Skip to main content

Central Auditory Pathways in Anuran Amphibians: The Anatomical Basis of Hearing and Sound Communication

  • Chapter

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 28))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adli DS, Stuesse SL, Cruce WL (1999) Immunohistochemistry and spinal projections of the reticular formation in the northern leopard frog, Rana pipiens. J Comp Neurol 404:387–407.

    CAS  PubMed  Google Scholar 

  • Aitken PG (1981) Autoradiographic demonstration of VIIIth nerve projections in Rana pipiens. Neurosci Lett 24:237–242.

    CAS  PubMed  Google Scholar 

  • Aller MI, Janusonis S, Fite KV, Fernandez-Lopez A (1997) Distribution of the GABAA receptor complex beta 2/3_subunits in the brain of the frog Rana pipiens. Neurosci Lett 225:65–68.

    CAS  PubMed  Google Scholar 

  • Allison JD (1992) Acoustic modulation of neural activity in the preoptic area and ventral hypothalamus of the green treefrog (Hyla cinerea). J Comp Physiol A 171:387–395.

    CAS  PubMed  Google Scholar 

  • Allison JD, Wilczynski W (1991) Thalamic and midbrain auditory projections to the preoptic area and ventral hypothalamus in the green treefrog (Hyla cinerea). Brain Behav Evol 37:322–331.

    Google Scholar 

  • Bibikov NG (2003) Auditory responses in the isthmal region of the frog. Brain Behav Evol 62:169.

    Google Scholar 

  • Bricout-Berthout A, Caston J, Reber A (1984) Influence of stimulation of auditory and somatosensory systems of the activity of vestibular nuclear neurons in the frog. Brain Behav Evol 24:21–34.

    CAS  PubMed  Google Scholar 

  • Bruce LL, Neary TJ (1995) The limbic system of tetrapods: A comparative analysis of cortical and amygdalar populations. Brain Behav Evol 46:224–234.

    CAS  PubMed  Google Scholar 

  • Brüning G, Mayer B (1996) Localization of nitric oxide synthase in the brain of the frog, Xenopus laevis. Brain Res 741:331–343.

    PubMed  Google Scholar 

  • Burmeister SS, Wilczynski W (2000) Social signals influence hormones independently of calling behavior in the treefrog (Hyla cinerea). Horm Behav 38:201–209.

    CAS  PubMed  Google Scholar 

  • Burmeister SS, Wilczynski W (2005) Social signals regulate gonadotropin-releasing hormone neurons in the green treefrog. Brain Behav Evol 65:26–32.

    PubMed  Google Scholar 

  • Buxbaum-Conradi H, Ewert J-P (1999) Responses of single neurons in the toad’s caudal ventral striatum to moving visual stimuli and test of their efferent projection by extracellular antidromic stimulation/recording techniques. Brain Behav Evol 54: 303–356.

    Google Scholar 

  • Cheng MF, Zuo M (1994) Proposed pathways for vocal self-stimulation: Metenkephalinergic projections linking the midbrain vocal nucleus, auditory-responsive thalamic regions, and neurosecretory hypothalamus. J Neurobiol 25:361–379.

    CAS  PubMed  Google Scholar 

  • Dechesne CJ, Oberdorfer MD, Hampson DR, Wheaton KD, Nazarali AJ, Goping G, Wenthold RJ (1990) Distribution of a putative kainic acid receptor in the frog central nervous system determined with monoclonal and polyclonal antibodies: evidence for synaptic and extrasynaptic localization. J Neurosci 10:479–490.

    CAS  PubMed  Google Scholar 

  • Dicke U, Roth G, Matsushima T (1998) Neural substrate for motor control of feeding in amphibians. Acta Anat 163:127–143.

    CAS  PubMed  Google Scholar 

  • Di Meglio M, Morrell JI, Pfaff DW (1987) Localization of steroid-concentrating cells in the central nervous system of the frog Rana esculenta. Gen Comp Endocrinol 67: 149–154.

    PubMed  Google Scholar 

  • Edwards CJ, Kelley DB (2001) Auditory and lateral line inputs to the midbrain of an aquatic anuran; neuroanatomical studies in Xenopus laevis. J Comp Neurol 438:148–162.

    CAS  PubMed  Google Scholar 

  • Endepols H, Walkowiak W (1999) Influence of descending forebrain projections on processing of acoustic signals and audiomotor integration in the anuran midbrain. Eur J Morphol 37:182–184.

    CAS  PubMed  Google Scholar 

  • Endepols H, Walkowiak W (2001) Integration of ascending and descending inputs in the auditory midbrain of anurans. J Comp Physiol A 186:1119–1133.

    CAS  Google Scholar 

  • Endepols H, Feng AS, Gerhardt HC, Schul J, Walkowiak W (2003) Roles of the auditory midbrain and thalamus in selective phonotaxis in female gray treefrogs (Hyla versicolor). Behav Brain Res 145:63–77.

    PubMed  Google Scholar 

  • Endepols H, Roden K, Luksch H, Dicke U, Walkowiak W (2004) Dorsal striatopallidal system in anurans. J Comp Neurol 468:299–310.

    PubMed  Google Scholar 

  • Endepols H, Roden K, Walkowiak W (2005) Hodological characterization of the septum in anuran amphibians: II. Efferent connections. J Comp Neurol 483:437–457.

    PubMed  Google Scholar 

  • Endepols H, Walkowiak W, Luksch H (2000) Chemoarchitecture of the anuran auditory midbrain. Brain Res Rev 33:179–198.

    CAS  PubMed  Google Scholar 

  • Ewert J-P (1997) Neural correlates of key stimulus and releasing mechanisms: a case study and two concepts. Trends Neurosci 20:332–339.

    CAS  PubMed  Google Scholar 

  • Feng AS (1983) Morphology of neurons in the torus semicircularis of the northern leopard frog Rana pipiens pipiens. J Morphol 175:253–269.

    CAS  PubMed  Google Scholar 

  • Feng AS (1986a) Afferent and efferent innervation patterns of the cochlear nucleus (dorsal medullary nucleus) of the leopard frog. Brain Res 367:183–191.

    CAS  PubMed  Google Scholar 

  • Feng AS (1986b) Afferent and efferent innervation patterns of the superior olivary nucleus of the leopard frog. Brain Res 364:167–171.

    CAS  PubMed  Google Scholar 

  • Feng AS, Lin W (1991) Differential innervation patterns of three divisions of the frog auditory midbrain (torus semicricularis). J Comp Neurol 306:613–630.

    CAS  PubMed  Google Scholar 

  • Feng AS, Lin W (1996) Neuronal architecture of the dorsal nucleus (cochlear nucleus) of the frog, Rana pipiens. J Comp Neurol 366:320–334.

    CAS  PubMed  Google Scholar 

  • Fritzsch B, Nikundiwe AM, Will U (1984) Projection patterns of lateral-line afferents in anurans: a comparative HRP study. J Comp Neurol 229:451–469.

    CAS  PubMed  Google Scholar 

  • Fuzessery ZM (1988) Frequency tuning in the anuran central auditory system. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, and Walkowiak W eds The Evolution of the Amphibian Auditory System.New York: Wiley, pp. 253–273.

    Google Scholar 

  • Fuzessery ZM, Feng AS (1981) Frequency representation in the dorsal medullary nucleus of the leopard frog Rana p. pipiens. J Comp Physiol 143:339–347.

    Google Scholar 

  • González A, Smeets WJAJ (1991) Comparative analysis of dopamine and tyrosine hydroxylase immunoreactivites in the brain of two amphibians, the anuran Rana ridibunda and the urodele Pleurodeles waltlii. J Comp Neurol 303:457–477.

    PubMed  Google Scholar 

  • González A, Smeets WJAJ (1993) Noradrenaline in the brain of the South African clawed frog Xenopus laevis: A study with antibodies against noradrenaline and dopamine-?-hydroxylase. J Comp Neurol 331:363–374.

    PubMed  Google Scholar 

  • Gregory KM (1972) Central projections of the eighth nerve in frogs. Brain Behav Evol 5:70–88.

    CAS  PubMed  Google Scholar 

  • Gregory KM (1974) The stato-acoustic nuclear complex and the nucleus cerebelli of the frog. Brain Behav Evol 10:146–156.

    CAS  PubMed  Google Scholar 

  • Grofová I, Corvaja N (1972) Commissural projection from the nuclei of termination of the VIIIth cranial nerve in the toad. Brain Res 42:189–195.

    PubMed  Google Scholar 

  • Hall JC, Bunker MC (1994) Acetylcholinerase staining in the auditory brainstem nuclei of the leopard frog, Rana pipiens. Neurosci Lett 182:222–226.

    CAS  PubMed  Google Scholar 

  • Hall JC, Feng AS (1987) Evidence for parallel processing in the frog’s auditory thalamus. J Comp Neurol 258:407–419.

    CAS  PubMed  Google Scholar 

  • Hoke KL, Burmeister SS, Fernald RD, Rand AS, Ryan MJ, Wilczynski W (2004) Functional mapping of the auditory midbrain during mate call reception. J Neurosci 24: 11264–11272.

    CAS  PubMed  Google Scholar 

  • Inagaki S, Senba E, Shiosaka S, Takagi H, Kawai Y, Takatsuki K, Sakanaka M, Matsuzaki T, Tohyama M (1981) Regional distribution of substance P-like immunoreactivity in the frog brain and spinal cord: immunohistochemical analysis. J Comp Neurol 201:243–254.

    CAS  PubMed  Google Scholar 

  • Kelley DB (1980) Auditory and vocal nuclei in the frog brain concentrate sex hormones. Science 207:553–555.

    CAS  PubMed  Google Scholar 

  • Kelley DB (1981) Locations of androgen-concentrating cells in the brain of Xenopus laevis: autoradiography with 3H-dihydrotestosterone. J Comp Neurol 199:221–231.

    CAS  PubMed  Google Scholar 

  • Kelley DB, Morrell JI, Pfaff W (1975) Autoradiographic localization of hormoneconcentrating cells in the brain of an amphibian, Xenopus laevis. I.Testosterone. J Comp Neurol 164:47–62.

    CAS  PubMed  Google Scholar 

  • Kulik A, Matesz K (1997) Projections from the nucleus isthmi to the visual and auditory centres in the frog, Rana esculenta. J Brain Res 38:299–307.

    CAS  Google Scholar 

  • Kulik A, Matesz K, Székely G (1994) Mesencephalic projections of the cochlear nucleus in the frog, Rana esculenta. Acta Biol Hung 45:323–335.

    CAS  PubMed  Google Scholar 

  • Larsell O (1934) The differentiation of the peripheral and central acoustic apparatus in the frog. J Comp Neurol 60:473–527.

    Google Scholar 

  • Lázár GY, Losonczy A (1999) NADPH-diaphorase-positive neurons and pathways in the brain of the frog Rana esculenta. Anat Embryol (Berl) 199:185–198.

    Google Scholar 

  • Lázár GY, Liposits ZS, Tóth P, Trasti SL, Maderdrut JL, Merchenthaler I (1991) Distribution of galanin-like immunoreactivity in the brain of Rana esculenta and Xenopus laevis. J Comp Neurol 310:45–67.

    PubMed  Google Scholar 

  • Lázár GY, Maderdrut JL, Trasti SL, Liposits ZS, Tóth P, Kozicz T, Merchenthaler I (1993) Distribution of proneuropedtide Y-derived peptides in the brain of Rana esculenta and Xenopus laevis. J Comp Neurol 327:551–571.

    PubMed  Google Scholar 

  • LeDoux JE, Ruggiero DA, Reis DJ (1985) Projections to the subcortical forebrain from anatomically defined regions of the medial geniculate body in the rat. J Comp Neurol 242:182–213.

    CAS  PubMed  Google Scholar 

  • Lewis ER, Leverenz EL, Koyama H (1980) Mapping functionally identified auditory afferents from the peripheral origins to their central terminations. Brain Res 197:223–229.

    CAS  PubMed  Google Scholar 

  • Lowe DA (1986) Organisation of lateral line and auditory areas in the midbrain of Xenopus laevis. J Comp Neurol 245:498–513.

    CAS  PubMed  Google Scholar 

  • Luksch H, Walkowiak W (1998) Morphology and axonal projection patterns of auditory neurons in the midbrain of the painted frog, Discoclossus pictus. Hearing Res 122:1–17.

    CAS  Google Scholar 

  • Maderdrut JL, Lázár GY, Kozicz T, Merchenthaler I (1996) Distribution of neuromedin U-like immunoreactivity in the central nervous system of Rana esculenta. J Comp Neurol 369:438–450.

    CAS  PubMed  Google Scholar 

  • Marín O, González A, Smeets WJAJ (1997) Basal ganglia organization in amphibians: Efferent connections of the striatum and the nucleus accumbens. J Comp Neurol 380: 23–50.

    PubMed  Google Scholar 

  • Matesz C (1979) Central projections of the VIIIth cranial nerve in the frog. Neuroscience 4:2061–2071.

    CAS  PubMed  Google Scholar 

  • Matesz C, Kulik A (1996) Connections of the torus semicircularis and oliva superior in the frog, Rana esculenta. Acta Biol Hung 47:287–301.

    CAS  PubMed  Google Scholar 

  • Megela AL, Capranica RR (1983) A neural and behavioral study of auditory habituation in the bullfrog, Rana catesbeiana. J Comp Physiol A 151:423–434.

    Google Scholar 

  • Merchenthaler I, Lázár G, Maderdrtu JL (1989) Distribution of proenkephalin-derived peptides in the brain of Rana esculantaesculenta. J Comp Neurol 281:23–39.

    CAS  PubMed  Google Scholar 

  • Milán FJ, Puelles L (2000) Patterns of calretinin, calbindin, and tyrosine-hydroxylase expression are consistent with the prosomeric map of the frog diencephalons. J Comp Neurol 419:96–121.

    PubMed  Google Scholar 

  • Morrell JI, Kelley DB, Pfaff DW (1975) Autoradiographic localization of hormoneconcentrating cells in the brain of an amphibian, Xenopus laevis. II. Estradiol. J Comp Neurol 164:63–78.

    CAS  PubMed  Google Scholar 

  • Muñoz A, Muñoz M, González A, ten Donkelaar HJ (1994) The dorsal column-medial lemniscal projection of anuran amphibians. Eur J Morphol 32:283–287.

    PubMed  Google Scholar 

  • Muñoz A, Muñoz M, González A, ten Donkelaar HJ (1995) The anuran dorsal column nucleus: Organization, immunohistochemical characterization and fiber connections in Rana perezi and Xenopus laevis. J Comp Neurol 363:197–220.

    PubMed  Google Scholar 

  • Muñoz A, Muñoz M, González A, ten Donkelaar HJ (1997) Spinal ascending pathways in amphibians: Cells of origin and main targets. J Comp Neurol 378:205–228.

    PubMed  Google Scholar 

  • Muñoz A, Muñoz M, Marin O, Alonso JR, Arévalo R, Porteros A, González A (1996) Topographical distribution of NADPH-diaphorase activity in the central nervous system of the frog, Rana perezi. J Comp Neurol 367:54–69.

    PubMed  Google Scholar 

  • Neary TJ (1984) Anterior thalamic nucleus projections to the dorsal pallium in ranid frogs. Neurosci Lett 51:213–2188.

    CAS  PubMed  Google Scholar 

  • Neary TJ (1988) Forebrain auditory pathways in ranid frogs. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, and Walkowiak W eds The Evolution of the Amphibian Auditory System. New York: Wiley, pp. 233–252.

    Google Scholar 

  • Neary TJ (1995) Afferent projections to the hypothalamus in ranid frogs. Brain Behav Evol 46:1–13.

    CAS  PubMed  Google Scholar 

  • Neary TJ, Northcutt RG (1983) Nuclear organization of the bullfrog diencephalons. J Comp Neurol 213:262–278.

    CAS  PubMed  Google Scholar 

  • Neary TJ, Wilczynski W (1986) Auditory pathways to the hypothalamus in ranid frogs. Neurosci Lett 71:142–146.

    CAS  PubMed  Google Scholar 

  • Nikundiwe AM, Nieuwenhuys R (1983) The cell masses in the brainstem of the South African clawed frog. J Comp Neurol 213:199–219.

    CAS  PubMed  Google Scholar 

  • Northcutt RG (1981) Evolution of the telencephalon in nonmammals. Ann Rev Neurosci 4:301–350.

    CAS  PubMed  Google Scholar 

  • Northcutt RG, Ronan MC (1992) Afferent and efferent connections of the bullfrog medial pallium. Brain Behav Evol 40:1–16.

    CAS  PubMed  Google Scholar 

  • Opdam P, Kemali M, Nieuwenhuys R (1976) Topological analysis of the brainstem of the frogs Rana esculenta and Rana catesbeiana. J Comp Neurol 165:307–332.

    CAS  PubMed  Google Scholar 

  • Panzanelli P, Mulatero B, Lazarus LH, Fasolo A (1991) Neuromedin B-like immunoreactivity in the brain of the green frog (Rana esculenta L.). Eur J Basic Appl Histochem 35:359–370.

    CAS  PubMed  Google Scholar 

  • Patton P, Grobstein P (1998) The effects of telencephalic lesions on the visually mediated prey orienting behavior in the leopard frog (Rana pipiens). II. The effects of limited lesions to the telencephalon. Brain Behav Evol 51:144–161.

    CAS  PubMed  Google Scholar 

  • Petkó M, Kovacs T (1996) Distribution of cholecystokinin-8-like immunoreactivity in the frog brain and spinal cord. Acta Biol Hung 47:355–369.

    PubMed  Google Scholar 

  • Petkó M, Sánta A (1992) Distribution of calcitonin gene-related peptide immunoreactivity in the central nervous system of the frog, Rana esculenta. Cell Tissue Res 269:525–534.

    PubMed  Google Scholar 

  • Pettigrew AG (1981) Brainstem afferents to the torus semicircularis of the Queensland cane toad (Bufo marinus). J Comp Neurol 202:59–68.

    CAS  PubMed  Google Scholar 

  • Potter HD (1965) Mesencephalic auditory regions of the bullfrog. J Neurophysiol 28:1132–1154.

    CAS  PubMed  Google Scholar 

  • Puelles L (2001) Brain segmentation and forebrain development in amniotes. Brain Res Bull 55: 695–710.

    CAS  PubMed  Google Scholar 

  • Puelles L, Milán FJ, Martínez-de-la-Torre M (1996) A segmental map of architectonic subdivisions in the diencephalon of the frog Rana perezi: Acetylcholinesterasehistochemical observations. Brain Behav Evol 47:279–310.

    CAS  PubMed  Google Scholar 

  • Roden K (2002) Bedeutung des Vorderhirns für die audiomotorische Integration bei Froschlurchen (Anura). PhD thesis, University of Cologne, Germany.

    Google Scholar 

  • Roden K, Endepols H, Walkowiak W (2005) Hodological characterization of the septum in anuran amphibians: I. Afferent connections. J Comp Neurol 483:415–436.

    PubMed  Google Scholar 

  • Rose GJ, Wilczynski W (1984) The anuran superficial reticular nucleus: Evidence for homology with nuclei of the lateral lemniscus. Brain Res 304:170–172.

    CAS  PubMed  Google Scholar 

  • Roth G, Grunwald W, Dicke U (2003) Morphology, axonal projection pattern, and responses to optic nerve stimulation of thalamic neurons in the fire-bellied toad Bombina orientalis. J Comp Neurol 461:91–110.

    PubMed  Google Scholar 

  • Röthig P (1927) Beiträge zum Studium des Zentralnervensystems der Wirbeltiere. XI. über die Faserzüge im Mittelhirn, Kleinhirn und der Medulla oblongata der Urodelen und Anuren. Z Mikrosk Anat Forsch 10:381–472.

    Google Scholar 

  • Roy EJ, Wilson MA, Kelley DB (1986) Estrogen-induced progestin receptors in the brain and pituitary of the South African clawed frog Xenopus laevis. Neuroendocrinology 42:51–56.

    CAS  PubMed  Google Scholar 

  • Rubinson K, Skiles MP (1975) Efferent projections of the superior olivary nucleus in the frog, Rana catesbeiana. Brain Behav Evol 12:151–160.

    CAS  PubMed  Google Scholar 

  • Sánchez-Camacho, Marín O, ten Donkelaar HJ, González A (2001) Descending supraspinal pathways in amphibians. I.A dextran amine tracing study of their cells of origin. J Comp Neurol 434:186–208.

    PubMed  Google Scholar 

  • Simmons AM, Chapman JA (2002) Metamorphic changes in GABA immunoreactivity in the brainstem of the bullfrog, Rana catesbeiana. Brain Behav Evol 60:189–206.

    PubMed  Google Scholar 

  • Strake J, Luksch H, Walkowiak W (1994) Audio-motor interface in anurans. Eur J Morphol 32: 122–126.

    CAS  PubMed  Google Scholar 

  • ten Donkelaar HJ (1998) Anurans. Octavolateral area and connections. In: Nieuwenhuys R, ten Donkelaar HJ, Nicholson C eds The Central Nervous System of Vertebrates, Vol 2. Berlin, Heidelberg: Springer-Verlag, pp. 1216–1228.

    Google Scholar 

  • Tostivint H, Lihrmann I, Bucharles C, Vieau D, Coulouarn Y, Fournier A, Conlon JM, Vaudry H (1996) Occurrence of two somatostatin variants in the frog brain: Characterization of the cDNAs, distribution of the mRNAs, and receptor-binding affinities of the peptides. Proc Natl Acad Sci USA 93:12605–12610.

    CAS  PubMed  Google Scholar 

  • Tuinhof R, Gonzalez A, Smeets WJ, Roubos EW (1994) Neuropeptide Y in the developing and adult brain of the South African clawed toad Xenopus laevis. J Chem Neuroanat 7:271–283.

    CAS  PubMed  Google Scholar 

  • Walkowiak W, Luksch H (1994) Sensory motor interfacing in acoustic behavior of anurans. Am Zool 34:685–695.

    Google Scholar 

  • Walkowiak W, Berlinger M, Schul J, Gerhardt HC (1999) Significance of forebrain structures in acoustically guided behavior in anurans. Eur J Morphol 37:177–181.

    CAS  PubMed  Google Scholar 

  • Westhoff G, Roth G (2002) Morphology and projection pattern of medial and dorsal pallial neurons in the frog Discoglossus pictus and the salamander Plethodon jordani. J Comp Neurol 445:97–121.

    PubMed  Google Scholar 

  • Westhoff G, Roth G, Straka H (2004) Topographic representation of vestibular and somatosensory signals in the anuran thalamus. Neuroscience 124:669–683.

    CAS  PubMed  Google Scholar 

  • Wilczynski W (1981) Afferents to the midbrain auditory center in the bullfrog, Rana catesbeiana. J Comp Neurol 198:421–433.

    CAS  PubMed  Google Scholar 

  • Wilczynski W (1988) Brainstem auditory pathways in anuran amphibians. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, and Walkowiak W eds The Evolution of the Amphibian Auditory System. New York: Wiley, pp. 209–232.

    Google Scholar 

  • Wilczynski W, Capranica RR (1984) The auditory system of anuran amphibians. Prog Neurobiol 22:1–38.

    CAS  PubMed  Google Scholar 

  • Wilczynski W, Northcutt RG (1983a) Connections of the bullfrog striatum: Afferent organization. J Comp Neurol 214:321–332.

    CAS  PubMed  Google Scholar 

  • Wilczynski W, Northcutt RG (1983b) Connections of the bullfrog striatum: Efferent projections. J Comp Neurol 214:333–343.

    CAS  PubMed  Google Scholar 

  • Will U (1988) Organization and projections of the area octavolateralis in amphibians. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, and Walkowiak W eds The Evolution of the Amphibian Auditory System. New York: Wiley, pp. 185–208.

    Google Scholar 

  • Will U, Fritzsch B (1988) The eighth nerve of amphibians: Peripheral and central distribution. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, and Walkowiak W eds The Evolution of the Amphibian Auditory System. New York: Wiley, pp. 159–184.

    Google Scholar 

  • Will U, Luhede G, Görner P (1985a) The area octavo-lateralis in Xenopus laevis I. The primary afferent projections. Cell Tiss Res 239:147–161.

    Google Scholar 

  • Will U, Luhede G, Görner P (1985b) The area octavo-lateralis in Xenopus laevis II. Second order projections and cytoarchitecture. Cell Tiss Res 239:163–175.

    Google Scholar 

  • Yon L, Feuilloley M, Chartrel N, Arimura A, Colon JM, Fournier A, Vaudry H (1992) Immunocytochemical distribution and biological activity of pituitary adenylate cyclaseactivating polypeptide (PACAP) in the central nervous system of the frog Rana ridibunda. J Comp Neurol 342:485–499.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wilczynski, W., Endepols, H. (2007). Central Auditory Pathways in Anuran Amphibians: The Anatomical Basis of Hearing and Sound Communication. In: Narins, P.M., Feng, A.S., Fay, R.R., Popper, A.N. (eds) Hearing and Sound Communication in Amphibians. Springer Handbook of Auditory Research, vol 28. Springer, New York, NY . https://doi.org/10.1007/978-0-387-47796-1_8

Download citation

Publish with us

Policies and ethics