Skip to main content

Engineered Scaffold Architecture Influences Soft Tissue Regeneration

  • Chapter
Bio-Materials and Prototyping Applications in Medicine

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Demarteau O, Pillet MS, Inaebrit A, Borens O, Quinn TM (2006) Biomechanical characterization and in vitro mechanical injury of elderly human femoral head cartilage: comparison to adult bovine humeral head cartilage. Osteoarthritis and Cartilage 14:589–596.

    Article  Google Scholar 

  2. Fiford RJ, Bilston LE (2005) The mechanical properties of rat spinal cord in vitro. J. Biomechanics 38:1509–1515.

    Article  Google Scholar 

  3. Greitz D (2006) Unraveling the riddle of syringomyelia. Neurosurg Rev. 29:251–264.

    Article  Google Scholar 

  4. Hollister SJ, Levy RA, Chu TM, Halloran JW, Feinberg SE. (2000) An image-based approach for designing and manufacturing craniofacial scaffolds. Int J Oral Maxillofac Surg 29:67–71.

    Article  Google Scholar 

  5. Hollister SJ, Maddox RD, Taboas JM. (2002) Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 23:4095–4103.

    Article  Google Scholar 

  6. Hollister SJ. (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524.

    Article  Google Scholar 

  7. Karageorgiou V, Kaplan D. (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491.

    Article  Google Scholar 

  8. Klisch SM, Lotz JC (1999) Application of a fiber-reinforced continuum theory to multiple deformations of the annulus fibrosus. J. Biomechanics 32:1027–1036.

    Article  Google Scholar 

  9. Kohles SS, Roberts JB, Upton ML, Wilson CG, Bonassar LJ, Schlichting AL (2001) Direct perfusion measurements of cancellous bone anisotropic permeability. J. Biomechanics 34:1197–1202.

    Article  Google Scholar 

  10. LeGeros RZ. (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin. Orthop. Rel. Res. 395:81–98.

    Article  Google Scholar 

  11. Li JP, Habibovic P, van den Doel M, Wilson CE, de Wijn JR, van Blitterswijk CA, de Groot K. (2007) Bone ingrowth in titanium implants produced by 3D fiber deposition. Biomaterials 28:2810–2820.

    Article  Google Scholar 

  12. Liao EE, Yaszemski MJ, Krebsbach PH, Hollister SJ (2006) Chondrocytic differentiation of porcine bone marrow stromal cells in designed poly(propylene fumarate) scaffolds. 6th International Cartilage Repair Society Symposium. San Diego, CA.

    Google Scholar 

  13. Liao E, Yaszemski M, Krebsbach P, Hollister S. (2007) Tissue-engineered cartilage constructs using composite hyaluronic acid/collagen I hydrogels and designed poly(propylene fumarate) scaffolds. Tissue Eng 13:537–550.

    Article  Google Scholar 

  14. Liao E, Yaszemski M, Krebsbach P, Hollister S. (submitted) Designed ellipsoidal pore architecture of biomaterial scaffolds enhances chondrogenic differentiation of BMSC and increases cartilage matrix synthesis.

    Google Scholar 

  15. Linninger AA, Xenos M, Zhu DC, Somayaji MR, Kondapalli S, Penn RD (2007) Cerebrospinal fluid flow in the normal and hydrocephalic human brain. IEEE Trans. Biomedical Engineering 54:291–302.

    Article  Google Scholar 

  16. Malda J, Martens DE, Tramper J, van Blitterswijk CA, Riesle J (2003) Cartilage tissue engineering: controversy in the effect of oxygen. Crit. Reviews in Biotechnology 23:175–194.

    Google Scholar 

  17. Malda J, Woodfield TBF, van der Vloodt F, Wilson C, Martens DE, Tramper J, van Blitterswijk CA, Riesle J. (2005) The effect of PEGT/PBT scaffold architecture on the composition of tissue engineered cartilage. Biomaterials 26:63–72.

    Article  Google Scholar 

  18. Moore MJ, Friedman JA, Lewellyn EB, Mantila SM, Krych AJ, Ameenuddin S, Knight AM, Lu L, Currier BL, Spinner RJ, Marsh RW, Windebank AJ, Yaszemski MJ (2006) Multiple channel scaffolds to promote spinal cord axon regeneration. Biomaterials 27:419–429.

    Article  Google Scholar 

  19. Mow VC, Ratcliffe A. (1997) Structure and function of articular cartilage and meniscus, in Basic Orthopaedic Biomechanics, 2nd Edition, Mow VC, Hayes WC eds., 113–177.

    Google Scholar 

  20. Nomura H, Katayama Y, Shoichet MS, Tator CH (2006) Complete spinal cord transection treated by implantation of a reinforced synthetic hydrogel channel results in syringomyelia and caudal migration of the rostral stump. Neurosurgery. 59:183–192.

    Article  Google Scholar 

  21. Nomura H, Tator CH, Shoicet MS (2006) Bioengineered strategies for spinal cord repair. J. Neurotrauma. 23:496–507.

    Article  Google Scholar 

  22. Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T (2006) Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials 27:5892–5900.

    Article  Google Scholar 

  23. Raghunath J, Rollo J, Sales KM, Bulter PE, Seifalian AM (2007) Biomaterials and scaffold design: key to tissue-engineering cartilage. Biotechnol. Appl. Biochem. 46:73–84.

    Article  Google Scholar 

  24. Tsai EC, Dalton PD, Shoichet MS, Tator CH (2004) Synthetic hydrogel guidance channels facilitate regeneration of adult rat brainstem motor axons after complete spinal cord transection. J. Neurotrauma. 21:789–804.

    Article  Google Scholar 

  25. Weinberg EJ, Kaazempur-Mofra MR. (2006) A large-strain finite element formulation for biological tissues with application to mitral valve leaflet tissue mechanics. J. Biomechanics 39:1557–1561.

    Article  Google Scholar 

  26. Wong DY, Krebsbach PH, Hollister SJ (2007a) Scaffold Architectures Affect Brain Cortex Regeneration. Abstract, TERMIS NA 2007 Conference and Exposition. Toronto, Canada.

    Google Scholar 

  27. Wong DY, Leveque JC, Brumblay H, Krebsbach PH, Hollister SJ, La-Marca F (2007b) Macro-architectures in Spinal Cord Implants Play a Role in Guidance and Regeneration. Abstract, TERMIS NA 2007 Conference and Exposition. Toronto, Canada.

    Google Scholar 

  28. Wu JZ, Cutlip RG, Andrew ME, Dong RG (2007) Simultaneous determination of the nonlinear-elastic properties of skin and subcutaneous tissue in unconfined compression tests. Skin Res. Tech. 13:34–42.

    Article  Google Scholar 

  29. Yamane S, Iwasaki N, Kasahara Y, Harada K, Majima T, Monde K, et al. (2007) Effect of pore size on in vitro cartilage formation using chitosan-based hyaluronic acid hybrid polymer fibers. J Biomed Mater Res A. 81:586–593.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wong, D.Y. et al. (2008). Engineered Scaffold Architecture Influences Soft Tissue Regeneration. In: Bártolo, P., Bidanda, B. (eds) Bio-Materials and Prototyping Applications in Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-47683-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-47683-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-47682-7

  • Online ISBN: 978-0-387-47683-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics