Skip to main content

Anatomy, Physiology, and Function of Auditory End-Organs in the Frog Inner Ear

  • Chapter
Hearing and Sound Communication in Amphibians

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdala C (2000) Distortion product otoacoustic emission (2f1-f2) amplitude growth in human adults and neonates. J Acoust Soc Am 107:446–456.

    CAS  PubMed  Google Scholar 

  • Ashmore JF, Geleoc GS, Harbott L (2000) Molecular mechanisms of sound amplification in the mammalian cochlea. Proc Natl Acad Sci USA 97:11759–11764.

    CAS  PubMed  Google Scholar 

  • Baird RA, Burton MD, Fashena DS, Naeger RA (2000) Hair cell recovery in mitotically blocked cultures of the bullfrog saccule. Proc Natl Acad Sci USA 97:11722–11729.

    CAS  PubMed  Google Scholar 

  • Baird RA, Lewis ER((1986) Correspondences between afferent innervation patterns and response dynamics in the bullfrog utricle and lagena. Brain Res 369:48–64.

    CAS  PubMed  Google Scholar 

  • Baker RJ, Wilson JP, Whitehead ML (1989) Otoacoustic evidence for nonlinear behavior in frog hearing: suppression but no distortion products. In: Wilson J, Kemp DT eds. Cochlear Mechanisms: Structure, Function and Models. Plenum, New York, pp. 349–356.

    Google Scholar 

  • Benedix JH, Jr., Pedemonte M, Velluti R, Narins PM (1994) Temperature dependence of two-tone rate suppression in the northern leopard frog, Rana pipiens pipiens. J Acoust Soc Am 96:2738–2745.

    PubMed  Google Scholar 

  • Bleeck S, Langner G (2001) Functional significance of latencies. In: Greenberg S, Slaney M eds. Computational Models of Auditory Function (NATO Science Series). IOS Press, Burke, VA, pp. 205–220.

    Google Scholar 

  • Bozovic D, Hudspeth AJ (2003) Hair-bundle movements elicited by transepithelial electrical stimulation of hair cells in the sacculus of the bullfrog. Proc Natl Acad Sci USA 100:958–963.

    CAS  PubMed  Google Scholar 

  • Capranica RR (1978) Auditory processing in anurans. Fed Proc 37:2324–2328.

    CAS  PubMed  Google Scholar 

  • Capranica RR, Moffat AJM (1975) Selectivity of the peripheral auditory system of spadefoot toads (Scaphiopus couchi) for sounds of biological significance. J Comp Physiol 100.

    Google Scholar 

  • Capranica RR, Moffat AJM (1980) Nonlinear properties of the peripheral auditory system of anurans. In: Popper AN, Fay RR eds. Comparative Studies of Hearing in Vertebrates. Springer, New York, pp. 139–165.

    Google Scholar 

  • Capranica RR, Moffat AJM (1983) Neurobehavioral correlates of sound communication in anurans. In: Ewert J, Capranica R, Ingle D eds. Advances in Vertebrate Neuroethology. Plenum, New York, pp. 701–730.

    Google Scholar 

  • Carey MB, Zelick R (1993) The effect of sound level, temperature and dehydration on the brainstem auditory evoked potential in anuran amphibians. Hear Res 70:216–228.

    CAS  PubMed  Google Scholar 

  • Chan DK, Hudspeth AJ (2005) Ca2??current-driven nonlinear amplification by the mammalian cochlea in vitro. Nat Neurosci 8:149–155.

    CAS  PubMed  Google Scholar 

  • Chang JS, Popper AN, Saidel WM (1992) Heterogeneity of sensory hair cells in a fish ear. J Comp Neurol 324:621–640.

    CAS  PubMed  Google Scholar 

  • Christensen-Dalsgaard J, Jørgensen MB (1996) One-tone suppression in the frog auditory nerve. J Acoust Soc Am 100:451–457.

    CAS  PubMed  Google Scholar 

  • Christensen-Dalsgaard J, Jørgensen MB, Kanneworff M (1998) Basic response characteristics of auditory nerve fibers in the grassfrog (Rana temporaria). Hear Res 119:155–163.

    Google Scholar 

  • Corwin JT, Warchol ME (1991) Auditory hair cells: Structure, function, development, and regeneration. Ann Rev Neurosci 14:301–333.

    CAS  PubMed  Google Scholar 

  • Crawford AC, Fettiplace R (1985) The mechanical properties of ciliary bundles of turtle cochlear hair cells. J Physiol 364:359–379.

    CAS  PubMed  Google Scholar 

  • Dallos P (1992) The active cochlea. J Neurosci 12:4575–4585.

    CAS  PubMed  Google Scholar 

  • Davis H (1983) An active process in cochlear mechanics. Hear Res 9:79–90.

    CAS  PubMed  Google Scholar 

  • De Boer E (1967) Correlation studies applied to the frequency resolution of the cochlea. J Aud Res 7:209–217.

    Google Scholar 

  • Deutsch S (1969) The maximization of nerve conduction velocity. IEEE Trans Syst Sci Cybern 5:86–91.

    Google Scholar 

  • Dunia R, Narins PM (1989) Temporal resolution in frog auditory-nerve fibers. J Acoust Soc Am 85:1630–1638.

    CAS  PubMed  Google Scholar 

  • Eggermont JJ (1993) Wiener and Volterra analyses applied to the auditory system. Hear Res 66:177–201.

    CAS  PubMed  Google Scholar 

  • Ehret G, Moffat AJM, Capranica RR (1983) Two-tone suppression in auditory nerve fibers of the green treefrog (Hyla cinerea). J Acoust Soc Am 73:2093–2095.

    CAS  PubMed  Google Scholar 

  • Emmerich E, Richter F, Reinhold U, Linss V, Linss W (2000) Effects of industrial noise exposure on distortion product otoacoustic emissions (DPOAEs) and hair cell loss of the cochlea-long term experiments in awake guinea pigs. Hear Res 148:9–17.

    CAS  PubMed  Google Scholar 

  • Faulstich M, Kössl M (2000) Evidence for multiple DPOAE components based upon group delay of the 2f(1)-f(2) distortion in the gerbil. Hear Res 140:99–110.

    CAS  PubMed  Google Scholar 

  • Feng AS, Narins PM, Capranica RR (1975) Three populations of primary auditory fibers in the bullfrog (Rana catesbeiana): Their peripheral origins and frequency sensitivities. J Comp Physiol 100:221–229.

    Google Scholar 

  • Feng AS, Shofner WP (1981) Peripheral basis of sound localization in anurans. Acoustic properties of the frog’s ear. Hear Res 5:201–216.

    CAS  PubMed  Google Scholar 

  • Fettiplace R, Ricci AJ, Hackney CM (2001) Clues to the cochlear amplifier from the turtle ear. Trends Neurosci 24:169–175.

    CAS  PubMed  Google Scholar 

  • Fitzgerald JV, Burkitt AN, Clark GM, Paolini AG (2001) Delay analysis in the auditory brainstem of the rat: Comparison with click latency. Hear Res 159:85–100.

    CAS  PubMed  Google Scholar 

  • Flock A (1965) Transducing mechanisms in the lateral line canal organ receptors. Cold Spring Harb Symp Quant Biol 30:133–145.

    CAS  PubMed  Google Scholar 

  • Flock A, Flock B (1966) Ultrastructure of the amphibian papilla in the bullfrog. J Acoust Soc Am 40:1262.

    Google Scholar 

  • Frishkopf LS, Flock A (1974) Ultrastructure of the basilar papilla, an auditory organ in the bullfrog. Acta Otolaryngol 77:176–184.

    CAS  PubMed  Google Scholar 

  • Geisler CD, Van Bergeijk W, Frishkopf LS (1964)) The inner ear of the bullfrog. J Morphol 114:43–57.

    CAS  PubMed  Google Scholar 

  • Gleich O, Wilson S (1993) The diameters of guinea pig auditory nerve fibres: Distribution and correlation with spontaneous rate. Hear Res 71:69–79.

    CAS  PubMed  Google Scholar 

  • Gleisner L, Flock A, Wersall J (1973) The ultrastructure of the afferent synapse on hair cells in the frog labyrinth. Acta Otolaryngol 76:199–207.

    CAS  PubMed  Google Scholar 

  • Gold T (1948) Hearing. II. The physical basis of the action of the cochlea. Proc Roy Soc London B, Biological Sciences 135:492–498.

    Google Scholar 

  • Hau LWT, Simmons DD, Narins PM (2004) Frequency-dependence of auditory-nerve latency in the northern leopard frog, Rana pipiens pipiens. Assoc for Research in Otolaryngology Abstract 380.

    Google Scholar 

  • Hetherington TE, Jaslow AP, Lombard RE (1986) Comparative morphology of the amphibian opercularis system: I. General design features and functional interpretation. J Morphol 190:43–61.

    CAS  PubMed  Google Scholar 

  • Hillery CM, Narins PM (1984) Neurophysiological evidence for a traveling wave in the amphibian inner ear. Science 225:1037–1039.

    CAS  PubMed  Google Scholar 

  • Hillery CM, Narins PM (1987) Frequency and time domain comparison of low-frequency auditory fiber responses in two anuran amphibians. Hear Res 25:233–248.

    CAS  PubMed  Google Scholar 

  • Hödl W, Amezquita A, Narins PM (2004) The role of call frequency and the auditory papillae in phonotactic behavior in male dart-poison frogs Epipedobates femoralis (Dendrobatidae). J Comp Physiol A 190:823–829.

    Google Scholar 

  • Hudspeth AJ (1997) How hearing happens. Neuron 19:947–950.

    CAS  PubMed  Google Scholar 

  • Hudspeth AJ, Corey DP (1977) Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 74:2407–2411.

    CAS  PubMed  Google Scholar 

  • Hudspeth AJ, Choe Y, Mehta AD, Martin P (2000) Putting ion channels to work: mechanoelectrical transduction, adaptation, and amplification by hair cells. Proc Natl Acad Sci USA 97:11765–11772.

    CAS  PubMed  Google Scholar 

  • Jia S, He DZ (2005) Motility-associated hair-bundle motion in mammalian outer hair cells. Nat Neurosci 8:1028–1034.

    CAS  PubMed  Google Scholar 

  • Kalluri R, Shera CA (2001) Distortion-product source unmixing: A test of the two-mechanism model for DPOAE generation. J Acoust Soc Am 109:622–637.

    CAS  PubMed  Google Scholar 

  • Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64:1386–1391.

    CAS  PubMed  Google Scholar 

  • Kiang NYS, Watanabe T, Thomas L, Clark L (1965) Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve. MIT Press, Cambridge, MA.

    Google Scholar 

  • Knight RD, Kemp DT (2000) Indications of different distortion product otoacoustic emission mechanisms from a detailed f1, f2_area study. J Acoust Soc Am 107:457–473.

    CAS  PubMed  Google Scholar 

  • Knight RD, Kemp DT (2001) Wave and place fixed DPOAE maps of the human ear. J Acoust Soc Am 109:1513–1525.

    CAS  PubMed  Google Scholar 

  • Köppl C (1995) Otoacoustic emissions as an indicator for active cochlear mechanics: a primitive property of vertebrate auditory organs. In: Manley GA, Klump GM, Köppl C, Fastl H, Oeckinghaus H eds., Advances in Hearing Research, World Scientific, Singapore, pp. 207–216.

    Google Scholar 

  • Köppl C, Authier S (1995) Quantitative anatomical basis for a model of micromechanical frequency tuning in the Tokay gecko, Gekko gecko. Hear Res 82:14–25.

    PubMed  Google Scholar 

  • Kössl M, Boyan G (1998) Acoustic distortion products from the ear of a grasshopper. J Acoust Soc Am 104:326–335.

    Google Scholar 

  • Kössl M, Vater M (1996) Further studies on the mechanics of the cochlear partition in the mustached bat. II. A second cochlear frequency map derived from acoustic distortion products. Hear Res 94:78–86.

    PubMed  Google Scholar 

  • Kummer P, Janssen T, Hulin P, Arnold W (2000) Optimal L(1)-L(2) primary tone level separation remains independent of test frequency in humans. Hear Res 146:47–56.

    CAS  PubMed  Google Scholar 

  • Lenzi D, Runyeon JW, Crum J, Ellisman MH, Roberts WM (1999) Synaptic vesicle populations in saccular hair cells reconstructed by electron tomography. J Neurosci 19:119–132.

    CAS  PubMed  Google Scholar 

  • Lewis ER (1976) Surface morphology of the bullfrog amphibian papilla. Brain Behav Evol 13:196–215.

    CAS  PubMed  Google Scholar 

  • Lewis ER (1978) Comparative studies of the anuran auditory papillae. Scan Electron Microsc 11:633–642.

    Google Scholar 

  • Lewis ER (1981) Suggested evolution of tonotopic organization in the frog amphibian papilla. Neurosci Lett 21:131–136.

    CAS  PubMed  Google Scholar 

  • Lewis ER (1984) On the frog amphibian papilla. Scan Electron Microsc Pt 4:1899–1913.

    Google Scholar 

  • Lewis ER (1988) Tuning in the bullfrog ear. Biophys J 53:441–447.

    CAS  PubMed  Google Scholar 

  • Lewis ER, Leverenz EL (1983) Morphological basis for tonotopy in the anuran amphibian papilla. Scan Electron Microsc Pt 1:189–200.

    Google Scholar 

  • Lewis ER, Li CW (1975) Hair cell types and distributions in the otolithic and auditory organs of the bullfrog. Brain Res 83:35–50.

    Google Scholar 

  • Lewis ER, Lombard R (1988) The amphibian inner ear. In: Fritzsch B, Ryan M, Wilcynski W, Hetherington T, Walkowiak W eds. The Evolution of the Amphibian Auditory System. Wiley Interscience, New York, pp. 93–124.

    Google Scholar 

  • Lewis ER, Narins PM (1999) The acoustic periphery of amphibians: Anatomy and physiology. In: Fay R, Popper Aeds. Comparative Hearing: Fish and Amphibians. Springer, New York, pp. 101–154.

    Google Scholar 

  • Lewis ER, van Dijk P (2004) New variation on the derivation of spectro-temporal receptive fields for primary auditory afferent axons. Hear Res 189:120–136.

    PubMed  Google Scholar 

  • Lewis ER, Baird RA, Leverenz EL, Koyama H (1982a) Inner ear: Dye injection reveals peripheral origins of specific sensitivities. Science 215:1641–1643.

    CAS  PubMed  Google Scholar 

  • Lewis ER, Hecht EI, Narins PM (1992) Diversity of form in the amphibian papilla of Puerto Rican frogs. J Comp Physiol A 171:421–435.

    CAS  PubMed  Google Scholar 

  • Lewis ER, Henry KR, Yamada WM (2002) Tuning and timing of excitation and inhibition in primary auditory nerve fibers. Hear Res 171:13–31.

    PubMed  Google Scholar 

  • Lewis ER, Leverenz EL, Bialek WS (1985) The Vertebrate Inner Ear. CRC, Boca Raton, FL.

    Google Scholar 

  • Lewis ER, Leverenz EL, Koyama H (1982b) The tonotopic organization of the bullfrog amphibian papilla, an auditory organ lacking a basilar membrane. J Comp Physiol 145:437–445.

    Google Scholar 

  • Liberman MC (1980) Morphological differences among radial afferent fibers in the cat cochlea: an electron-microscopic study of serial sections. Hear Res 3:45–63.

    CAS  PubMed  Google Scholar 

  • Liberman MC, Simmons DD (1985) Applications of neuronal labeling techniques to the study of the peripheral auditory system. J Acoust Soc Am 78:312–319.

    CAS  PubMed  Google Scholar 

  • Liberman MC, Dodds LW, Pierce S (1990) Afferent and efferent innervation of the cat cochlea: Quantitative analysis with light and electron microscopy. J Comp Neurol 301:443–460.

    CAS  PubMed  Google Scholar 

  • Liberman MC, Gao J, He DZ, Wu X, Jia S, Zuo J (2002) Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419:300–304.

    CAS  PubMed  Google Scholar 

  • Liff HJ, Goldstein MH, Jr. (1970) Peripheral inhibition in auditory fibers in the frog. J Acoust Soc Am 47:1538–1547.

    CAS  PubMed  Google Scholar 

  • Lnenicka GA, Atwood HL, Marin L (1986) Morphological transformation of synaptic terminals of a phasic motoneuron by long-term tonic stimulation. J Neurosci 6:2252–2258.

    CAS  PubMed  Google Scholar 

  • Long GR, van Dijk P, Wit HP (1996) Temperature dependence of spontaneous otoacoustic emissions in the edible frog (Rana esculenta). Hear Res 98:22–28.

    CAS  PubMed  Google Scholar 

  • Lonsbury-Martin BL, McCoy MJ, Whitehead ML, Martin GK (1993) Clinical testing of distortion-product otoacoustic emissions. Ear Hear 14:11–22.

    CAS  PubMed  Google Scholar 

  • Maison S, Micheyl C, Collet L (1997) Medial olivocochlear efferent system in humans studied with amplitude-modulated tones. J Neurophysiol 77:1759–1768.

    CAS  PubMed  Google Scholar 

  • Manley GA (2001) Evidence for an active process and a cochlear amplifier in nonmammals. J Neurophysiol 86:541–549.

    CAS  PubMed  Google Scholar 

  • Manley GA, Kirk DL, Koppl C, Yates GK (2001) In vivo evidence for a cochlear ampli-fier in the hair-cell bundle of lizards. Proc Natl Acad Sci USA 98:2826–2831.

    CAS  PubMed  Google Scholar 

  • Mason MJ, Lin CC, Narins PM (2003) Sex differences in the middle ear of the bullfrog (Rana catesbeiana). Brain Behav Evol 61:91–101.

    CAS  PubMed  Google Scholar 

  • Meenderink SWF, van Dijk P (2004) Level dependence of distortion product otoacoustic emissions in the leopard frog, Rana pipiens pipiens. Hear Res 192:107–118.

    PubMed  Google Scholar 

  • Meenderink SWF, van Dijk P (2005a) Characteristics of distortion product otoacoustic emissions in the frog from L1, L2_maps. J Acoust Soc Am 118:279–286.

    PubMed  Google Scholar 

  • Meenderink SWF, van Dijk P (2005b) Temperature dependence of distortion product otoacoustic emissions in the frog. in preparation.

    Google Scholar 

  • Meenderink SWF, Narins PM, van Dijk P (2005a) Detailed f1, f2_area study of distortion product otoacoustic emissions in the frog. J Assoc Res Otolaryngol 6:37–47.

    PubMed  Google Scholar 

  • Meenderink SWF, van Dijk P, Narins PM (2005b) Comparison between distortion product otoacoustic emissions and nerve fiber responses from the basilar papilla of the frog. J Acoust Soc Am 117:3165–3173.

    PubMed  Google Scholar 

  • Mills DM, Rubel EW (1994) Variation of distortion product otoacoustic emissions with furosemide injection. Hear Res 77:183–199.

    CAS  PubMed  Google Scholar 

  • Narins PM (1983) Synchronous vocal response mediated by the amphibian papilla in a neotropical treefrog: Behavioral evidence. J Exp Biol 105:95–105.

    Google Scholar 

  • Narins PM, Capranica RR (1976) Sexual differences in the auditory system of the treefrog, Eleutherodactylus coqui. Science 192:378–380.

    CAS  PubMed  Google Scholar 

  • Nobili R, Mammano F, Ashmore J (1998) How well do we understand the cochlea? Trends Neurosci 21:159–167.

    CAS  PubMed  Google Scholar 

  • Owens JJ, McCoy MJ, Lonsbury-Martin BL, Martin GK (1992) Influence of otitis media on evoked otoacoustic emission in children. Seminars in Hearing 13:53–65.

    Google Scholar 

  • Owens JJ, McCoy MJ, Lonsbury-Martin BL, Martin GK (1993) Otoacoustic emissions in children with normal ears, middle ear dysfunction, and ventilating tubes. Am J Otol 14:34–40.

    CAS  PubMed  Google Scholar 

  • Palmer AR, Wilson JP (1982) Spontaneous and evoked acoustic emissions in the frog Rana esculenta. J Physiol 324:66.

    Google Scholar 

  • Pitchford S, Ashmore JF (1987) An electrical resonance in hair cells of the amphibian papilla of the frog Rana temporaria. Hear Res 27:75–83.

    CAS  PubMed  Google Scholar 

  • Probst R, Lonsbury-Martin BL, Martin GK (1991) A review of otoacoustic emissions. J Acoust Soc Am 89:2027–2067.

    CAS  PubMed  Google Scholar 

  • Purgue AP, Narins PM (2000a) Mechanics of the inner ear of the bullfrog (Rana catesbeiana): The contact membranes and the periotic canal. J Comp Physiol A 186:481–488.

    CAS  PubMed  Google Scholar 

  • Purgue AP, Narins PM (2000b) A model for energy flow in the inner ear of the bullfrog (Rana catesbeiana). J Comp Physiol A 186:489–495.

    CAS  PubMed  Google Scholar 

  • Robbins RG, Bauknight RS, Honrubia V (1967) Anatomical distribution of efferent fibers in the 8th cranial nerve of the bullfrog (Rana catesbeiana). Acta Otolaryngol 64:436–448.

    CAS  PubMed  Google Scholar 

  • Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81: 1305–1352.

    CAS  PubMed  Google Scholar 

  • Ronken DA (1990) Basic properties of auditory-nerve responses from a “simple” ear: The basilar papilla of the frog. Hear Res 47:63–82.

    CAS  PubMed  Google Scholar 

  • Ronken DA (1991) Spike discharge properties that are related to the characteristic frequency of single units in the frog auditory nerve. J Acoust Soc Am 90:2428–2440.

    CAS  PubMed  Google Scholar 

  • Ronken DA, Bosch WR, Molnar CE (1993) Effects of spike discharge history on discharge probability and latency in frog basilar papilla units. Hear Res 69:55–75.

    CAS  PubMed  Google Scholar 

  • Rose GJ, Capranica RR (1985) Sensitivity to amplitude modulated sounds in the anuran auditory nervous system. J Neurophysiol 53:446–465.

    CAS  PubMed  Google Scholar 

  • Rosowski JJ, Peake WT, White JR (1984) Cochlear nonlinearities inferred from two-tone distortion products in the ear canal of the alligator lizard. Hear Res 13:141–158.

    CAS  PubMed  Google Scholar 

  • Rushton WA (1951) A theory of the effects of fibre size in medullated nerve. J Physiol 115:101–122.

    CAS  PubMed  Google Scholar 

  • Santos-Sacchi J (1991) Reversible inhibition of voltage-dependent outer hair cell motility and capacitance. J Neurosci 11:3096–3110.

    CAS  PubMed  Google Scholar 

  • Schetzen M (1989) The Volterra and Weiner Theories of Nonlinear Systems. Krieger, Malabar, FL.

    Google Scholar 

  • Schneider S, Prijs VF, Schoonhoven R (2003) Amplitude and phase of distortion product otoacoustic emissions in the guinea pig in an (f1,f2) area study. J Acoust Soc Am 113:3285–3296.

    PubMed  Google Scholar 

  • Shera CA, Guinan JJ, Jr. (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: A taxonomy for mammalian OAEs. J Acoust Soc Am 105: 782–798.

    CAS  PubMed  Google Scholar 

  • Shofner WP, Feng AS (1983) A quantitative light microscopic study of the bullfrog amphibian papilla tectorium: Correlation with the tonotopic organization. Hear Res 11:103–116.

    CAS  PubMed  Google Scholar 

  • Shofner WP, Feng AS (1984) Quantitative light and scanning electron microscopic study of the developing auditory organs in the bullfrog: Implications on their functional characteristics. J Comp Neurol 224:141–154.

    CAS  PubMed  Google Scholar 

  • Simmons AM (1988) Masking patterns in the bullfrog (Rana catesbeiana). I: Behavioral effects. J Acoust Soc Am 83:1087–1092.

    CAS  PubMed  Google Scholar 

  • Simmons AM, Reese G, Ferragamo M (1993) Periodicity extraction in the anuran auditory nerve. II: Phase and temporal fine structure. J Acoust Soc Am 93:3374–3389.

    CAS  PubMed  Google Scholar 

  • Simmons DD, Narins PM (1995) Conduction velocity, fiber diameter and response latency in auditory nerve fivers of Rana pipiens pipiens: Toward temporal separation of coincidence? Proceedings of the 4th International Congress of Neuroethology. 347.

    Google Scholar 

  • Simmons DD, Bertolotto C, Leong M (1994a) Ultrastructural reconstruction of auditory hair cells and their synapses in low and high frequency regions of the frog inner ear. Proc Int’l Cong Elctr Micrs 13:629–630.

    Google Scholar 

  • Simmons DD, Bertolotto C, Narins PM (1994b) Morphological gradients in sensory hair cells of the amphibian papilla of the frog, Rana pipiens pipiens. Hear Res 80:71–78.

    CAS  PubMed  Google Scholar 

  • Simmons DD, Bertolotto C, Leong M (1995) Synaptic ultrastructure within the amphibian papilla of Rana pipiens pipiens: rostrocaudal differences. Auditory Neurosci 1:183–193.

    Google Scholar 

  • Simmons DD, Bertolotto C, Narins PM (1992) Innervation of the amphibian and basilar papillae in the leopard frog: Reconstructions of single labeled fibers. J Comp Neurol 322:191–200.

    CAS  PubMed  Google Scholar 

  • Simmons DD, Burton MD, Hooper RN, Baird RA (2004) Hair cell damage and recovery from high-level noise exposures in the amphibian papilla of the bullfrog. Association for Research in Otolaryngology Abstract #365.

    Google Scholar 

  • Smith CA, Sjostrand FS (1961) Structure of the nerve endings on the external hair cells of the guinea pig cochlea as studied by serial section. J Ultrastruc Res 5:184–192.

    Google Scholar 

  • Smith RS, Koles ZJ (1970) Myelinated nerve fibers: Computed effect of myelin thickness on conduction velocity. Am J Physiol 219:1256–1258.

    CAS  PubMed  Google Scholar 

  • Smotherman MS, Narins PM (1999a) The electrical properties of auditory hair cells in the frog amphibian papilla. J Neurosci 19:5275–5292.

    CAS  PubMed  Google Scholar 

  • Smotherman MS, Narins PM (1999b) Potassium currents in auditory hair cells of the frog basilar papilla. Hear Res 132:117–130.

    CAS  PubMed  Google Scholar 

  • Smotherman MS, Narins PM (2000) Hair cells, hearing and hopping: A field guide to hair cell physiology in the frog. J Exp Biol 203:2237–2246.

    CAS  PubMed  Google Scholar 

  • Sobkowicz HM, Rose JE, Scott GL, Levenick CV (1986) Distribution of synaptic ribbons in the developing organ of Corti. J Neurocytol 15:693–714.

    CAS  PubMed  Google Scholar 

  • Stiebler IB, Narins PM (1990) Temperature-dependence of auditory nerve response properties in the frog. Hear Res 46:63–81.

    CAS  PubMed  Google Scholar 

  • Stover L, Gorga MP, Neely ST, Montoya D (1996) Toward optimizing the clinical utility of distortion product otoacoustic emission measurements. J Acoust Soc Am 100: 956–967.

    CAS  PubMed  Google Scholar 

  • Sugihara I, Furukawa T (1989) Morphological and functional aspects of two different types of hair cells in the goldfish sacculus. J Neurophysiol 62:1330–1343.

    CAS  PubMed  Google Scholar 

  • van Dijk P (1995) Polynomial correlation used to estimate the degree of nonlinearity of the frog inner ear system. J Acoust Soc Am 97:3414.

    Google Scholar 

  • van Dijk P, Manley GA (2001) Distortion product otoacoustic emissions in the tree frog Hyla cinerea. Hear Res 153:14–22.

    PubMed  Google Scholar 

  • van Dijk P, Wit HP (1987) Temperature dependence of frog spontaneous otoacoustic emissions. J Acoust Soc Am 82:2147–2150.

    PubMed  Google Scholar 

  • van Dijk P, Wit HP (1990) Synchronization of spontaneous otoacoustic emissions to a 2f1-f2_distortion product. J Acoust Soc Am 88:850–856.

    PubMed  Google Scholar 

  • van Dijk P, Wit HP, Segenhout JM (1989) Spontaneous otoacoustic emissions in the European edible frog (Rana esculenta): Spectral details and temperature dependence. Hear Res 42:273–282.

    PubMed  Google Scholar 

  • van Dijk P, Lewis ER, Wit HP (1990) Temperature effects on auditory nerve fiber response in the American bullfrog. Hear Res 44:231–240.

    PubMed  Google Scholar 

  • van Dijk P, Mason MJ, Narins PM (2002) Distortion product otoacoustic emissions in frogs: correlation with middle and inner ear properties. Hear Res 173:100–108.

    PubMed  Google Scholar 

  • van Dijk P, Narins PM, Mason MJ (2003) Physiological vulnerability of distortion product otoacoustic emissions from the amphibian ear. J Acoust Soc Am 114:2044–2048.

    PubMed  Google Scholar 

  • van Dijk P, Narins PM, Wang J (1996) Spontaneous otoacoustic emissions in seven frog species. Hear Res 101:102–112.

    PubMed  Google Scholar 

  • van Dijk P, Wit HP, Segenhout JM (1997) Dissecting the frog inner ear with Gaussian noise. II. Temperature dependence of inner ear function. Hear Res 114:243–251.

    PubMed  Google Scholar 

  • van Dijk P, Wit HP, Segenhout JM, Tubis A (1994) Wiener kernel analysis of inner ear function in the American bullfrog. J Acoust Soc Am 95:904–919.

    PubMed  Google Scholar 

  • Vassilakis PN, Meenderink SWF, Narins PM (2004) Distortion product otoacoustic emissions provide clues to hearing mechanisms in the frog ear. J Acoust Soc Am 116:3713–3726.

    PubMed  Google Scholar 

  • von Békésy G (1960) Experiments in Hearing. Acoustical Society of America Press, New York.

    Google Scholar 

  • Walrond JP, Reese TS (1985) Structure of axon terminals and active zones at synapses on lizard twitch and tonic muscle fibers. J Neurosci 5:1118–1131.

    CAS  PubMed  Google Scholar 

  • West CD (1985) The relationship of the spiral turns of the cochlea and the length of the basilar membrane to the range of audible frequencies in ground dwelling mammals. J Acoust Soc Am 77:1091–1101.

    CAS  PubMed  Google Scholar 

  • Wever EG (1973) The ear and hearing in the frog, Rana pipiens. J Morphol 141:461–477.

    CAS  PubMed  Google Scholar 

  • Wever EG (1985) The Amphibian Ear. Princeton University, Princeton, NJ.

    Google Scholar 

  • Whitehead ML, Lonsbury-Martin BL, Martin GK (1992) Evidence for two discrete sources of 2f1-f2_distortion-product otoacoustic emission in rabbit. II: Differential physiological vulnerability. J Acoust Soc Am 92:2662–2682.

    CAS  PubMed  Google Scholar 

  • Whitehead ML, Wilson JP, Baker RJ (1986) The effects of temperature on otoacoustic emission tuning properties. In: Moore B, Patterson R eds. Auditory Frequency Selectivity. Plenum, New York, pp. 39–48.

    Google Scholar 

  • Wilczynski W, Keddy-Hector AC, Ryan MJ (1992) Call patterns and basilar papilla tuning in cricket frogs. I.Differences among populations and between sexes. Brain Behav Evol39:229–237.

    CAS  PubMed  Google Scholar 

  • Wilczynski W, McClelland BE, Rand AS (1993) Acoustic, auditory, and morphological divergence in three species of neotropical frog. J Comp Physiol 172:425–438.

    CAS  Google Scholar 

  • Will U, Fritzsch B (1988) The eighth nerve of amphibians. In: Fritzsch B, Ryan M, Walczynski W, Hetherington T, Walkowiak W eds. The Evolution of the Amphibian Auditory System. Wiley-Interscience, New York, pp. 159–183.

    Google Scholar 

  • Zakon HH, Capranica RR (1981) An anatomical and physiological study of regeneration of the eighth nerve in the leopard frog. Brain Res 209:325–338.

    CAS  PubMed  Google Scholar 

  • Zakon HH, Wilczynski W (1988) The physiology of the anuran eighth nerve. In: Fritzsch B, Ryan M, Walczynski W, Hetherington T, Walkowiak W eds. The Evolution of the Amphibian Auditory System. Wiley-Interscience, New York, pp. 125–155.

    Google Scholar 

  • Zelick R, Narins PM (1985) Temporary threshold shift, adaptation, and recovery characteristics of frog auditory nerve fibers. Hear Res 17:161–176.

    CAS  PubMed  Google Scholar 

  • Zenisek D, Davila V, Wan L, Almers W (2003) Imaging calcium entry sites and ribbon structures in two presynaptic cells. J Neurosci 23:2538–2548.

    CAS  PubMed  Google Scholar 

  • Zhang M, Abbas PJ (1997) Effects of middle ear pressure on otoacoustic emission measures. J Acoust Soc Am 102:1032–1037.

    CAS  PubMed  Google Scholar 

  • Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405:149–155.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Simmons, D.D., Meenderink, S.W., Vassilakis, P.N. (2007). Anatomy, Physiology, and Function of Auditory End-Organs in the Frog Inner Ear. In: Narins, P.M., Feng, A.S., Fay, R.R., Popper, A.N. (eds) Hearing and Sound Communication in Amphibians. Springer Handbook of Auditory Research, vol 28. Springer, New York, NY . https://doi.org/10.1007/978-0-387-47796-1_7

Download citation

Publish with us

Policies and ethics