Skip to main content

Ion Channels in Shear Stress Sensing in Vascular Endothelium

Ion Channels in Vascular Mechanotransduction

  • Chapter
Molecular Sensors for Cardiovascular Homeostasis

Abstract

Endothelial cell (EC) responsiveness to fluid-mechanical shear stress is essential for normal vascular function and may play a role in the localization of early atherosclerotic lesions. Although ECs are known to be exquisitely sensitive to flow, the precise mechanisms by which ECs sense and respond to shear stress remain incompletely understood. The activation of flow-sensitive ion channels is one of the most rapid endothelial responses to shear stress; therefore, these ion channels have been proposed as candidate flow sensors. A central role for flowsensitive ion channels in EC shear sensing is supported by recent data demonstrating that blocking these ion channels profoundly affects downstream endothelial flow signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Langille, B.L. and O'Donnell, F., 1986, Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent, Science 231:405–7.

    Article  PubMed  CAS  Google Scholar 

  2. Pohl, U., Holtz, J., Busse, R. and Bassenge, E., 1986, Crucial role of endothelium in the vasodilator response to increased flow in vivo, Hypertension 8:37–44.

    PubMed  CAS  Google Scholar 

  3. Caro, C.G., Fitz-Gerald, J.M. and Schroter, R.C., 1969, Arterial wall shear and distribution of early atheroma in man, Nature 223:1159–60.

    Article  PubMed  CAS  Google Scholar 

  4. Nerem, R.M., 1992, Vascular fluid mechanics, the arterial wall, and atherosclerosis, J. Biomech. Eng. 114:274–82.

    PubMed  CAS  Google Scholar 

  5. Svindland, A. and Walloe, L., 1985, Distribution pattern of sudanophilic plaques in the descending thoracic and proximal abdominal human aorta, Atherosclerosis 57:219–24.

    Article  PubMed  CAS  Google Scholar 

  6. Asakura, T., and Karino, T., 1990, Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries, Circ. Res. 66:1045–66.

    PubMed  CAS  Google Scholar 

  7. Barakat, A.I., Karino, T., and Colton, C.K., 1997, Microcinematographic studies of flow patterns in the excised rabbit aorta and its major branches, Biorheology 34:195–221.

    Article  PubMed  CAS  Google Scholar 

  8. Sherwin, S.J., Shah, O., Doorly, D.J., Peiro, J., Papaharilaou, Y., Watkins, N., Caro, C.G. and Dumoulin, C.L., 2000, The influence of out-of-plane geometry on the flow within a distal end-to-side anastomosis, J. Biomech. Eng. 122:86–95.

    Article  PubMed  CAS  Google Scholar 

  9. Barakat, A.I., 1999, Responsiveness of vascular endothelium to shear stress: potential role of ion channels and cellular cytoskeleton (review), Int. J. Mol. Med. 4:323–32.

    PubMed  CAS  Google Scholar 

  10. Davies, P.F., 1995, Flow-mediated endothelial mechanotransduction, Physiol. Rev. 75:519–560.

    PubMed  CAS  Google Scholar 

  11. Fisher, A.B., Chien, S., Barakat, A.I. and Nerem, R.M., 2001, Endothelial cellular response to altered shear stress, Am. J. Physiol. Lung Cell Mol. Physiol. 281:L529–33.

    PubMed  CAS  Google Scholar 

  12. Malek, A.M. and Izumo, S., 1994, Molecular aspects of signal transduction of shear stress in the endothelial cell, J. Hypertens. 12:989–99.

    Article  PubMed  CAS  Google Scholar 

  13. Papadaki, M. and Eskin, S.G., 1997, Effects of fluid shear stress on gene regulation of vascular cells, Biotechnol. Prog. 13:209–21.

    Article  PubMed  CAS  Google Scholar 

  14. Resnick, N. and Gimbrone, M.A., Jr., 1995, Hemodynamic forces are complex regulators of endothelial gene expression, Faseb J 9:874–82.

    PubMed  CAS  Google Scholar 

  15. Traub, O. and Berk, B.C., 1998, Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force, Arterioscler. Thromb. Vasc. Biol. 18:677–85.

    PubMed  CAS  Google Scholar 

  16. Jacobs, E.R., Cheliakine, C., Gebremedhin, D., Birks, E.K., Davies, P.F. and Harder, D.R., 1995, Shear activated channels in cell-attached patches of cultured bovine aortic endothelial cells, Pflugers Archiv. Eur. J. Physiol. 431:129–31.

    Article  CAS  Google Scholar 

  17. Nakache, M. and Gaub, H.E., 1988, Hydrodynamic hyperpolarization of endothelial cells, Proc. Natl. Acad. Sci. USA 85:1841–1843.

    Article  PubMed  CAS  Google Scholar 

  18. Nakao, M., Ono, K., Fujisawa, S. and Iijima, T., 1999, Mechanical stress-induced Ca2+ entry and Cl− current in cultured human aortic endothelial cells, Am. J. Physiol. 276:C238–C249.

    PubMed  CAS  Google Scholar 

  19. Butler, P.J., Norwich, G., Weinbaum, S. and Chien, S., 2001, Shear stress induces a time- and position-dependent increase in endothelial cell membrane fluidity, Am. J. Physiol. 280:C962–C969.

    CAS  Google Scholar 

  20. Haidekker, M.A., L'Heureux, N. and Frangos, J.A., 2000, Fluid shear stress increases membrane fluidity in endothelial cells: a study with DCVJ fluorescence, Am. J. Physiol. Heart Circ. Physiol. 278:H1401–6.

    PubMed  CAS  Google Scholar 

  21. Gudi, S., Nolan, J.P. and Frangos, J.A., 1998, Modulation of GTPase activity of G proteins by fluid shear stress and phospholipid composition, Proc. Natl. Acad. Sci. USA 95:2515–9.

    Article  PubMed  CAS  Google Scholar 

  22. Gudi, S.R., Clark, C.B. and Frangos, J.A., 1996, Fluid flow rapidly activates G proteins in human endothelial cells. Involvement of G proteins in mechanochemical signal transduction, Circ. Res. 79:834–9.

    PubMed  CAS  Google Scholar 

  23. Ziegelstein, R.C., Cheng, L. and Capogrossi, M.C., 1992, Flow-dependent cytosolic acidification of vascular endothelial cells, Science 258:656–9.

    Article  PubMed  CAS  Google Scholar 

  24. Ando, J., Komatsuda, T., and Kamiya, A., 1988, Cytoplasmic calcium response to fluid shear stress in cultured vascular endothelial cells, In Vitro Cell Dev. Biol. 24: 871–7.

    Article  PubMed  CAS  Google Scholar 

  25. Dull, R.O. and Davies, P.F., 1991, Flow modulation of agonist (ATP)-response (Ca2+) coupling in vascular endothelial cells, Am. J. Physiol. 261:H149–54.

    PubMed  CAS  Google Scholar 

  26. Geiger, R.V., Berk, B.C., Alexander, R.W. and Nerem, R.M., 1992, Flow-induced calcium transients in single endothelial cells: spatial and temporal analysis, Am. J. Physio.l 262:C1411–7.

    CAS  Google Scholar 

  27. Shen, J., Luscinskas, F.W., Connolly, A., Dewey, C.F., Jr. and Gimbrone, M.A., Jr., 1992, Fluid shear stress modulates cytosolic free calcium in vascular endothelial cells, Am. J. Physiol. 262:C384–90.

    PubMed  CAS  Google Scholar 

  28. Shyy, J.Y. and Chien, S., 1997, Role of integrins in cellular responses to mechanical stress and adhesion, Curr. Opin. Cell Biol. 9:707–13.

    Article  PubMed  CAS  Google Scholar 

  29. Tzima, E., del Pozo, M.A., Shattil, S.J., Chien, S. and Schwartz, M.A., 2001, Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment, Embo. J. 20:4639–47.

    Article  PubMed  CAS  Google Scholar 

  30. Tseng, H., Peterson, T.E. and Berk, B.C., 1995, Fluid shear stress stimulates mitogen-activated protein kinase in endothelial cells, Circ. Res. 77:869–78.

    PubMed  CAS  Google Scholar 

  31. Yan, C., Takahashi, M., Okuda, M., Lee, J.D. and Berk, B.C., 1999, Fluid shear stress stimulates big mitogen-activated protein kinase 1 (BMK1) activity in endothelial cells. Dependence on tyrosine kinases and intracellular calcium, J. Biol. Chem. 274:143–50.

    Article  PubMed  CAS  Google Scholar 

  32. Dimmeler, S., Assmus, B., Hermann, C., Haendeler, J. and Zeiher, A.M., 1998, Fluid shear stress stimulates phosphorylation of Akt in human endothelial cells: involvement in suppression of apoptosis, Circ. Res. 83:334–41.

    PubMed  CAS  Google Scholar 

  33. Helmke, B.P., Goldman, R.D. and Davies, P.F., 2000, Rapid displacement of vimentin intermediate filaments in living endothelial cells exposed to flow, Circ. Res. 86:745–52.

    PubMed  CAS  Google Scholar 

  34. Lan, Q., Mercurius, K.O. and Davies, P.F., 1994, Stimulation of transcription factors NF kappa B and AP1 in endothelial cells subjected to shear stress, Biochem. Biophys. Res. Commun. 201:950–6.

    Article  PubMed  CAS  Google Scholar 

  35. Hsieh, H.J., Li, N.Q. and Frangos, J.A., 1993, Pulsatile and steady flow induces c-fos expression in human endothelial cells, J. Cell Physiol. 154:143–51.

    Article  PubMed  CAS  Google Scholar 

  36. Ranjan, V. and Diamond, S.L., 1993, Fluid shear stress induces synthesis and nuclear localization of c-fos in cultured human endothelial cells, Biochem. Biophys. Res. Commun. 196:79–84.

    Article  PubMed  CAS  Google Scholar 

  37. Braddock, M., Schwachtgen, J.L., Houston, P., Dickson, M.C., Lee, M.J. and Campbell, C.J., 1998, Fluid shear stress modulation of gene expression in endothelial cells, News Physiol. Sci. 13:241–246.

    PubMed  CAS  Google Scholar 

  38. Garcia-Cardena, G., Comander, J., Anderson, K.R., Blackman, B.R. and Gimbrone, M.A., Jr., 2001, Biomechanical activation of vascular endothelium as a determinant of its functional phenotype, Proc. Natl. Acad. Sci. USA 98:4478–85.

    Article  PubMed  CAS  Google Scholar 

  39. Malek, A.M., Gibbons, G.H., Dzau, V.J. and Izumo, S., 1993, Fluid shear stress differentially modulates expression of genes encoding basic fibroblast growth factor and platelet-derived growth factor B chain in vascular endothelium, J. Clin. Invest. 92:2013–21.

    PubMed  CAS  Google Scholar 

  40. Yoshizumi, M., Kurihara, H., Sugiyama, T., Takaku, F., Yanagisawa, M., Masaki, T. and Yazaki, Y., 1989, Hemodynamic shear stress stimulates endothelin production by cultured endothelial cells, Biochem. Biophys. Res. Commun. 161:859–64.

    Article  PubMed  CAS  Google Scholar 

  41. Malek, A.M., Izumo, S. and Alper, S.L., 1999, Modulation by pathophysiological stimuli of the shear stress-induced up-regulation of endothelial nitric oxide synthase expression in endothelial cells, Neurosurgery 45:334–44; discussion 344–5.

    Article  PubMed  CAS  Google Scholar 

  42. Noris, M., Morigi, M., Donadelli, R., Aiello, S., Foppolo, M., Todeschini, M., Orisio, S., Remuzzi, G. and Remuzzi, A., 1995, Nitric oxide synthesis by cultured endothelial cells is modulated by flow conditions, Circ. Res. 76:536–43.

    PubMed  CAS  Google Scholar 

  43. Uematsu, M., Ohara, Y., Navas, J.P., Nishida, K., Murphy, T.J., Alexander, R.W., Nerem, R.M. and Harrison, D.G., 1995, Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress, Am. J. Physiol. 269:C1371–8.

    PubMed  CAS  Google Scholar 

  44. Bao, X., Lu, C., and Frangos, J.A., 1999, Temporal gradient in shear but not steady shear stress induces PDGF-A and MCP-1 expression in endothelial cells: role of NO, NF kappa B, and egr-1, Arterioscler. Thromb. Vasc. Biol. 19:996–1003.

    PubMed  CAS  Google Scholar 

  45. Hsieh, H.J., Li, N.Q. and Frangos, J.A., 1991, Shear stress increases endothelial platelet-derived growth factor mRNA levels, Am. J. Physiol. 260:H642–6.

    PubMed  CAS  Google Scholar 

  46. Malek, A.M., Greene, A.L. and Izumo, S., 1993, Regulation of endothelin 1 gene by fluid shear stress is transcriptionally mediated and independent of protein kinase C and cAMP, Proc. Natl. Acad. Sci. USA 90:5999–6003.

    Article  PubMed  CAS  Google Scholar 

  47. Lum, R.M., Wiley, L.M. and Barakat, A.I., 2000, Influence of different forms of fluid shear stress on vascular endothelial TGF-beta1 mRNA expression, Int. J. Mol. Med. 5:635–41.

    PubMed  CAS  Google Scholar 

  48. Nagel, T., Resnick, N., Atkinson, W.J., Dewey, C.F., Jr. and Gimbrone, M.A., Jr., 1994, Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells, J. Clin. Invest. 94:885–91.

    PubMed  CAS  Google Scholar 

  49. Ohno, M., Cooke, J.P., Dzau, V.J. and Gibbons, G.H., 1995, Fluid shear stress induces endothelial transforming growth factor beta-1 transcription and production: modulation by potassium channel blockade, J. Clin. Invest. 95:1363–9.

    PubMed  CAS  Google Scholar 

  50. Tsuboi, H., Ando, J., Korenaga, R., Takada, Y. and Kamiya, A., 1995, Flow stimulates ICAM-1 expression time and shear stress dependently in cultured human endothelial cells, Biochem. Biophys. Res. Commun. 206:988–96.

    Article  PubMed  CAS  Google Scholar 

  51. Kudo, S., Morigaki, R., Saito, J., Ikeda, M., Oka, K. and Tanishita, K., 2000, Shear-stress effect on mitochondrial membrane potential and albumin uptake in cultured endothelial cells, Biochem. Biophys. Res. Commun. 270:616–21.

    Article  PubMed  CAS  Google Scholar 

  52. Sprague, E.A., Steinbach, B.L., Nerem, R.M. and Schwartz, C.J., 1987, Influence of a laminar steady-state fluid-imposed wall shear stress on the binding, internalization, and degradation of low-density lipoproteins by cultured arterial endothelium, Circulation 76:648–56.

    PubMed  CAS  Google Scholar 

  53. Nerem, R.M., Levesque, M.J. and Cornhill, J.F., 1981, Vascular endothelial morphology as an indicator of the pattern of blood flow, J. Biomech. Eng. 103:172–6.

    PubMed  CAS  Google Scholar 

  54. Ookawa, K., Sato, M. and Ohshima, N., 1992, Changes in the microstructure of cultured porcine aortic endothelial cells in the early stage after applying a fluid-imposed shear stress, J. Biomech. 25:1321–8.

    Article  PubMed  CAS  Google Scholar 

  55. Wechezak, A.R., Viggers, R.F. and Sauvage, L.R., 1985, Fibronectin and F-actin redistribution in cultured endothelial cells exposed to shear stress, Lab. Invest. 53:639–47.

    PubMed  CAS  Google Scholar 

  56. Dewey, C.F., Jr., Bussolari, S.R., Gimbrone, M.A., Jr. and Davies, P.F., 1981, The dynamic response of vascular endothelial cells to fluid shear stress, J. Biomech. Eng. 103:177–85.

    PubMed  Google Scholar 

  57. Eskin, S.G., Ives, C.L., McIntire, L.V. and Navarro, L.T., 1984, Response of cultured endothelial cells to steady flow, Microvasc. Res. 28:87–94.

    Article  PubMed  CAS  Google Scholar 

  58. Helmlinger, G., Geiger, R.V., Schreck, S. and Nerem, R.M., 1991, Effects of pulsatile flow on cultured vascular endothelial cell morphology, J. Biomech. Eng. 113:123–31.

    PubMed  CAS  Google Scholar 

  59. Helmlinger, G., Berk, B.C. and Nerem, R.M., 1995, Calcium responses of endothelial cell monolayers subjected to pulsatile and steady laminar flow differ, Am. J. Physiol. 269:C367–75.

    PubMed  CAS  Google Scholar 

  60. Chappell, D.C., Varner, S.E., Nerem, R.M., Medford, R.M. and Alexander, R.W., 1998, Oscillatory shear stress stimulates adhesion molecule expression in cultured human endothelium, Circ. Res. 82:532–9.

    PubMed  CAS  Google Scholar 

  61. Suvatne, J., Barakat, A.I. and O'Donnell, M.E., 2001, Flow-induced expression of endothelial N-K-Cl cotransport: dependence on K+ and Cl− channels, Am. J. Physiol. 280:C216–C227.

    CAS  Google Scholar 

  62. Nilius, B., Viana, F. and Droogmans, G., 1997, Ion channels in vascular endothelium, Ann. Rev. Physiol. 59:145–170.

    Article  CAS  Google Scholar 

  63. Nilius, B. and Droogmans, G., 2001, Ion channels and their functional role in vascular endothelium, Physiol. Rev. 81:1415–1459.

    PubMed  CAS  Google Scholar 

  64. Olesen, S.P., Clapham, D.E. and Davies, P.F., 1988, Hemodynamic shear-stress activates a K+ current in vascular endothelial cells, Nature 331:168–170.

    Article  PubMed  CAS  Google Scholar 

  65. Lieu, D.K., Pappone, P.A. and Barakat, A.I., 2004, Differential membrane potential and ion current responses to different types of shear stress in vascular endothelial cells, Am. J. Physiol. 286:C1367–C1375.

    Article  CAS  Google Scholar 

  66. Forsyth, S.E., Hoger, A. and Hoger, J.H., 1997, Molecular cloning and expression of a bovine endothelial inward rectifier potassium channel, Febs. Lett. 409:277–282.

    Article  PubMed  CAS  Google Scholar 

  67. Hoger, J.H., Ilyin, V.I., Forsyth, S. and Hoger, A., 2002, Shear stress regulates the endothelial Kir2.1 ion channel, Proc. Natl. Acad. Sci. USA 99:7780–7785.

    Article  PubMed  CAS  Google Scholar 

  68. Qui, W., Hu, Q., Paolocci, N., Ziegelstein, R.C. and Kass, D.A., 2003, Differential effects of pulsatile versus steady flow on coronary endothelial membrane potential, Am. J. Physiol. 285:H341–H346.

    Google Scholar 

  69. Brakemeier, S., Kersten, A., Eichler, I., Grgic, I., Zakrzewicka, A., Hopp, H., Kohler, R. and Hoyer, J., 2003, Shear stress-induced up-regulation of the intermediate-conductance Ca2+-activated K+ channel in human endothelium, Cardio. Res. 60:488–496.

    Article  CAS  Google Scholar 

  70. Jow, F. and Numann, R., 1999, Fluid flow modulates calcium entry and activates membrane currents in cultured human aortic endothelial cells, J. Membrane Biol. 171:127–139.

    Article  CAS  Google Scholar 

  71. Chatterjee, S., Al-Mehdi, A., Levitan, I., Stevens, T. and Fisher, A.B., 2003, Shear stress increases expression of a KATP Channel in rat and bovine pulmonary vascular endothelial cells, Am. J. Physiol. Cell Physiol. 285:C959–C967.

    PubMed  CAS  Google Scholar 

  72. Romaneneko, V.G., Rothblat, G.H. and Levitan, I., 2002, Modulation of endothelial inward-rectifier K+ current by optical isomers of cholesterol, Biophys. J. 83:3211–3222.

    Google Scholar 

  73. Barakat, A.I., Leaver, E.V., Pappone, P.A., and Davies, P.F., 1999, A flow-activated chloride-selective membrane current in vascular endothelial cells, Circ. Res. 85:820–828.

    PubMed  CAS  Google Scholar 

  74. Romanenko, V.G., Davies, P.F. and Levitan, I., 2002, Dual effect of fluid shear stress on volume-regulated anion current in bovine aortic endothelial cells, Am. J. Physiol. 282:C708–C718.

    CAS  Google Scholar 

  75. Trouet, D., Hermans, D., Droogmans, G., Nilius, B. and Eggermont, J., 2001, Inhibition of volume-regulated anion channels by dominant-negative caveolin-1, Biochem. Biophys. Res. Commun. 284:461–465.

    Article  PubMed  CAS  Google Scholar 

  76. Levitan, I., Christian, A.E., Tulenko, T.N. and Rothblat, G.H., 2000, Membrane cholesterol content modulates activation of volume-regulated anion current in bovine endothelial cells, J. Gen. Physiol. 115:405–416.

    Article  PubMed  CAS  Google Scholar 

  77. Schwarz, G., Droogmans, G. and Nilius, B., 1992, Shear stress induced membrane currents and calcium transients in human vascular endothelial cells, Pflügers Archiv. Eur. J. Physiol. 421:394–396.

    Article  CAS  Google Scholar 

  78. Brakemeier, S., Eichler, I., Hopp, H., Kohler, R. and Hoyer, J., 2002, Up-regulation of endothelial stretch-activated cation channels by fluid shear stress, Cardio. Res. 53:209–218.

    Article  CAS  Google Scholar 

  79. Traub, O., T. Ishida, M. Ishida, J.C. Tupper, B.C. Berk, 1999, Shear stress-mediated extracellular signal-regulated kinase activation is regulated by sodium in endothelial cells, J. Bio.l Chem. 274:20144–20150.

    Article  CAS  Google Scholar 

  80. Moccia, F., Villa, A. and Tanzi, F., 2000, Flow-activated Na+ and K+ current in cardiac microvascular endothelial cells, J. Mol. Cell. Cardiol. 32:1589–1593.

    Article  PubMed  CAS  Google Scholar 

  81. Kwan, H., Leung, P., Huang, Y. and Yao, X., 2003, Depletion of intracellular Ca2+ stores sensitizes the flow-induced Ca2+ influx in rat endothelial cells, Circ. Res. 92:286–292.

    Article  PubMed  CAS  Google Scholar 

  82. Ziegelstein, R.C., Blank, P.S., Cheng, L. and Capogrossi, M.C., 1998, Cytosolic Alkalinization of vascular endothelial cells produced by an abrupt reduction in fluid shear stress, Circ. Res. 82:803–809.

    PubMed  CAS  Google Scholar 

  83. Sabirov, R.Z., Prenen, J., Droogmans, G. and Nilius, B., 2000, Extra- and Intracellular Proton-Binding Sites of Volume-Regulated Anion Channels, J. Membrane Biol. 177:13–22.

    Article  CAS  Google Scholar 

  84. Cooke, J.P., Rossitch, E., Jr., Andon, N.A., Loscalzo, J. and Dzau, V.J., 1991, Flow activates an endothelial potassium channel to release an endogenous nitrovasodilator, J. Clin. Invest. 88:1663–71.

    Article  PubMed  CAS  Google Scholar 

  85. Sachs, F. and Morris, C. (1998) in Rev. Physio. Biochem. Pharmacol. (Springer, Berlin), pp. 1–78.

    Google Scholar 

  86. Evans, E. and Needham, D., 1987, Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion, and colloidal interactions, J. Phys. Chem. 91:4219–4228.

    Article  CAS  Google Scholar 

  87. Hamill, O.P. and McBride Jr., D.W., 1997, Induced membrane hypo/hyper-mechanosensitivity: a limitation of patch-clamp recording, Ann. Rev. Physiol. 59:621–31.

    Article  CAS  Google Scholar 

  88. Downey, G.P., Grinstein, S., Sue, A.Q.A., Czaban, B. and Chan, C.K., 1995, Volume regulation in leukocytes: requirement for an intact cytoskeleton, J. Cell. Physiol. 163:96–104.

    Article  PubMed  CAS  Google Scholar 

  89. Su, X., Wachtel, R.E. and Gebhart, G.F., 2000, Mechanosensitive potassium channels in rat colon sensory neurons, J. Neurophysiol. 84:836–43.

    PubMed  CAS  Google Scholar 

  90. Romanenko, V.G., Rothblat, G. H. and Levitan, I., 2002, Modulation of Endothelial Inward-Rectifier K+ Current by Optical Isomers of Cholesterol, Biophys. J. 83:3211–3222.

    Article  PubMed  CAS  Google Scholar 

  91. Ohno, M., Gibbons, G.H., Dzau, V.J. and Cooke, J.P., 1993, Shear-stress elevates endothelial cGMP: role of a potassium channel and G-protein coupling, Circulation 88:193–197.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Barakat, A.I., Lieu, D.K., Gojova, A. (2007). Ion Channels in Shear Stress Sensing in Vascular Endothelium. In: Wang, D.H. (eds) Molecular Sensors for Cardiovascular Homeostasis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-47530-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-47530-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-47528-8

  • Online ISBN: 978-0-387-47530-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics