Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Salgado, A. J., Coutinho, O. P. and Reis, R. L. (2004). “Bone tissue engineering: State of the art and future trends.” Macromolecular Bioscience, 4(8), 743–765.

    Article  Google Scholar 

  • Branemark, P. I. (1983). “Osseointegration and its experimental background.” Journal of Prosthetic Dentistry, 50(3), 399–410.

    Google Scholar 

  • Rimell, J. T. and Marquis, P. M. (2000). “Selective laser sintering of ultra high molecular weight polyethylene for clinical applications.” Journal of Biomedical Materials Research, 53(4), 414–420.

    Article  Google Scholar 

  • Hieu, L. C., Zlatov, N., Sloten, J. V., Bohez, E., Khanh, L., Binh, P. H., Oris, P. and Toshev, Y. (2005). “Medical rapid prototyping applications and methods.” Assembly Automation, 25(4), 284–292.

    Article  Google Scholar 

  • Moore, K. L. and Dalley, A. F. (1999). Clinically Oriented Anatomy, Lippincott Williams & Wilkins, Maryland.

    Google Scholar 

  • Katti, K. S. (2004). “Biomaterials in total joint replacement.” Colloids and Surfaces B: Biointerfaces, 39(3), 133–142.

    MathSciNet  Google Scholar 

  • Davis, J. R. (2003). Handbook of Materials for Medical Devices, ASM International.

    Google Scholar 

  • Hollister, S. J., Lin, C. Y., Saito, E., Lin, C. Y., Schek, R. D., Taboas, J. M., Williams, J. M., Partee, B., Flanagan, C. L., Diggs, A., Wilke, E. N., Van Lenthe, G. H., Muller, R., Wirtz, T., Das, S., Feinberg, S. E. and Krebsbach, P. H. (2005). “Engineering craniofacial scaffolds.” Orthodontic Craniofacial Research, 8, 162–173.

    Google Scholar 

  • Leong, K. F., Cheah, C. M. and Chua, C. K. (2003). “Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs.” Biomaterials, 24(13), 2363–2378.

    Article  Google Scholar 

  • Hutmacher, D. W., Sittinger, M. and Risbud, M. V. (2004). “Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems.” Trends in Biotechnology, 22(7), 354-362.

    Article  Google Scholar 

  • Hing, K. A., Best, S. M., Tanner, K. E., Bonfield, W. and Revell, P. A. (2004). “Mediation of bone ingrowth in porous hydroxyapatite bone graft substitutes.” Journal of Biomedical Materials Research Part A, 68A(1), 187–200.

    Article  Google Scholar 

  • Rezwan, K., Chen, Q. Z., Blaker, J. J. and Boccaccini, A. R. (2006). “Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering.” Biomaterials, 27(18), 3413–3431.

    Article  Google Scholar 

  • Hedges, M. (2003). “LensTM Technology, Set to Revolutionise Medical Device Manufacture.” www.opnews.com/articles/126.sep.2003/articles.php

    Google Scholar 

  • “www.optomec.com.”

    Google Scholar 

  • Das, S., Hollister, S. J., Flanagan, C., Adewunmi, A., Bark, K., Chen, C., Ramaswamy, K., Rose, D. and Widjaja, E. “Computational design, freeform fabrication and testing of Nylon-6 tissue engineering scaffolds.” Rapid Prototyping Technologies, Dec. 3–5 2002, Boston, MA, United States, 205–210.

    Google Scholar 

  • Williams, J. M., Adewunmi, A., Schek, R. M., Flanagan, C. L., Krebsbach, P. H., Feinberg, S. E., Hollister, S. J. and Das, S. (2005). “Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering.” Biomaterials, 26(23), 4817–4827.

    Article  Google Scholar 

  • Partee, B., Hollister, S. J. and Das, S. (2006). “Selective laser sintering process optimization for layered manufacturing of CAPA (R) 6501 polycaprolactone bone tissue engineering scaffolds.” Journal of Manufacturing Science and Engineering-Transactions of the Asme, 128(2), 531–540.

    Article  Google Scholar 

  • Lee, G., Barlow, J. W., Fox, W. C. and Aufdermorte, T. B. (1996) “Biocompatibility of SLS-formed calcium phosphate implants.” Proceedings of Solid Freeform Fabrication Symposium, Austin, TX, 15-22. 12–14th August, 1996.

    Google Scholar 

  • Vail, N. K., Swain, L. D., Fox, W. C., Aufdlemorte, T. B., Lee, G. and Barlow, J. W. (1999). “Materials for biomedical applications.” Materials & Design, 20(2–3), 123–132.

    Article  Google Scholar 

  • Tan, K. H., Chua, C. K., Leong, K. F., Cheah, C. M., Cheang, P., Abu Bakar, M. S. and Cha, S. W. (2003). “Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends.” Biomaterials, 24(18), 3115–3123.

    Article  Google Scholar 

  • Tan, K. H., Chua, C. K., Leong, K. F., Naing, M. W. and Cheah, C. M. (2005). “Fabrication and characterization of three-dimensional poly(ether-ether-ketone)/-hydroxyapatite biocomposite scaffolds using laser sintering.” Proceedings of the Institution of Mechanical Engineers Part H-Journal of Engineering in Medicine, 219(H3), 183–194.

    Article  Google Scholar 

  • Chua, C. K., Leong, K. F., Tan, K. H., Wiria, F. E. and Cheah, C. M. (2004). “Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects.” Journal of Materials Science: Materials in Medicine, 15(10), 1113–1121.

    Article  Google Scholar 

  • Cruz, F., Simoes, J., Coole, T. and Bucking, T. (2005) “Direct manufacturing of hydroxyapatite based bone implants by selective laser sintering.” 2nd International Conference on Advanced Research in Virtual and Rapid Prototyping, Leiria, Portugal.

    Google Scholar 

  • Coole, T., Cruz, F., Simoes, J. and Bocking, C. (2005). “Customisation of bio-ceramic implants using SLS.” Virtual Modeling and Rapid Manufacturing – Advanced Research in Virtual and Rapid Prototyping, Taylor & Francis Group, 147–151.

    Google Scholar 

  • Hao, L., Savalani, M. M., Zhang, Y., Tanner, K. E. and Harris, R. A. (2006). “Selective laser sintering of hydroxyapatite reinforced polyethylene composites for bioactive implants and tissue scaffold development.” Proceedings of the Institution of Mechanical Engineers Part H-Journal of Engineering in Medicine, 220(H4), 521–531.

    Article  Google Scholar 

  • Savalani, M. M., Hao, L. and Harris, R. A. (2006). “Evaluation of CO2 and Nd : YAG lasers for the selective laser sintering of HAPEX (R).” Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 220(2), 171–182.

    Article  Google Scholar 

  • Hao, L., Savalani, M. M., Zhang, Y., Tanner, K. E. and Harris, R. A. (2006). “The effect of material and processing conditions on characteristics of hydroxyapatite and high density polyethylene bio-composite by selective laser sintering.” Proceedings of the IMechE Part L, Journal of Materials: Design & Application, Accepted for publication.

    Google Scholar 

  • Goodridge, R. D., Lorrison, J. C., Dalgarno, K. W. and Wood, D. J. (2004). “Comparison of direct and indirect selective laser sintering of porous apatite mullite glass ceramics.” Glass Technology, 45(2), 94–96.

    Google Scholar 

  • Goodridge, R. D., Dalgarno, K. W. and Wood, D. J. (2006). “Indirect selective laser sintering of an apatite-mullite glass-ceramic for potential use in bone replacement applications.” Proceedings of the Institution of Mechanical Engineers Part H-Journal of Engineering in Medicine, 220(H1), 57–68.

    Article  Google Scholar 

  • Hayashi, T. (2005). “Selective laser sintering method using titanium powder sheet toward fabrication of porous bone substitutes.” JSME International Journal Series A, 48(4), 369–375.

    Article  Google Scholar 

  • Hunt, J. A., Callaghan, J. T., Sutcliffe, C. J., Morgan, R. H., Halford, B. and Black, R. A. (2005). “The design and production of Co-Cr alloy implants with controlled surface topography by CAD-CAM method and their effects on osseointegration.” Biomaterials, 26(29), 5890–5897.

    Article  Google Scholar 

  • Wehmoller, M., Warnke, P. H., Zilian, C. and Eufinger, H. (2005). “Implant design and production – a new approach by selective laser melting.” Computer Assisted Radiology and Surgery, 1281, 690–695.

    Google Scholar 

  • Hollander, D. A., von Walter, M., Wirtz, T., Sellei, R., Schmidt-Rohlfing, B., Paar, O. and Erli, H.-J. (2006). “Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming.” Biomaterials, 27(7), 955–963.

    Article  Google Scholar 

  • Zein, I., Hutmacher, D. W., Tan, K. C. and Teoh, S. H. (2002). “Fused deposition modeling of novel scaffold architectures for tissue engineering applications.” Biomaterials, 23(4), 1169–1185.

    Article  Google Scholar 

  • Endres, M., Hutmacher, D. W., Salgado, A. J., Kaps, C., Ringe, J., Reis, R. L., Sittinger, M., Brandwood, A. and Schantz, J. T. (2003). “Osteogenic induction of human bone marrow-derived mesenchymal progenitor cells in novel synthetic polymer-hydrogel matrices.” Tissue Engineering, 9(4), 689–702.

    Article  Google Scholar 

  • Rai, B., Teoh, S. H., Ho, K. H., Hutmacher, D. W., Cao, T., Chen, F. and Yacob, K. (2004). “The effect of rhBMP-2 on canine osteoblasts seeded onto 3D bioactive polycaprolactone scaffolds.” Biomaterials, 25(24), 5499–5506.

    Article  Google Scholar 

  • Shao, X. X., Hutmacher, D. W., Ho, S. T., Goh, J. C. H. and Lee, E. H. (2006). “Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits.” Biomaterials, 27(7), 1071–1080.

    Article  Google Scholar 

  • Yeong, W.-Y., Chua, C.-K., Leong, K.-F. and Chandrasekaran, M. (2004). “Rapid prototyping in tissue engineering: challenges and potential.” Trends in Biotechnology, 22(12), 643–652.

    Article  Google Scholar 

  • Wang, F., Shor, L., Darling, A., Khalil, S., Sun, W., Guceri, S. and Lau, A. (2004). “Precision extruding deposition and characterization of cellular poly-epsilon-caprolactone tissue scaffolds.” Rapid Prototyping Journal, 10(1), 42–49.

    Article  Google Scholar 

  • Xiong, Z., Yan, Y. N., Zhang, R. J. and Sun, L. (2001). “Fabrication of porous poly(L-lactic acid) scaffolds for bone tissue engineering via precise extrusion.” Scripta Materialia, 45(7), 773–779.

    Article  Google Scholar 

  • Xiong, Z., Yan, Y. N., Wang, S. G., Zhang, R. J. and Zhang, C. (2002). “Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition.” Scripta Materialia, 46(11), 771–776.

    Article  Google Scholar 

  • Yan, Y. N., Xiong, Z., Hu, Y. Y., Wang, S. G., Zhang, R. J. and Zhang, C. (2003). “Layered manufacturing of tissue engineering scaffolds via multi-nozzle deposition.” Materials Letters, 57(18), 2623–2628.

    Article  Google Scholar 

  • Landers, R., Hubner, U., Schmelzeisen, R. and Mulhaupt, R. (2002). “Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering.” Biomaterials, 23(23), 4437–4447.

    Article  Google Scholar 

  • Landers, R., Pfister, A., Hubner, U., John, H., Schmelzeisen, R. and Mulhaupt, R. (,y>2002) “Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques.” Journal of Materials Science, 37(15), 3107–3116.

    Google Scholar 

  • Carvalho, C., Landers, R., Mulhaupt, R., Hubner, U. and Schmelzeisen, R. (2005). “Fabrication of soft and hard biocompatible scaffolds using 3D-Bioplotting (TM).” Virtual Modeling and Rapid Manufacturing – Advanced Research in Virtual and Rapid Prototyping, 97–102.

    Google Scholar 

  • Li, J. P., de Wijn, J. R., Van Blitterswijk, C. A. and de Groot, K. (2006). “Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: Preparation and in vitro experiment.” Biomaterials, 27(8), 1223–1235.

    Article  Google Scholar 

  • Sachs, E., Cima, M., Williams, P., Brancazio, D. and Cornie, J. (1992). “Three dimensional printing. Rapid Tooling and prototypes directly from a CAD model.” Journal of Engineering for Industry, Transactions of the ASME, 114(4), 481–488.

    Article  Google Scholar 

  • Sherwood, J. K., Riley, S. L., Palazzolo, R., Brown, S. C., Monkhouse, D. C., Coates, M., Griffith, L. G., Landeen, L. K. and Ratcliffe, A. (2002). “A three-dimensional osteochondral composite scaffold for articular cartilage repair.” Biomaterials, 23(24), 4739–4751.

    Article  Google Scholar 

  • Dutta Roy, T., Simon, J. L., Ricci, J. L., Rekow, E. D., Thompson, V. P. and Parsons, J. R. (2003). “Performance of degradable composite bone repair products made via three-dimensional fabrication techniques.” Journal of Biomedical Materials Research – Part A, 66(2), 283–291.

    Google Scholar 

  • Seitz, H., Rieder, W., Irsen, S., Leukers, B. and Tille, C. (2005). “Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering.” Journal of Biomedical Materials Research – Part B Applied Biomaterials, 74(2), 782–788.

    Article  Google Scholar 

  • Chu, G. T. M., Brady, G. A., Miao, W., Halloran, J. W., Hollister, S. J. and Brei, D. (1999) “Ceramic SFF by direct and indirect stereolithography.” Solid Freeform and Additive Fabrication: a Materials Research Society Symposium, Boston, USA, 119–123.

    Google Scholar 

  • Chu, T.-M. G., Halloran, J. W., Hollister, S. J. and Feinberg, S. E. (2001). “Hydroxyapatite implants with designed internal architecture.” Journal of Materials Science: Materials in Medicine, 12(6), 471–478.

    Article  Google Scholar 

  • Chu, T.-M. G., Orton, D. G., Hollister, S. J., Feinberg, S. E. and Halloran, J. W. (2002). “Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures.” Biomaterials, 23(5), 1283–1293.

    Article  Google Scholar 

  • Singare, S., Dichen, L., Bingheng, L., Zhenyu, G. and Yaxiong, L. (2005). “Customized design and manufacturing of chin implant based on rapid prototyping.” Rapid Prototyping Journal, 11(2), 113–118.

    Article  Google Scholar 

  • Eppley, B. L. (2002). “Craniofacial reconstruction with computer-generate HTR patient-matched implants: use in primary bony tumor excision.” Journal of Craniofacial Surgery, 13(5), 650–657.

    Article  Google Scholar 

  • Bargar, W. L. (1989). “Shape the implant to the patient. A rationale for the use of custom-fit cementless total implants.” Clinical Orthoaedics Related Research, 249, 73–78.

    Google Scholar 

  • Peckitt, N. S. (2001) “Rapid prototypes and customized implants in maxillofacial reconstruction.” In Rapid Prototyping Casebook, Professional Engineering Publications, 191–200.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hao, L., Harris, R. (2008). Customised Implants for Bone Replacement and Growth. In: Bártolo, P., Bidanda, B. (eds) Bio-Materials and Prototyping Applications in Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-47683-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-47683-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-47682-7

  • Online ISBN: 978-0-387-47683-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics