CAS  Google Scholar 

  • Clerc, R.G., Corcoran, L.M., LaBowitz, J.H., Baltimore, D., and Sharpe, P.A. (1988). The B-cell-specific Oct-2 protein contains POU box-and homeo box-type domains. Genes Dev. 2:1570–1581.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, D.P., and Rothstein, T.L. (1989). Adenosine 3′, 5′-cyclic monphosphate modulates the mitogenic responses of murine B lymphocytes. Cell. Immunol. 121:113–124.

    Article  PubMed  CAS  Google Scholar 

  • Corcoran, L.M., and Karvelas, M. (1994). Oct-2 is required in T cell-independent B cell activation for G1 progression and for proliferation. Immunity 1:635–645.

    Article  PubMed  CAS  Google Scholar 

  • Crocker, I.C., Townley, R.G., and Khan, M.M. (1996). Phosphodiesterase inhibitors suppress proliferation of peripheral blood mononuclear cells and interleukin-4 and-5 secretion by human T-helper type 2 cells. Immunopharmacolopy 31:223–235.

    Article  CAS  Google Scholar 

  • Cross, R.J., Jackson, J.C., Brooks, W.H., Sparks, D.L., Markesbery, W.R., and Roszman, T.L. (1986). Neuroimmunomodulation: impairment of humoral immune responsiveness by 6-hydroxydopamine treatment. Immunology 57:145–152.

    PubMed  CAS  Google Scholar 

  • Diamantstein, T., and Ulmer, A. (1975). The antagonistic action of cyclic GMP and cyclic AMP on proliferation of B and T lymphocytes. Immunology 28:113–119.

    PubMed  CAS  Google Scholar 

  • Diaz, M., and Casali, P. (2002). Somatic immunoglobulin hypermutation. Curr. Opin. Immunol. 14:235–240.

    Article  PubMed  CAS  Google Scholar 

  • Feldman, R.D., Hunninghake, G.W., and McArdle, W. (1987). Beta-adrenergic receptor-mediated suppression of interleukin 2 receptors in human lymphocytes. J. Immunol. 139(10):3355–3359.

    PubMed  CAS  Google Scholar 

  • Felten, D.L., Felten, S.Y., Bellinger, D.L., Carlson, S.L., Ackerman, K.D., Madden, K.S., Olschowki, J.A., and Livnat, S. (1987a). Noradrenergic sympathetic neural interactions with the immune system: Structure and function. Immunol. Rev. 100:225–260.

    Article  PubMed  CAS  Google Scholar 

  • Felten, S.Y., Bellinger, D.L., Collier, T.J., Coleman, P.D., and Felten, D.L. (1987b). Decreased sympathetic innervation of spleen in aged Fischer 344 rats. Neurobiol. Aging 8:159–165.

    Article  PubMed  CAS  Google Scholar 

  • Felten, D.L., Felten, S.Y., Madden, K.S., Ackerman, K.D., and Bellinger, D.L. (1989). Development, Maturation and Senescence of Sympathetic Innervation of Secondary Immune Organs. New York: Academic Press, pp. 381–397.

    Google Scholar 

  • Felten, S.Y., Madden, K.S., Bellinger, D.L., Kruszewska, B., Moynihan, J.A., and Felten, D.L. (1998). The role of the sympathetic nervous system in the modulation of immune responses. Adv. Pharmacol. 42:583–587.

    Article  PubMed  CAS  Google Scholar 

  • Forster, M.J., and Lal, H. (1991). Autoimmunity and cognitive decline in aging and Alzheimer’s disease. In: Psychoneuroimmunology R. Ader, N. Cohen, and D.L. Felten (eds.), New York: Academic Press, pp. 709–748.

    Google Scholar 

  • Fuchs, B.A., Campbell, K.S., and Munson, A.E. (1988). Norepinephrine and serotonin content of the murine spleen: Its relationship to lymphocyte beta-adrenergic receptor density and the humoral immune response in vivo and in vitro. Cell. Immunol. 117:339–351.

    Article  PubMed  CAS  Google Scholar 

  • Gajewski, T.F., Schell, S.R., and Fitch, F.W. (1990). Evidence implicating utilization of different T cell receptor-associated signaling pathways by Th-1 and Th-2 clones. J. Immunol. 144:4110–4120.

    PubMed  CAS  Google Scholar 

  • Goin, J.C., Sterin-Borda, L., Borda, E.S., Finiasz, M., Fernandez, J., and de Bracco, M.M. (1991). Active alpha 2 and beta adrenoceptors in lymphocytes from patients with chronic lymphocytic leukemia. Int. J. Cancer 49:178–181.

    Article  PubMed  CAS  Google Scholar 

  • Hall, N.R., McClure, J.E., Hu, S., Tare, S., Seals, C.M., and Goldstein, A.L. (1982). Effects of 6-hydroxydopamine upon primary and secondary thymus dependent immune responses. Immunopharmacology. 5:39–48.

    Article  PubMed  CAS  Google Scholar 

  • Holte, H., Torjesen, P., Blomhoff, H.K., Ruud, E., Funderud, S., and Smeland, E.B. (1988). Cyclic AMP has the ability to influence multiple events during B cell stimulation. Eur. J. Immunol. 18:1359–1366.

    Article  PubMed  CAS  Google Scholar 

  • Humbert, P.O., and Corcoran, L.M. (1997). Oct-2 gene disruption eliminates the peritoneal B-1 lymphocytes linage and attenuates B-2 cell maturation and function. J. Immunol. 159:5273–5285.

    PubMed  CAS  Google Scholar 

  • Jeannin, P., Delneste, Y., Lecoanet-Henchoz, S., Gauchat, J.-F., Ellis, J., and Bonnefoy, J.-Y (1997). CD86 (B7-2) on human B cells: A functional role in proliferation and selective differentiation into IgE-and IgG4-producing cells. J. Biol. Chem. 272:15613–15619.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, D.L., Ashmore, R.C., and Gordon, M. A. (1981). Effects of beta-adrenergic agents on the murine lymphocyte response to mitogen stimulation. J. Immunopharmacol. 3:205–219.

    Article  PubMed  CAS  Google Scholar 

  • Kasahara, K., Tanaka, S., and Hamashima, Y (1977a). Suppressed immune response to T-cell dependent antigen in chemically sympathectomized mice. Res. Commun. Chem. Pathol. Pharmacol. 18:533–542.

    PubMed  CAS  Google Scholar 

  • Kasahara, K., Tanaka, S., Ito, T., and Hamashima, Y. (1977b). Suppression of the primary immune response by chemical sympathectomy. Res. Common. Chem. Pathol. Pharmacol. 16:687–694.

    CAS  Google Scholar 

  • Kasprowicz, D.J., Kohm, A.P., Berton, M.T., Chruscinski, A.J., Sharpe, A.H., and Sanders, V.M. (2000). Stimulation of the B cell receptor, CD86 (B7-2), and the beta-2-adrenergic receptor intrinsically modulates the level of IgG1 produced per B cell. J. Immunol. 165:680–690.

    PubMed  CAS  Google Scholar 

  • Katamura, K., Shintaku, N., Yamauchi, Y., Fukui, T., Ohshima, Y., Mayumi, M., and Furusho, K. (1995). Prostaglandin E2 at priming of naive CD4+ T cells inhibits acquisition of ability to produce IFN-gamma and IL-2, but not IL-4 and IL-5. J. Immunol. 155:4604–4612.

    PubMed  CAS  Google Scholar 

  • Khamlichi, A.A., Pinaud, E., Decourt, C., Chauveau, C., and Cogne, M. (2000). The 3′ IgH regulatory region: A complex structure in a search for a function. Adv. Immunol. 75:317–345.

    Article  PubMed  CAS  Google Scholar 

  • Kim, U., Qin, X.F., Gong, S., Stevens, S., Luo, Y., Nussenzweig, M., and Roeder, R.G. (1996). The B-cell-specific transcription coactivator OCA-B/OBF-1/Bob-1 is essential for normal production of immunoglobulin isotypes. Nature 383:542–547.

    Article  PubMed  CAS  Google Scholar 

  • Kohm, A.P., and Sanders, V.M. (1999). Suppression of antigen-specific Th2 cell-dependent IgM and IgG1 production following norepinephrine depletion in vivo. J. Immunol. 162:5299–5308.

    PubMed  CAS  Google Scholar 

  • Kohm, A.P., and Sanders, V.M. (2001). Norepinehrine and beta-2-adrenergic receptor stimulation regulate CD4+ T and B lymphocyte function in vitro and in vivo. Pharmacol. Rev. 53:487–525.

    PubMed  CAS  Google Scholar 

  • Kouassi, E., Boukhris, W., Descotes, J., Zukervar, P., Li, Y.S., and Revillard, J.P. (1987). Selective T cell defects induced by dopamine administration in mice. Immunopharmacol. Immunotoxicol. 9:477–488.

    Article  PubMed  CAS  Google Scholar 

  • Krause, D.S., and Deutsch, C. (1991). Cyclic AMP directly inhibits IL-2 receptor expression in human T cells: Expression of both p55 and p75 subunits is affected. J. Immunol. 146:2285–2294.

    PubMed  CAS  Google Scholar 

  • Kruszewska, B., Felten, S.Y., and Moynihan, J.A. (1995). Alterations in cytokine and antibody production following chemical sympathectomy in two strains of mice. J. Immunol. 155:4613–4620.

    PubMed  CAS  Google Scholar 

  • Lacour, M., Arrighi, J., Muller, K.M., Carlberg, C., Saurat, J., and Hauser, C. (1994a). cAMP up-regulates IL-4 and IL-5 production from activated CD4+ T cells while decreasing IL-2 release and NF-AT induction. Int. Immunol. 6:1333–1343.

    Article  PubMed  CAS  Google Scholar 

  • Lacour, M., Arrighi, J.F., Muller, K.M., Carlberg, C., Saurat, J.H., and Hauser, C. (1994b). cAMP up-regulates IL-4 and IL-5 production from activated CD4+ T cells while decreasing IL-2 release and NF-AT induction. Int. Immunol. 6:1333–1343.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y.S., Kouassi, E., and Revillard, J.-P. (1989). Cyclic AMP can enhance mouse B cell activation by regulating progression into late G1/S phase. Eur. J. Immunol. 19:1721–1725.

    Article  PubMed  CAS  Google Scholar 

  • Livnat, S., Felten, S.Y., Carlson, S.L., Bellinger, D.L., and Felten, D.L. (1985). Involvement of peripheral and central catecholamine systems in neural-immune interactions. J. Neuroimmunol. 10:5–30.

    Article  PubMed  CAS  Google Scholar 

  • Madden, K.S., Felten, S.Y., Felten, D.L., Sundaresan, P.R., and Livnat, S. (1989). Sympathetic neural modulation of the immune system. I. Depression of T cell immunity in vivo and in vitro following chemical sympathectomy. Brain Behav. Immun. 3:72–89.

    Article  PubMed  CAS  Google Scholar 

  • Mary, D., Peyron, J.-F., Auberger, P., Aussel, C., and Fehlmann, M. (1989). Modulation of T cell activation by differential regulation of the phosphorylation of two cytosolic proteins. J. Biol. Chem. 264:14498–14502.

    PubMed  CAS  Google Scholar 

  • McPherson, G.A., and Summers, R. J. (1982). Characteristics and localization of 3H-clonidine binding in membranes prepared from guinea pig spleen. Clin. Exp. Pharmacol. Physiol. 9:77–87.

    Article  PubMed  CAS  Google Scholar 

  • Miles, K., Quintans, J., Chelmicka-Schorr, E., and Arnason, B.G.W. (1981). The sympathetic nervous system modulates antibody response to thymus-independent antigens. J. Neuroimmunol. 1:101–105.

    Article  PubMed  CAS  Google Scholar 

  • Mosmann, T.R., Cherwinski, H., Bond, M.W., Giedlin, M.A., and Coffman, R.L. (1986). Two types of murine helper T cell clones. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136:2348–2340.

    PubMed  CAS  Google Scholar 

  • Mosmann, T.R., and Coffman, R.L. (1989). TH1 and TH2 cells: Different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7:145–173.

    Article  PubMed  CAS  Google Scholar 

  • Munoz, E., Zubiaga, A.M., Merrow, M., Sauter, N.P., and Huber, B.T (1990). Cholera toxin discriminates between T helper 1 and 2 cells in T cell receptor-mediated activation: role of cAMP in T cell proliferation. J. Exp. Med. 172:95–103.

    Article  PubMed  CAS  Google Scholar 

  • Muraguchi, A., Miyazaki, K., Kehrl, J.H., and Fauci, A.S. (1984). Inhibition of human B cell activation by diterpine forskolin: interference with B cell growth factor-induced G1 to S transition of the B cell cycle. J. Immunol. 133:1283–1287.

    PubMed  CAS  Google Scholar 

  • Muthusamy, N., Baluyut, A.R., and Subbarao, B. (1991). Differential regulation of surface Ig-and Lyb2-mediated B cell activation by cyclic AMP. I. Evidence for alternative regulation of signaling through two different receptors linked to phosphatidylinositol hydrolysis in murine B cells. J. Immunol. 147:2483–2492.

    PubMed  CAS  Google Scholar 

  • Naito, Y., Endo, H., Arai, K., Coffman, R.L., and Arai, N. (1996). Signal transduction in Th clones: target of differential modulation by PGE2 may reside downstream of the PKC-dependent pathway. Cytokine 8:346–356.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, P. J., Georgiev, O., Lorenz, B., and Schaffner, W. (1996). B lymphocytes are impaired in mice lacking the transcriptional co-activator Bob1/OCA-B/OBF1. Eur. J. Immunol. 26:3214–3218.

    Article  PubMed  CAS  Google Scholar 

  • Novak, T. J., and Rothenberg, E.V. (1990). cAMP inhibits induction of interleukin 2 but not of interleukin 4 in T cells. Proc. Natl. Acad. Sci. U.S.A. 87:9353–9357.

    Article  PubMed  CAS  Google Scholar 

  • Paliogianni, F., and Boumpas, D.T. (1996). Prostaglandin E2 inhibits the nuclear transcription of the human interleukin 2, but not the Il-4, gene in human T cells by targeting transcription factors AP-1 and NF-AT. Cellular Immunology 171:95–101.

    Article  PubMed  CAS  Google Scholar 

  • Parker, C.W., Huber, M.G., and Godt, S.M. (1995). Modulation of IL-4 production in murine spleen cells by prostaglandins. Cell. Immunol. 160:278–285.

    Article  PubMed  CAS  Google Scholar 

  • Pinaud, E., Khamlichi, A.A., Le Morvan, C., Drouet, M., Nelsso, V., Le Bert, M., and Cogne, M. (2001). Localization of the 3′ IgH locus elements that effect long-distance regulation of class switching recombination. Immunity 15:187–199.

    Article  PubMed  CAS  Google Scholar 

  • Pochet, R., and Delespesse, G. (1983). Beta-adrenoceptors display different efficiency on lymphocyte subpopulations. Biochem. Pharmacol. 32:1651–1655.

    Article  PubMed  CAS  Google Scholar 

  • Podojil, J., and Sanders, V. (2005). CD86 and Beta2-Adrenergic Receptor Stimulation Regulate B cell Activity Cooperatively. Trends in Immunology In Press.

    Google Scholar 

  • Podojil, J.R., Kin, N.W., and Sanders, V.M. (2004). CD86 and beta2-adrenergic receptor signaling pathways, respectively, increase Oct-2 and OCA-B Expression and binding to the 3′-IgH enhancer in B cells. J. Biol. Chem 279:23394–23404.

    Article  PubMed  CAS  Google Scholar 

  • Podojil, J.R., and Sanders, V.M. (2003). Selective regulation of mature IgG1 transcription by CD86 and beta2-adrenergic receptor stimulation. J. Immunol. 170:5143–5151.

    PubMed  CAS  Google Scholar 

  • Radojcic, T., Baird, S., Darko, D., Smith, D., and Bulloch, K. (1991). Changes in beta-adrenergic receptor distribution on immunocytes during differentiation: An analysis of T cells and macrophages. J. Neurosci. Res. 30:328–335.

    Article  PubMed  CAS  Google Scholar 

  • Ramer-Quinn, D.S., Baker, R.A., and Sanders, V.M. (1997). Activated Th1 and Th2 cells differentially express the beta-2-adrenergic receptor: A mechanism for selective modulation of Th1 cell cytokine production. J. Immunol. 159:4857–4867.

    PubMed  CAS  Google Scholar 

  • Romagnani, S. (1991). Human TH1 and TH2 subsets: doubt no more. Immunol. Today 12:256–257.

    Article  PubMed  CAS  Google Scholar 

  • Roper, R.L., Conrad, D.H., Brown, D.M., Warner, G.L., and Phipps, R.P. (1990). Prostaglandin E2 promotes IL-4-induced IgE and IgG1 synthesis. J. Immunol. 145:2644–2651.

    PubMed  CAS  Google Scholar 

  • Roper, R.L., Graf, B., and Phipps, R.P. (2002). Prostaglandin E2 and cAMP promote B lymphocyte class switching to IgG1. Immunol. Lett. 84:191–198.

    Article  PubMed  CAS  Google Scholar 

  • Sanders, V.M., and Munson, A.E. (1984a). Beta-adrenoceptor mediation of the enhancing effect of norepinephrine on the murine primary antibody response in vitro. J. Pharmacol. Exp. Ther. 230(1):183–192.

    PubMed  CAS  Google Scholar 

  • Sanders, V.M., and Munson, A.E. (1984b). Kinetics of the enhancing effect produced by norepinephrine and terbutaline on the murine primary antibody response in vitro. J. Pharmacol. Exp. Ther. 231(3):527–531.

    PubMed  CAS  Google Scholar 

  • Sanders, V.M., and Munson, A.E. (1985a). Norepinephrine and the antibody response. Pharmacol. Rev. 37(3):229–248.

    PubMed  CAS  Google Scholar 

  • Sanders, V.M., and Munson, A.E. (1985b). Role of alpha adrenoceptor activation in modulating the murine primary antibody response in vitro. J. Pharmacol. Exp. Ther. 232(2):395–400.

    PubMed  CAS  Google Scholar 

  • Sanders, V.M., Baker, R.A., Ramer-Quinn, D.S., Kasprowicz, D.J., Fuchs, B.A., and Street, N.E. (1997). Differential expression of the beta-2-adrenergic receptor by Th1 and Th2 clones: Implications for cytokine production and B cell help. J. Immunol. 158:4200–4210.

    PubMed  CAS  Google Scholar 

  • Sanders, V.M., Kasprowicz, D.J., Kohm, A.P., and Swanson, M.A. (2001). Neuro-transmitter receptors on lymphocytes and other lymphoid cells. In R. Ader, D. Felten, and N. Cohen (eds.), Psychoneuroimmunology, 3rd ed., Vol. 2. San Diego: Academic Press, pp. 161–196.

    Google Scholar 

  • Schubart, D.B., Rolink, A., Kosco-Vilbois, M.H., Botteri, F., and Matthias, P. (1996). B-cell-specific coactivator OBF-1/OCA-B/Bob1 required forimmune response and germinal centre formation. Nature 383:538–542.

    Article  PubMed  CAS  Google Scholar 

  • Stavnezer-Nordgren, J., and Sirlin, S. (1986). Specificity of immunoglobulin heavy chain switch correlates with activity of germline heavy chain genes prior to switching. EMBO J. 5:95–102.

    PubMed  CAS  Google Scholar 

  • Stein, S.H., and Phipps, R.P. (1991a). Antigen-specific IgG2a production in response to prostaglandin E2, immune complexes, and IFN-gamma. J. Immunol. 147:2500–2506.

    PubMed  CAS  Google Scholar 

  • Stein, S.H., and Phipps, R.P. (1991b). Elevated levels of intracellular cAMP sensitize resting B lymphocytes to immune complex-induced unresponsiveness. Eur. J. Immunol. 21:313–318.

    Article  PubMed  CAS  Google Scholar 

  • Stein, S.H., and Phipps, R.P. (1992). Anti-class II antibodies potentiate IgG2a production by lipopolysaccharide-stimulated B lymphocytes treated with prostaglandin E2 and IFN-gamma. J. Immunol. 148:3943–3949.

    PubMed  CAS  Google Scholar 

  • Stevens, S., Ong, J., Kim, U., Eckhardt, L.A., and Roeder, R.G. (2000). Role of OCA-B in 3’-IgH enhancer function. J. Immunol. 164:5306–5312.

    PubMed  CAS  Google Scholar 

  • Suvas, S., Singh, V., Sahdev, S., Vohra, H., and Agrewala, J.A. (2002). Distinct role of CD80 and CD86 in the regulation of the activation of B cell and B cell lymphoma. J. Biol. Chem. 277:7766–7775.

    Article  PubMed  CAS  Google Scholar 

  • Swain, S.L., Croft, M., Dubey, M., Haynes, L., Rogers, P., Zhang, X., and Bradley, L.M. (1996). From naive to memory T cells. Immunol. Rev. 150:143–167.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, M.A., Lee, W.T., and Sanders, V.M. (2001). IFN-gamma production by Th1 cells generated from naive CD4(+) T cells exposed to norepinephrine. J. Immunol. 166:232–240.

    PubMed  CAS  Google Scholar 

  • Tamir, A., and Isakov, N. (1994). Cyclic AMP inhibits phosphatidylinositol-coupled and-uncoupled mitogenic signals in T lymphocytes. Evidence that cAMP alters PKC-induced transcription regulation of members of the jun and fos family of genes. J. Immunol. 152:3391–3399.

    PubMed  CAS  Google Scholar 

  • Tang, H., and Sharp, P.A. (1999). Transcriptional regulation of the murine 3′ IgH enhancer by OCT-2. Immunity 11:517–526.

    Article  PubMed  CAS  Google Scholar 

  • Titinchi, S., and Clark, B. (1984). Alpha-2-adrenoceptors in human lymphocytes: Direct characterization by [3H]Yohimbine binding. Biochem. Biophys. Res. Commun. 121(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  • Vischer, T.L. (1976). The differential effect of cAMP on lymphocyte stimulation by T-or B-cell mitogens. Immunology 30:735–739.

    PubMed  CAS  Google Scholar 

  • Wacholtz, M.C., Minakuchi, R., and Lipsky, P.E. (1991). Characterization of the 3′,5′-cyclic adenosine monophosphate-mediated regulation of IL2 production by T cells and Jurkat cells. Cell. Immunol. 135:285–298.

    Article  PubMed  CAS  Google Scholar 

  • Watson, J. (1975). The influence of intracellular levels of cyclic nucleotides on cell proliferation and the induction of antibody synthesis. J. Exp. Med. 141:97–111.

    Article  PubMed  CAS  Google Scholar 

  • Westly, H. J., and Kelley, K.W. (1987). Down-regulation of glucocorticoid and beta-adrenergic receptors on lectin-stimulated splenocytes. Proc. Soc. Exp. Biol. Med. 185:211–218.

    PubMed  CAS  Google Scholar 

  • Whisler, R.L., Beiqing, L., Grants, I.S., and Newhouse, Y.G. (1992). Cyclic AMP modulation of human B cell proliferative responses: Role of cAMP-dependent protein kinases in enhancing B cell responses to phorbol diesters and ionomycin. Cell. Immunol. 142:398–415.

    Article  PubMed  CAS  Google Scholar 

  • Wirth, S., Lacour, M., Jaunin, F., and Hauser, C. (1996). Cyclic adenosine monophosphate (cAMP) differentially regulates IL-4 in thymocyte subsets. Thymus 24:101–109.

    PubMed  CAS  Google Scholar 

  • Yoshimura, T., Nagao, T., Nakao, T., Watanabe, S., Usami, E., Kobayashi, J., Yamazaki, F., Tanaka, H., Inagaki, N., and Nagai, H. (1998). Modulation of Th1-and Th2-like cytokine production from mitogen-stimulated human peripheral blood mononuclear cells by phosphodiesterase inhibitors. Gen. Pharmacol. 30:175–180.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sanders, V.M. (2006). Adrenergic Regulation of Adaptive Immunity. In: Welsh, C.J., Meagher, M.W., Sternberg, E.M. (eds) Neural and Neuroendocrine Mechanisms in Host Defense and Autoimmunity. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-48334-4_5

Download citation

Publish with us

Policies and ethics