Skip to main content

Call Production and Neural Basis of Vocalization

  • Chapter

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 28))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitken PG, Capranica RR (1984) Auditory input to a vocal nucleus in the frog Rana pipiens: Hormonal and seasonal effects. Exp Brain Res 57:33–39.

    Article  CAS  PubMed  Google Scholar 

  • Akef MSA, Schneider H (1985) Vocalization, courtship and territoriality in the Chinese fire-bellied toad Bombina orientalis (Anura, Discoglossidae). Zool Jb Physiol 89:119–136.

    Google Scholar 

  • Allison JD (1992) Acoustic modulation of neural activity in the preoptic area and ventral hypothalamus of the green treefrog (Hyla cinerea). J Comp Physiol A 171:387–395.

    Article  CAS  PubMed  Google Scholar 

  • Allison JD, Wilczysnki W (1991) Thalamic and midbrain auditory projections to the preoptic area and ventral hypothalamus in the green treefrog (Hyla cinerea). Brain Behav Evol 38:322–331.

    CAS  PubMed  Google Scholar 

  • Boyd SK (1992) Sexual differences in hormonal control of release calls in bullfrogs. Horm Behav 26:522–535.

    Article  CAS  PubMed  Google Scholar 

  • Boyd SK (1994) Arginine vasotocin facilitation of advertisement calling and call phonotaxis in bullfrogs. Horm Behav 28:232–240.

    Article  CAS  PubMed  Google Scholar 

  • Boyd SK, Ebersole TJ (1997) Distribution of androgen receptors in the brain of two anuran amphibians. Soc Neurosci Abstr 23:238.

    Google Scholar 

  • Brahic CJ, Kelley DB (2003) Vocal circuitry in Xenopus laevis: Telencephalon to laryngeal motor neurons. J Comp Neurol 464:115–130.

    Article  PubMed  Google Scholar 

  • Chu J, Marler CA, Wilczynski W (1998) The effects of arginine vasotocin on the calling behavior of male cricket frogs in changing social contexts. Horm Behav 34: 248–261.

    Article  CAS  PubMed  Google Scholar 

  • De Jongh HJ, Gans C (1969) On the mechanism of respiration in the bullfrog, Rana catesbeiana: A reassessment. J Morph 127:259–290.

    Article  Google Scholar 

  • Diakow C (1978) A hormonal basis for breeding behaviour in female frogs: Vasotocin inhibits the release call of Rana pipiens. Science 199:1456–1457.

    Article  CAS  PubMed  Google Scholar 

  • Eichelberg H, Schneider H (1973) Die Feinstruktur der Kehlkopfmuskeln des Laubfrosches Hyla arborea arborea (L.) im Vegleich zu einem Skelettmuskel. Z Zellforsch 141:223–233.

    Article  CAS  PubMed  Google Scholar 

  • Emerson SB, Boyd SK (1999) Mating vocalizations of female frogs: Control and evolutionary mechanisms. Brain Behav Evol 53:187–197.

    Article  CAS  PubMed  Google Scholar 

  • Endepols H, Walkowiak W (1999) Influence of descending forebrain projections on processing of acoustic signals and audiomotor integration in the anuran midbrain. Eur J Morph 37:182–184.

    Article  CAS  Google Scholar 

  • Endepols H, Walkowiak W (2001) Integration of ascending and descending inputs in the auditory midbrain of anurans. J Comp Physiol A 186:1119–1133.

    Article  CAS  Google Scholar 

  • Endepols H, Roden K, Luksch H, Dicke U, Walkowiak W (2004) Dorsal striatopallidal system in anurans. J Comp Neurol. 468:299–310.

    Article  PubMed  Google Scholar 

  • Endepols H, Roden K, Walkowiak W (2005) Hodological characterization of the septum in anuran amphibians: II. Efferent connections. J Comp Neurol 483:437–457.

    Article  PubMed  Google Scholar 

  • Endepols H, Walkowiak W, Luksch H (2000) Chemoarchitecture of the anuran auditory midbrain. Brain Res Rev 33:179–198.

    Article  CAS  PubMed  Google Scholar 

  • Gaupp E (1896) Ecker’s A, Wiederheim’s R Anatomie des Frosches. 1._Abteilung: Lehre vom Skelett und vom Muskelsystem. 3rd ed. Braunschweig Vieweg.

    Google Scholar 

  • Gerhardt HC, Huber F (2002) Acoustic Communication in Insects and Anurans. Common Problems and Diverse Solutions. Chicago and London: University of Chicago Press.

    Google Scholar 

  • Girgenrath M, Marsh RL (1997) In vivo performance of trunk muscles in tree frogs during calling. J Exp Biol 200:3101–3108.

    CAS  PubMed  Google Scholar 

  • Goense J, Feng AS (2005) Seasonal changes in frequency tuning and temporal processing in single neurons in the frog auditory midbrain. J Neurobiol 65:22–36.

    Article  PubMed  Google Scholar 

  • Gridi-Papp M (2003) Mechanism, behavior and evolution of calling in four North American treefrogs. PhD thesis, University of Texas at Austin.

    Google Scholar 

  • Kelley DB (1980) Auditory and vocal nuclei in the frog brain concentrate sex hormones. Science 207:553–555.

    Article  CAS  PubMed  Google Scholar 

  • Kelley DB (1981) Location of androgen-concentrating cells in the brain of Xenopus laevis: Autoradiography with 3H-dihydrotestosterone. J Comp Neurol 199:221–231.

    Article  CAS  PubMed  Google Scholar 

  • Kelley DB (2004) Vocal communication in frogs. Curr Opin Neurobiol 14:751–757.

    Article  CAS  PubMed  Google Scholar 

  • Kelley DB, Pfaff DW (1976) Hormone effects on male sex behavior in adult South African clawed frogs, Xenopus laevis. Horm Behav 7:159–182.

    Article  CAS  PubMed  Google Scholar 

  • Kelley DB, Tobias ML (1999) The vocal repertoire of Xenopus laevis. In: Hauser M, Konishi M eds. Neural Mechanisms of Communication. Cambridge, MA: MIT Press, pp. 9–35.

    Google Scholar 

  • Kelley DB, Morrell JI, Pfaff DW (1975) Autoradiographic localization of hormoneconcentrating cells in the brain of an amphibian, Xenopus laevis. I, Testosterone. J Comp Physiol 164:47–62.

    CAS  Google Scholar 

  • Knorr A (1976) Central control of mating call production and spawning in the tree frog Hyla arborea savignyi (Audouin): Results of electrical stimulation of the brain. Behav Processes 1:295–317.

    Article  Google Scholar 

  • Knorr A, Schneider H (1975) Beitrag zur Morphologie des Gehirns von Hyla arborea arborea (L.) (Hylidae, Anura). Bonn Zool Beitr 26:370–382.

    Google Scholar 

  • Kogo N, Remmers JE (1994) Neural organization of the ventilatory activity in the frog, Rana catesbeiana. II. J Neurobiol 25:1080–1094.

    Article  CAS  PubMed  Google Scholar 

  • Leary CJ, Jessop TS, Garcia AM, Knapp R (2004) Steroid hormone profiles and relative body condition of calling and satellite toads: Implications for proximate regulation of behavior in anurans. Behav Ecol 15:313–320.

    Article  Google Scholar 

  • Loftus-Hills JJ (1973) Neural mechanisms underlying acoustic behaviour of the frog Pseudophryne semimarmorata (Anura: Leptodactylidae). Anim Behav 21:781–787.

    Article  CAS  PubMed  Google Scholar 

  • Loftus-Hills JJ (1974) Analysis of an acoustic pacemaker in Strecker’s chorus frog, Pseudacris streckeri (Anura: Hylidae). J Comp Physiol 90:75–87.

    Article  Google Scholar 

  • Lörcher (1969) Vergleichende bio-akustische Untersuchungen an der Rot-und Gelbbauchunke Bombina bombina (L.) und Bombina v. variegate (L.) Oecologia 3:84–124.

    Article  Google Scholar 

  • Luksch H, Walkowiak W (1998) Morphology and axonal projection patterns of auditory neurons in the midbrain of the painted frog, Discoglossus pictus. Hear Res 122:1–17.

    Article  CAS  PubMed  Google Scholar 

  • Luksch H, Walkowiak W, Munoz A, ten Donkelaar HJ (1996) The use of in vitro preparations of the isolated amphibian central nervous system in neuroanatomy and electrophysiology. J Neurosci Methods 70:91–102.

    Article  CAS  PubMed  Google Scholar 

  • Marler CA, Chu J, Wilczynski W (1995) Arginine vasotocin injection increases probability of calling in cricket frogs, but causes call changes characteristic of less aggressive males. Horm Behav 29:554–570.

    Article  CAS  PubMed  Google Scholar 

  • Martin WF (1971) Mechanics of sound production in toads of genus Bufo: Passive elements. J Exp Zool 176:274–294.

    Article  Google Scholar 

  • Martin WF (1972) Evolution of vocalization of the genus Bufo. In: Blair WF ed Evolution in the Genus Bufo. Austin: University of Texas Press, pp. 279–309.

    Google Scholar 

  • Martin WF, Gans C (1972) Muscular control of the vocal tract during release signaling in the toad Bufo valliceps. J Morph 137:1–28.

    Article  CAS  PubMed  Google Scholar 

  • Mohr S, Schneider H (1993) Analysis of the call pacemaker if the Chinese fire-bellied toad, Bombina orientalis (Boulenger, (1890) (Amphibia, Anura), and its operation during auditory stimulation. Zool Jb Physiol 97:215–231.

    Google Scholar 

  • Palka YS, Gorbman A (1973) Pituitary and testicular influenced sexual behaviour in male frogs, Rana pipiens. Gen Comp Endocrinol 21:148–151.

    Article  CAS  PubMed  Google Scholar 

  • Paulsen K (1965) Beiträge zur Anatomie und Physiologie des Froschkehlkopfes (mit besonderer Berücksichtigung der Stimmbildung). Z Wiss Zool 172:1–16.

    Google Scholar 

  • Paulsen K (1967) Das Prinzip der Stimmbildung in der Wirbeltierreihe und beim Menschen. Akad Verl Ges, Frankfurt, pp. 1–143.

    Google Scholar 

  • Penna M, Capranica RR, Somers J (1992) Hormone-induced vocal behavior and midbrain auditory sensitivity in the green treefrog, Hyla cinerea. J Comp Physiol A 170:73–82.

    Article  CAS  PubMed  Google Scholar 

  • Propper CR, Dixon TB (1997) Differential effects of arginine vasotocin and gonadotropinreleasing hormone on sexual behaviors in an anuran amphibian. Horm Behav 32: 99–104.

    Article  CAS  PubMed  Google Scholar 

  • Roden K, Endepols H, Walkowiak W (2005) Hodological characterization of the septum in anuran amphibians: I. Afferent connections. J Comp Neurol 483:415–436.

    Article  PubMed  Google Scholar 

  • Ryan MJ (1986) Synchronized calling in a treefrog (Smilisca sila). Brain Behav Evol 29:196–206.

    CAS  PubMed  Google Scholar 

  • Ryan MJ, Drewes RC (1990) Vocal morphology of the Physalaemus pustulosus species group (Family: Leptodactylidae): Morphological response to sexual selection for complex calls. Biol J Linn Soc 40:37–52.

    Google Scholar 

  • Sassoon D, Gray G, Kelley DB (1987) Androgen regulation of muscle fiber type in the sexually dimorphic larynx of Xenopus laevis. J Neurosci 7:3198–3206.

    CAS  PubMed  Google Scholar 

  • Sassoon D, Segil N, Kelley DB (1986) Androgen-induced myogenesis and chondrogenesis in the larynx of Xenopus laevis. Dev Biol 113:135–140.

    Article  CAS  PubMed  Google Scholar 

  • Schmid E (1977) The vocal apparatus of Bombina bombina (L.), Bombina v. variegata (L.) and Alytes o. obstetricans (Laur.). Zool Jb Anat 98:171–180.

    Google Scholar 

  • Schmid E (1978) Contribution to the morphology and histology of the vocal cords of Central European anurans (Amphibia). Zool Jb Anat 99:133–150.

    Google Scholar 

  • Schmidt RS (1965) Larynx control and call production in frogs. Copeia 1965:143–147.

    Article  Google Scholar 

  • Schmidt RS (1966a) Central mechanisms of frog calling. Behaviour 26:252–285.

    Google Scholar 

  • Schmidt RS (1966b) Hormonal mechanisms of frog calling. Copeia 1966:637–644.

    Article  Google Scholar 

  • Schmidt RS (1968a) Chuckle calls of the Leopard frog (Rana pipiens). Copeia 1968:561–569.

    Article  Google Scholar 

  • Schmidt RS (1968b) Preoptic activation of frog mating behaviour. Behviour 30:239–257.

    Google Scholar 

  • Schmidt RS (1971) A model of the central mechanism of male anuran acoustic behaviour. Behaviour 39:288–317.

    CAS  PubMed  Google Scholar 

  • Schmidt RS (1972) Action of intrinsic laryngeal muscles during release calling in leopard frog. J Exp Zool 181:233–244.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt RS (1973) Central mechanisms of frog calling. Amer Zool 13:1169–1177.

    Google Scholar 

  • Schmidt RS (1974) Neural correlates of frog calling-trigeminal tegmentum. J Comp Physiol A 92:229–254.

    Article  Google Scholar 

  • Schmidt RS (1980) Succinic dehydrogenase staining of anuran pretrigeminal nucleus. Brain Behav Evol 17:411–418.

    CAS  PubMed  Google Scholar 

  • Schmidt RS (1981) Pretrigeminal nucleus of leopard frog concentrates 2-deoxy-D-glucose during release calling. Exp Brain Res 42:212–214.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt RS (1992) Neural correlates of frog calling: production of two semi-independent generators. Behav Brain Res 50:17–30.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt RS, Kemnitz CP (1989) Anuran mating calling circuits: Inhibition by prostaglandin. Horm Behav 23:361–367.

    Article  CAS  PubMed  Google Scholar 

  • Schneider H (1970) Morphologie des Larynx von Hyla a. arborea (L.) und Hyla meridionalis Boetgger (Amphibia, Anura). Z Morph ökol Tiere 66:299–309.

    Google Scholar 

  • Schneider H, Hussein F, Akef MSA (1986) Comparative bioacoustic studies in the yellow-bellied toad, Bombina variegate (L.), and relationships of European and Asian species and subspecies of the genus Bombina (Anura, Amphibia). Bonn Zool Beitr 37:49–67.

    Google Scholar 

  • Strake J (1995) Atmung und Rufgenerierung bei Bombina orientalis und Discoglossus pictus (Discoglossoidea, Anura): Morphologische und physiologische Untersuchungen. Thesis: University of Cologne.

    Google Scholar 

  • Strake J, Luksch H, Walkowiak W (1994) Audio-motor interface in anurans. Eur J Morph 32:122–126.

    CAS  Google Scholar 

  • Tobias ML, Kelley DB (1987) Vocalizations of a sexually dimorphic isolated larynx: Peripheral constraints on behavioral expression. J Neurosci 7:3191–3197.

    CAS  PubMed  Google Scholar 

  • Tobias ML, Barnard C, O’Hagan R, Horng SH, Rand M, Kelley DB (2004) Vocal communication between male Xenopus laevis. Anim Behav 67:353–365.

    Article  Google Scholar 

  • Tobias ML, Viswanathan S, Kelley DB (1998) Rapping, a female receptive call, initiates male/female duets in the South African clawed frog. Proc Natl Acad Sci USA 95: 1870–1875.

    Article  CAS  PubMed  Google Scholar 

  • Trueb L, Cannatella DC (1982) The cranial osteology and hyolaryngeal ap0paratus of Rhinophrynus dorsalis (Anura: Rhinophrynidae) with comparison to recent pipid frogs. J Morph 171:11–40.

    Article  Google Scholar 

  • Urano A, Gorbman A (1981) Effects of pituitary hormonal treatment of responsiveness of anterior preoptic neurons in male leopard frogs, Rana pipiens. J Comp Physiol 141:163–171.

    Article  Google Scholar 

  • Wada M, Gorbman A (1977a) Relation of mode of administration of testosterone to evocation of male sex behaviour in frogs. Horm Behav 8:310–319.

    Article  CAS  PubMed  Google Scholar 

  • Wada M, Gorbman A (1977b) Mate calling induced by electrical stimulation in freely moving leopard frogs, Rana pipiens. Horm Behav 9:141–149.

    Article  CAS  PubMed  Google Scholar 

  • Wahl (1969) Untersuchungen zur Bio-Akustik der Wasserfrosches Rana esculaenta (L.). Oecologia (Berl.) 3:14–55.

    Article  Google Scholar 

  • Walkowiak W (1980) The coding of auditory signals in the Torus semicircularis of the fire-bellied toad and the grass frog: Responses to simple stimuli and to conspecific calls. J Comp Physiol A 138:131–148.

    Article  Google Scholar 

  • Walkowiak W (1988a) Neuroethology of anuran call recognition. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W eds The Evolution of the Amphibian Auditory System. New York: Wiley, pp. 485–509.

    Google Scholar 

  • Walkowiak W (1988b) Two auditory filter systems determine the calling behavior of the fire-bellied toad. A behavioural and neurophysiological characterization. J Comp Physiol A 164:31–41.

    Article  Google Scholar 

  • Walkowiak W (1992) Acoustic communication in the fire-bellied toad: An integrative neurobiological approach. Ethol Ecol Evol 4:63–74.

    Article  Google Scholar 

  • Walkowiak W, Luksch H (1994) Sensory motor interfacing in acoustic behaviour of anurans. Amer Zool 34:685–695.

    Google Scholar 

  • Walkowiak W, Berlinger M, Schul J, Gerhardt HC (1999) Significance of forebrain structures in acoustically guided behavior in anurans. Eur J Morph 37:177–181.

    Article  CAS  Google Scholar 

  • Weber E (1974) Vergleichende Untersuchungen zur Bioakustik von Discoglossus pictus OTTH (1837)_und Discoglossus sardus TSCHUDI, 1837 (Discoglossidae, Anura). Zool Jb Physiol 78:40–84.

    Google Scholar 

  • Weirich D, Strake J, Walkowiak W (1989) Motor patterns of respiration and vocalization in the fire-bellied toad. In: Elsner N, Singer Weds Dynamics and Plasticity in Neural Systems. Proceedings of the 17th Göttingen Neurobiology Conference. Stuttgart, New York: Thieme Verlag, p. 230.

    Google Scholar 

  • Wells KD (2001) The energetics of calling in frogs. In: Ryan MJ ed Anuran Communication. Washington Smithsonian Institution Press, pp. 45–60.

    Google Scholar 

  • Wetzel DM, Kelley DB (1983) Androgen and gonadotropin effects on male mate calls in South African clawed frogs, Xenopus laevis. Horm Behav 17:388–404.

    Article  CAS  PubMed  Google Scholar 

  • Wetzel DM, Haerter UL, Kelley DB (1985) A proposed neural pathway for vocalization in South African clawed frogs, Xenopus laevis. J Comp Physiol A 157:749–761.

    Article  CAS  PubMed  Google Scholar 

  • Yager D (1982) A novel mechanism for underwater sound production in Xenopus borealis. Am Zool 22:887.

    Google Scholar 

  • Yager DD (1992) A unique sound production mechanism in the pipid anuran Xenopus borealis. Zool J Linn Soc 104:351–375.

    Google Scholar 

  • Yager DD (1996) Sound production and acoustic communication in fishes and frogs. In: Tinsley RC, Kobel HR eds The Biology of Xenopus. New York: Oxford University Press.

    Google Scholar 

  • Yamaguchi A, Kelley DB (2000) Generating sexually differentiated vocal patterns: Laryngeal nerve and EMG recordings from vocalizing male and female African clawed frogs (Xenopus laevis). J Neurosci 20:1559–1567.

    CAS  PubMed  Google Scholar 

  • Zelick RD, Narins PM (1982) Analysis of acoustically evoked call suppression behaviour in a neotropical treefrog. Anim Behav 30:728–733.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Walkowiak, W. (2007). Call Production and Neural Basis of Vocalization. In: Narins, P.M., Feng, A.S., Fay, R.R., Popper, A.N. (eds) Hearing and Sound Communication in Amphibians. Springer Handbook of Auditory Research, vol 28. Springer, New York, NY . https://doi.org/10.1007/978-0-387-47796-1_4

Download citation

Publish with us

Policies and ethics