Skip to main content

Pathways for Sound Transmission to the Inner Ear in Amphibians

  • Chapter
Hearing and Sound Communication in Amphibians

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 28))

7. Summary

The role of the tympanic ear in tetrapods is fairly well understood: it has to cope with demands including impedance matching, sound localization, and protection from high sound levels and static pressures. Adaptations in frogs and other tetrapods might well be analogous rather than homologous (Lombard and Bolt 1979), allowing one to examine critically assumptions about what is required of an ear. Indeed, many amphibians lack a tympanic ear altogether yet are still capable of hearing in air. Hetherington and Lindquist (1999) suggest that audition in early tetrapods might have involved the lung.

Acoustic communication in frogs commonly relies on airborne sound, but it can also involve aquatic (Yager 1996) or seismic (Lewis and Narins 1985) channels. The mechanisms for sound transfer to the inner ear in these cases are far less clear, possibly involving structures unique to amphibians such as the bronchial columella or the opercularis system. The functions of these structures have still not been conclusively resolved: although the relevant anatomy is in many cases well described and there is a wealth of ingenious proposals for how sound transfer might be achieved, rigorous experimental work that might distinguish between the competing hypotheses is generally lacking. The need for further study is especially acute in the case of caecilians and urodeles.

Their small size, poikilothermy, and ability to breathe cutaneously make amphibians ideal subjects for physiological experiments. Many of the unanswered questions about amphibian hearing are therefore eminently tractable, and are, it is hoped, to be resolved in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aertsen AMHJ, Vlaming MSMG, Eggermont JJ, Johannesma PIM (1986) Directional hearing in the grassfrog (Rana temporaria L.). II. Acoustics and modelling of the auditory periphery. Hear Res 21:17–40.

    CAS  PubMed  Google Scholar 

  • Anson M, Pinder AC, Keating MJ, Chung SH (1985) Acoustic vibration of the amphibian eardrum studied by white noise analysis and holographic interferometry. J Acoust Soc Am 78:916–923.

    CAS  PubMed  Google Scholar 

  • Baker MC (1969) The effect of severing the opercularis muscle on body orientation of the leopard frog, Rana pipiens. Copeia 1969:613–616.

    Google Scholar 

  • Becker RP, Lombard RE (1977) Structural correlates of function in the “opercularis” muscle of amphibians. Cell Tissue Res 175:499–522.

    CAS  PubMed  Google Scholar 

  • Boatright-Horowitz SS, Simmons AM (1995) Postmetamorphic changes in auditory sensitivity of the bullfrog midbrain. J Comp Physiol 177:577–590.

    CAS  Google Scholar 

  • Boatright-Horowitz SS, Simmons AM (1997) Transient “deafness” accompanies auditory development during metamorphosis from tadpole to frog. Proc Natl Acad Sci USA 94:14877–14882.

    CAS  PubMed  Google Scholar 

  • Bolt JR, Lombard RE (1985) Evolution of the amphibian tympanic ear and the origin of frogs. Biol J Linn Soc Lond 24:83–99.

    Google Scholar 

  • Brand DJ (1956) On the cranial morphology of Scolecomorphus uluguruensis (Barbour & Loveridge). Annals Univ Stellenbosch A 32:1–25.

    Google Scholar 

  • Cannatella DC, Trueb L (1988) Evolution of pipoid frogs: Morphology and phylogenetic relationships of Pseudhymenochirus. J Herpetol 22:439–456.

    Google Scholar 

  • Capranica RR (1976) Morphology and physiology of the auditory system. In: Llinás R, Precht Weds Frog Neurobiology: A Handbook. Berlin: Springer Verlag, pp. 551–557.

    Google Scholar 

  • Carroll RL (2001) The origin and early radiation of terrestrial vertebrates. J Paleontol 75: 1202–1213.

    Google Scholar 

  • Christensen-Dalsgaard J, Elepfandt A (1995) Biophysics of underwater hearing in the clawed frog, Xenopus laevis. J Comp Physiol 176:317–324.

    CAS  Google Scholar 

  • Christensen-Dalsgaard J, Breithaupt T, Elepfandt A (1990) Underwater hearing in the clawed frog, Xenopus laevis. Tympanic motion studied with laser vibrometry. Naturwissenschaften 77:135–137.

    CAS  PubMed  Google Scholar 

  • Chung S-H, Pettigrew A, Anson M (1978) Dynamics of the amphibian middle ear. Nature 272:142–147.

    CAS  PubMed  Google Scholar 

  • Dallos P (1973) The Auditory Periphery: Biophysics and Physiology. New York: Academic.

    Google Scholar 

  • de Jager EFJ (1939a) The gymnophione quadrate and its processes, with special reference to the processus ascendens in a juvenile Ichthyophis glutinosus. Anat Anz 88:223–232.

    Google Scholar 

  • de Jager EFJ (1939b) Contributions to the cranial anatomy of the Gymnophiona. Further points regarding the cranial anatomy of the genus Dermophis. Anat Anz 88:193–222.

    Google Scholar 

  • de Jager EFJ (1947) Some points in the development of the stapes of Ichthyophis glutinosus. Anat Anz 96:203–210.

    Google Scholar 

  • de Jongh HJ, Gans C (1969) On the mechanism of respiration in the bullfrog, Rana catesbeiana: A reassessment. J Morphol 127:259–290.

    Google Scholar 

  • de Villiers CGS (1931) The cranial characters of the brevicipitid genus Cacosternum. Q J Microsc Sci 74:275–302.

    Google Scholar 

  • de Villiers CGS (1932) über das Gehörskelett der aglossen Anuren. Anat Anz 74:33–55.

    Google Scholar 

  • de Villiers CGS (1934) Studies of the cranial anatomy of Ascaphus truei Stejneger, the American “liopelmid”. Bull Am Mus Comp Zool Harvard 77:3–38.

    Google Scholar 

  • de Villiers CGS (1938) A comparison of some cranial features of the East African gymnophiones Boulengerula boulengeri, Tornier and Scolecomorphus ulugurensis Boulenger. Anat Anz 86:1–26.

    Google Scholar 

  • Duellman WE, Trueb L (1986) Biology of Amphibians. Baltimore, MD: The Johns Hopkins University Press.

    Google Scholar 

  • Dunn ER (1941) The “opercularis” muscle of salamanders. J Morphol 69:207–216.

    Google Scholar 

  • Ecker A (1889) The Anatomy of the Frog (translated by George Haslam). Amsterdam: A. Asher.

    Google Scholar 

  • Eggermont JJ (1988) Mechanisms of sound localization in anurans. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W eds The Evolution of the Amphibian Auditory System.New York: Wiley, pp. 307–336.

    Google Scholar 

  • Ehret G, Keilwerth E, Kamada T (1994) The lung-eardrum pathway in three treefrog and four dendrobatid frog species: Some properties of sound transmission. J Exp Biol 195: 329–343.

    CAS  PubMed  Google Scholar 

  • Ehret G, Tautz J, Schmitz B, Narins PM (1990) Hearing through the lungs: lung-eardrum transmission of sound in the frog Eleutherodactylus coqui. Naturwissenschaften 77:192–194.

    CAS  PubMed  Google Scholar 

  • Eiselt J (1941) Der Musculus opercularis und die mittlere Ohrsphäre der anuren Amphibien. Arch Naturgesch 10:179–230.

    Google Scholar 

  • Elepfandt A (1996a) Sensory perception and the lateral line system in the clawed frog, Xenopus. In: Tinsley RC, Kobel HR eds The Biology of Xenopus. Oxford: Clarendon, pp. 97–120.

    Google Scholar 

  • Elepfandt A (1996b) Underwater acoustics and hearing in the clawed frog, Xenopus. In: Tinsley RC, Kobel HR eds The Biology of Xenopus. Oxford: Clarendon, pp. 177–193.

    Google Scholar 

  • Fay RR, Popper AN (1985) The octavolateralis system. In: Hildebrand M, Bramble DM, Liem KF, Wake DB eds Functional Vertebrate Morphology. London: Belknap, pp. 291–316.

    Google Scholar 

  • Feng AS, Narins PM, Xu C-H (2002) Vocal acrobatics in a Chinese frog, Amolops tormotus. Naturwissenschaften 89:352–356.

    CAS  PubMed  Google Scholar 

  • Fox JH (1995) Morphological correlates of auditory sensitivity in anuran amphibians. Brain Behav Evol 45:327–338.

    CAS  PubMed  Google Scholar 

  • Gans C, de Jongh HJ, Farber J (1969) Bullfrog (Rana catesbeiana) ventilation: how does the frog breathe? Science 163:1223–1225.

    CAS  PubMed  Google Scholar 

  • Goodrich ES (1930) Studies on the Structure and Development of Vertebrates. New York: Dover.

    Google Scholar 

  • Hetherington TE (1985) Role of the opercularis muscle in seismic sensitivity in the bullfrog Rana catesbeiana. J Exp Zool 235:27–43.

    CAS  PubMed  Google Scholar 

  • Hetherington TE (1987a) Physiological features of the opercularis muscle and their effects on vibration sensitivity in the bullfrog Rana catesbeiana. J Exp Biol 131:189–204.

    CAS  PubMed  Google Scholar 

  • Hetherington TE (1987b) Timing of development of the middle ear of Anura (Amphibia). Zoomorphology 106:289–300.

    Google Scholar 

  • Hetherington TE (1988a) Biomechanics of vibration reception in the bullfrog, Rana catesbeiana. J Comp Physiol A 163:43–52.

    CAS  PubMed  Google Scholar 

  • Hetherington TE (1988b) Metamorphic changes in the middle ear. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W eds The Evolution of the Amphibian Auditory System. New York: Wiley, pp. 339–357.

    Google Scholar 

  • Hetherington TE (1989) Effect of the amphibian opercularis muscle on auditory responses. Prog Zool 35:356–359.

    Google Scholar 

  • Hetherington TE (1992a) The effects of body size on functional properties of middle ear systems of anuran amphibians. Brain Behav Evol 39:133–142.

    CAS  PubMed  Google Scholar 

  • Hetherington TE (1992b) The effects of body size on the evolution of the amphibian middle ear. In: Webster DB, Fay RR, Popper AN eds The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 421–437.

    Google Scholar 

  • Hetherington TE (1994a) Sexual differences in the tympanic frequency responses of the American bullfrog (Rana catesbeiana). J Acoust Soc Am 96:1186–1188.

    CAS  PubMed  Google Scholar 

  • Hetherington TE (1994b) The middle ear muscle of frogs does not modulate tympanic responses to sound. J Acoust Soc Am 95:2122–2125.

    CAS  PubMed  Google Scholar 

  • Hetherington TE (2001) Laser vibrometric studies of sound-induced motion of the body walls and lungs of salamaders and lizards: Implications for lung-based hearing. J Comp Physiol A 187:499–507

    CAS  PubMed  Google Scholar 

  • Hetherington TE, Lindquist ED (1999) Lung-based hearing in an “earless” anuran amphibian. J Comp Physiol A 184:395–401.

    Google Scholar 

  • Ehret G, Tautz J, Schmitz B, Narins PM (1990) Hearing through the lungs: lung-eardrum transmission of sound in the frog Eleutherodactylus coqui. Naturwissenschaften 77:192–194.

    CAS  PubMed  Google Scholar 

  • Eiselt J (1941) Der Musculus opercularis und die mittlere Ohrsphäre der anuren Amphibien. Arch Naturgesch 10:179–230.

    Google Scholar 

  • Elepfandt A (1996a) Sensory perception and the lateral line system in the clawed frog, Xenopus. In: Tinsley RC, Kobel HR eds The Biology of Xenopus. Oxford: Clarendon, pp. 97–120.

    Google Scholar 

  • Elepfandt A (1996b) Underwater acoustics and hearing in the clawed frog, Xenopus. In: Tinsley RC, Kobel HR eds The Biology of Xenopus.Oxford: Clarendon, pp. 177–193.

    Google Scholar 

  • Fay RR, Popper AN (1985) The octavolateralis system. In: Hildebrand M, Bramble DM, Liem KF, Wake DB eds Functional Vertebrate Morphology. London: Belknap, pp. 291–316.

    Google Scholar 

  • Feng AS, Narins PM, Xu C-H (2002) Vocal acrobatics in a Chinese frog, Amolops tormotus. Naturwissenschaften 89:352–356.

    CAS  PubMed  Google Scholar 

  • Fox JH (1995) Morphological correlates of auditory sensitivity in anuran amphibians. Brain Behav Evol 45:327–338.

    CAS  PubMed  Google Scholar 

  • Gans C, de Jongh HJ, Farber J (1969) Bullfrog (Rana catesbeiana) ventilation: how does the frog breathe? Science 163:1223–1225.

    CAS  PubMed  Google Scholar 

  • Goodrich ES (1930) Studies on the Structure and Development of Vertebrates. New York: Dover.

    Google Scholar 

  • Hetherington TE (1985) Role of the opercularis muscle in seismic sensitivity in the bullfrog Rana catesbeiana. J Exp Zool 235:27–43.

    CAS  PubMed  Google Scholar 

  • Hetherington TE (1987a) Physiological features of the opercularis muscle and their effects on vibration sensitivity in the bullfrog Rana catesbeiana. J Exp Biol 131:189–204.

    CAS  PubMed  Google Scholar 

  • Hetherington TE (1987b) Timing of development of the middle ear of Anura (Amphibia). Zoomorphology 106:289–300.

    Google Scholar 

  • Hetherington TE (1988a) Biomechanics of vibration reception in the bullfrog, Rana catesbeiana. J Comp Physiol A 163:43–52.

    CAS  PubMed  Google Scholar 

  • Hetherington TE (1988b) Metamorphic changes in the middle ear. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W eds The Evolution of the Amphibian Auditory System. New York: Wiley, pp. 339–357.

    Google Scholar 

  • Hetherington TE (1989) Effect of the amphibian opercularis muscle on auditory responses. Prog Zool 35:356–359.

    Google Scholar 

  • Hetherington TE (1992a) The effects of body size on functional properties of middle ear systems of anuran amphibians. Brain Behav Evol 39:133–142.

    CAS  PubMed  Google Scholar 

  • Hetherington TE (1992b) The effects of body size on the evolution of the amphibian middle ear. In: Webster DB, Fay RR, Popper AN eds The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 421–437.

    Google Scholar 

  • Hetherington TE (1994a) Sexual differences in the tympanic frequency responses of the American bullfrog (Rana catesbeiana). J Acoust Soc Am 96:1186–1188.

    CAS  PubMed  Google Scholar 

  • Hetherington TE (1994b) The middle ear muscle of frogs does not modulate tympanic responses to sound. J Acoust Soc Am 95:2122–2125.

    CAS  PubMed  Google Scholar 

  • Hetherington TE (2001) Laser vibrometric studies of sound-induced motion of the body walls and lungs of salamaders and lizards: Implications for lung-based hearing. J Comp Physiol A 187:499–507.

    CAS  PubMed  Google Scholar 

  • Hetherington TE, Lindquist ED (1999) Lung-based hearing in an “earless” anuran amphibian. J Comp Physiol A 184:395–401.

    Google Scholar 

  • Hetherington TE, Lombard RE (1982) Biophysics of underwater hearing in anuran amphibians. J Exp Biol 98:49–66.

    CAS  PubMed  Google Scholar 

  • Hetherington TE, Lombard RE (1983a) Electromyography of the opercularis muscle of Rana catesbeiana: An amphibian tonic muscle. J Morphol 175:17–26.

    CAS  PubMed  Google Scholar 

  • Hetherington TE, Lombard RE (1983b) Mechanisms of underwater hearing in larval and adult tiger salamanders Ambystoma tigrinum. Comp Biochem Physiol 74A:555–559.

    Google Scholar 

  • Hetherington TE, Tugaoen JR (1990) Histochemical studies on the amphibian opercularis muscle (Amphibia). Zoomorphology 109:273–279.

    Google Scholar 

  • Hetherington TE, Jaslow AP, Lombard RE (1986) Comparative morphology of the amphibian opercularis system: I. General design features and functional interpretation. J Morphol 190:43–61.

    CAS  PubMed  Google Scholar 

  • Horowitz SS, Chapman JA, Kaya U, Megela Simmons A (2001) Metamorphic development of the bronchial columella of the larval bullfrog (Rana catesbeiana). Hear Res 154:12–25.

    CAS  PubMed  Google Scholar 

  • Inger RF (1966) The systematics and zoogeography of the Amphibia of Borneo. Fieldiana: Zoology 52:1–402.

    Google Scholar 

  • Jaslow AP, Lombard RE (1996) Hearing in the neotropical frog, Atelopus chiriquiensis. Copeia 1996:428–432.

    Google Scholar 

  • Jaslow AP, Hetherington TE, Lombard RE (1988) Structure and function of the amphibian middle ear. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W eds The Evolution of the Amphibian Auditory System. New York: Wiley, pp. 69–91.

    Google Scholar 

  • Jørgensen MB (1991) Comparative studies of the biophysics of directional hearing in anurans. J Comp Physiol A 169:591–598.

    Google Scholar 

  • Jørgensen MB, Kanneworff M (1998) Middle ear transmission in the grass frog, Rana temporaria. J Comp Physiol A 182:59–64.

    PubMed  Google Scholar 

  • Jørgensen MB, Schmitz B, Christensen-Dalsgaard J (1991) Biophysics of directional hearing in the frog Eleutherodactylus coqui. J Comp Physiol A 168:223–232.

    Google Scholar 

  • Kingsbury BF, Reed HD (1909) The columella auris in Amphibia. J Morphol 20:549–627.

    Google Scholar 

  • Koyama H, Lewis ER, Leverenz EL, Baird RA (1982) Acute seismic sensitivity in the bullfrog ear. Brain Res 250:168–172.

    CAS  PubMed  Google Scholar 

  • Lewis ER (1984) Inertial motion sensors. In: Bolis L, Keynes RD, Maddrell SHP eds Comparative Physiology of Sensory Systems. Cambridge, UK: Cambridge University Press, pp. 587–610.

    Google Scholar 

  • Lewis ER, Lombard RE (1988) The amphibian inner ear. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W eds The Evolution of the Amphibian Auditory System. New York: Wiley, pp. 93–123.

    Google Scholar 

  • Lewis ER, Narins PM (1985) Do frogs communicate with seismic signals? Science 227:187–189.

    Google Scholar 

  • Lindquist ED, Hetherington TE (1996) Field studies on visual and acoustic signalling in the “earless” Panamanian golden frog, Atelopus zeteki. J Herpetol 30:347–354.

    Google Scholar 

  • Lindquist ED, Hetherington TE, Volman SF (1998) Biomechanical and neurophysiological studies on audition in eared and earless harlequin frogs (Atelopus). J Comp Physiol A 183:265–271.

    CAS  PubMed  Google Scholar 

  • Loftus-Hills JJ (1973) Neural mechanisms underlying acoustic behaviour of the frog Pseudophryne semimarmorata (Anura: Leptodactylidae). Anim Behav 21:781–787.

    CAS  PubMed  Google Scholar 

  • Lombard RE (1977) Comparative morphology of the inner ear in salamanders (Caudata: Amphibia). Basel: S. Karger.

    Google Scholar 

  • Lombard RE, Bolt JR (1979) Evolution of the tetrapod ear: An analysis and reinterpretation. Biol J Linn Soc Lond 11:19–76.

    Google Scholar 

  • Lombard RE, Straughan IR (1974) Functional aspects of anuran middle ear structures. J Exp Biol 61:71–93.

    CAS  PubMed  Google Scholar 

  • Lombard RE, Fay RR, Werner YL (1981) Underwater hearing in the frog, Rana catesbeiana. J Exp Biol 91:57–71.

    Google Scholar 

  • Mason MJ, Narins PM (2002a) Vibrometric studies of the middle ear of the bullfrog Rana catesbeiana I. The extrastapes. J Exp Biol 205:3153–3165.

    PubMed  Google Scholar 

  • Mason MJ, Narins PM (2002b) Vibrometric studies of the middle ear of the bullfrog Rana catesbeiana II. The operculum. J Exp Biol 205:3167–3176.

    PubMed  Google Scholar 

  • Mason MJ, Lin CC, Narins PM (2003) Sex differences in the middle ear of the bullfrog (Rana catesbeiana). Brain Behav Evol 61:91–101.

    CAS  PubMed  Google Scholar 

  • McClelland BE, Wilczynski W, Rand AS (1997) Sexual dimorphism and species differences in the neurophysiology and morphology of the acoustic communication system of two neotropical hylids. J Comp Physiol A 180:451–462.

    CAS  PubMed  Google Scholar 

  • McDiarmid RW (1971) Comparative morphology and evolution of frogs of the Neotropical genera Atelopus, Dendrophryniscus, Melanophryniscus, and Oreophrynella. Bull Los Angeles County Mus Nat Hist Science 12:1–66.

    Google Scholar 

  • Moffat AJM, Capranica RR (1978) Middle ear sensitivity in anurans and reptiles measured by light scattering spectroscopy. J Comp Physiol A 127:97–107.

    Google Scholar 

  • Monath T (1965) The opercular apparatus of salamanders. J Morphol 116:149–170.

    Google Scholar 

  • Narins PM (1992) Reduction of tympanic membrane displacement during vocalization of the arboreal frog, Eleutherodactylus coqui. J Acoust Soc Am 91:3551–3557.

    CAS  PubMed  Google Scholar 

  • Narins PM, Lewis ER (1984) The vertebrate ear as an exquisite seismic sensor. J Acoust Soc Am 76:1384–1387.

    CAS  PubMed  Google Scholar 

  • Narins PM, Ehret G, Tautz J (1988) Accessory pathway for sound transfer in a neotropical frog. Proc Natl Acad Sci USA 85:1508–1512.

    CAS  PubMed  Google Scholar 

  • Narins PM, Lewis ER, Purgue AP, Bishop PJ, Minter LR, Lawson DP (2001) Functional consequences of a novel middle ear adaptation in the central African frog Petropedetes parkeri (Ranidae). J Exp Biol 204:1223–1232.

    CAS  PubMed  Google Scholar 

  • Noble GK (1931) The Biology of the Amphibia. New York: McGraw-Hill.

    Google Scholar 

  • Overstreet EH, Ruggero MA (2001) Development of wide-band middle ear transmission in the Mongolian gerbil. J Acoust Soc Am 111:261–270.

    Google Scholar 

  • Pinder AC, Palmer AR (1983) Mechanical properties of the frog ear: Vibration measurements under free-and closed-field acoustic conditions. Proc R Soc Lond B Biol Sci 219:371–396.

    CAS  PubMed  Google Scholar 

  • Purgue AP (1997) Tympanic sound radiation in the bullfrog Rana catesbeiana. J Comp Physiol A 181:438–445.

    CAS  PubMed  Google Scholar 

  • Purgue AP, Narins PM (2000a) A model for energy flow in the inner ear of the bullfrog (Rana catesbeiana). J Comp Physiol A 186:489–495.

    CAS  PubMed  Google Scholar 

  • Purgue AP, Narins PM (2000b) Mechanics of the inner ear of the bullfrog (Rana catesbeiana): The contact membranes and the periotic canal. J Comp Physiol A 186:481–488.

    CAS  PubMed  Google Scholar 

  • Reed HD (1920) The morphology of the sound-transmitting apparatus in caudate Amphibia and its phylogenetic significance. J Morphol 33:325–387.

    Google Scholar 

  • Relkin EM (1988) Introduction to the analysis of middle-ear function. In: Jahn AF, Santos-Sacchi J eds Physiology of the Ear. New York: Raven, pp. 103–123.

    Google Scholar 

  • Rogers PH, Cox M (1988) Underwater sound as a biological stimulus. In: Atema J, Fay RR, Popper AN, Tavolga WN eds Sensory Biology of Aquatic Animals. New York: Springer-Verlag.

    Google Scholar 

  • Ross RJ, Smith JJB (1979) Detection of substrate vibrations by salamanders: Eighth cranial nerve activity. Can J Zool 57:368–374.

    Google Scholar 

  • Ross RJ, Smith JJB (1980) Detection of substrate vibrations by salamanders: Frequency sensitivity of the ear. Comp Biochem Physiol 65A:167–172.

    Google Scholar 

  • Ross RJ, Smith JJB (1982) Responses of the salamander inner ear to vibrations of the middle ear. Can J Zool 60:220–226.

    Google Scholar 

  • Russell IJ (1976) Amphibian lateral line receptors. In: Llinás R, Precht W eds Frog Neurobiology: A Handbook. Berlin: Springer Verlag, pp. 513–550.

    Google Scholar 

  • Saunders JC, Johnstone BM (1972) A comparative analysis of middle-ear function in non-mammalian vertebrates. Acta Otolaryngol (Stockh) 73:353–361.

    CAS  Google Scholar 

  • Schmalhausen II (1957) The sound-transmitting mechanism of amphibians in Russian. Zool Zh 36:1044–1063.

    Google Scholar 

  • Schmalhausen II (1968) The Origin of Terrestrial Vertebrates. New York: Academic.

    Google Scholar 

  • Seaman RL (2002) Non-osseous sound transmission to the inner ear. Hear Res 166:214–215.

    PubMed  Google Scholar 

  • Sedra SN, Michael MI (1957) The development of the skull, visceral arches, larynx and visceral muscles of the South African clawed toad, Xenopus laevis (Daudin) during the process of metamorphosis (from stage 55_to stage 66). Verh K Acad Wetenschappen, Afdeeling Natuurkunde, 2e Reeks 51:1–80.

    Google Scholar 

  • Sedra SN, Michael MI (1959) The ontogenesis of the sound conducting apparatus of the Egyptian toad, Bufo regularis Reuss, with a review of this apparatus in Salientia. J Morphol 104:359–375.

    CAS  PubMed  Google Scholar 

  • Shofner WP, Feng AS (1981) Post-metamorphic development of the frequency selectivities and sensitivities of the peripheral auditory system of the bullfrog, Rana catesbeiana. J Exp Biol 93:181–196.

    Google Scholar 

  • Smirnov SV (1991) The anuran middle ear: Developmental heterochronies and adult morphology diversification. Belg J Zool 121:99–110.

    Google Scholar 

  • Smirnov SV, Vorobyeva EI (1988) Morphological grounds for diversification and evolutionary change in the amphibian sound-conducting apparatus. Anat Anz 166: 317–322.

    CAS  PubMed  Google Scholar 

  • Smith JJB (1968) Hearing in terrestrial urodeles: A vibration-sensitive mechanism in the ear. J Exp Biol 48:191–205.

    CAS  PubMed  Google Scholar 

  • Spannhof L (1954) Die Entwicklung des Mittelohres und des schalleitenden Apparates bei Xenopus laevis Daudin. Z Wiss Zool 158:1–30.

    Google Scholar 

  • Stebbins RC, Cohen NW (1995) A Natural History of Amphibians. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Stephenson NG (1951) On the development of the chondrocranium and visceral arches of Leiopelma archeyi. Trans Zool Soc Lond 27:203–253.

    Google Scholar 

  • Taylor EH (1969) Skulls of Gymnophiona and their significance in the taxonomy of the group. Univ Kansas Sci Bull 48:585–687.

    Google Scholar 

  • van Bergeijk WA (1959) Hydrostatic balancing mechanism of Xenopus larvae. J Acoust Soc Am 31:1340–1347.

    Google Scholar 

  • van Bergeijk WA (1967) The evolution of vertebrate hearing. In: Neff WD ed. Contributions to Sensory Physiology, vol 2. New York: Academic, pp. 1–49.

    Google Scholar 

  • van Dijk P, Mason MJ, Narins PM (2002) Distortion product otoacoustic emissions in frogs: Correlation with middle and inner ear properties. Hear Res 173:100–108.

    PubMed  Google Scholar 

  • van Seters WH (1922) Le développement du chondrocrâne d’Alytes obstetricans avant la metamorphose. Arch Biol (Liege) 32:373–491.

    Google Scholar 

  • Vlaming MSMG, Aertsen AMHJ, Epping WJM (1984) Directional hearing in the grass frog (Rana temporaria L.): I. Mechanical vibrations of tympanic membrane. Hear Res 14:191–201.

    CAS  PubMed  Google Scholar 

  • von Békésy G (1960) Experiments in Hearing. New York: McGraw Hill.

    Google Scholar 

  • Wagner DS (1934) The structure of the inner ear in relation to the reduction of the middle ear in the Liopelmidae (Noble). Anat Anz 79:20–36.

    Google Scholar 

  • Walkowiak W (1980) The coding of auditory signals in the torus semicircularis of the firebellied toad and the grass frog: Responses to simple stimuli and to conspecific calls. J Comp Physiol 138:131–148.

    Google Scholar 

  • Werner YL (2003) Mechanical leverage in the middle ear of the American bullfrog, Rana catesbeiana. Hear Res 175:54–65.

    PubMed  Google Scholar 

  • Wever EG (1975) The caecilian ear. J Exp Zool 191:63–72.

    CAS  PubMed  Google Scholar 

  • Wever EG (1978) Sound transmission in the salamander ear. Proc Natl Acad Sci USA 75:529–530.

    CAS  PubMed  Google Scholar 

  • Wever EG (1979) Middle ear muscles of the frog. Proc Natl Acad Sci USA 76:3031–3033.

    CAS  PubMed  Google Scholar 

  • Wever EG (1985) The Amphibian Ear. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Wever EG, Gans C (1976) The caecilian ear: Further observations. Proc Natl Acad Sci USA 73:3744–3746.

    CAS  PubMed  Google Scholar 

  • Wilczynski W, Resler C, Capranica RR (1987) Tympanic and extratympanic sound transmission in the leopard frog. J Comp Physiol A 161:659–669.

    CAS  PubMed  Google Scholar 

  • Witschi E (1949) The larval ear of the frog and its transformation during metamorphosis. Z Naturforsch 4b:230–242.

    Google Scholar 

  • Witschi E (1950) The bronchial diverticula of Xenopus laevis Daudin. Anat Rec 108:590.

    Google Scholar 

  • Witschi E (1951) The development of the bronchial columella in the aquatic ear of Ranidae. Anat Rec 109:359–360.

    Google Scholar 

  • Witschi E (1955) The bronchial columella of the ear of larval Ranidae. J Morphol 96:497–511.

    Google Scholar 

  • Wright AH, Wright AA (1949) Handbook of Frogs and Toads of the United States and Canada, 3rd ed. Ithaca, NY: Comstock.

    Google Scholar 

  • Yager DD (1996) Sound production and acoustic communication in Xenopus borealis. In: Tinsley RC, Kobel HR eds The Biology of Xenopus. Oxford: Clarendon, pp. 121–141.

    Google Scholar 

  • Yang D-T (1991) Phylogenetic systematics of the Amolops group of ranid frogs of Southeastern Asia and the Greater Sunda Islands. Fieldiana: Zoology 63:1–42.

    Google Scholar 

  • Yu X, Lewis ER, Feld D (1991) Seismic and auditory tuning curves from bullfrog saccular and amphibian papillar axons. J Comp Physiol A 169:241–248.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mason, M.J. (2007). Pathways for Sound Transmission to the Inner Ear in Amphibians. In: Narins, P.M., Feng, A.S., Fay, R.R., Popper, A.N. (eds) Hearing and Sound Communication in Amphibians. Springer Handbook of Auditory Research, vol 28. Springer, New York, NY . https://doi.org/10.1007/978-0-387-47796-1_6

Download citation

Publish with us

Policies and ethics