Networks in Cell Biology

  • Carlos Rodríguez-Caso
  • Ricard V. Solé


Both natural and artificial systems can be understood as the interaction of a given set of elements. Interactions lead to global behavior often beyond the simple sum of the properties of each element. Interactions create most behaviors around us: A meeting between two people, file transfers among computers, predator-prey dynamics, cell responses, complex protein formation or DNA-protein binding. Erom these interactions large-scale systems emerge as a mesh of relations: Society, Internet, food webs, organisms, tissues or cells. Such organizations cannot be reduced to individual properties and a global view is required.


Metabolic Network Betweenness Centrality Real Network Average Path Length Network Motif 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert, R. (2005). Scale-free networks in cell biology. J. Cell Sci., 118 (Pt 21):4947–57.PubMedCrossRefGoogle Scholar
  2. Albert, R. and Barabasi, A. L. (2002). Statistical mechanics of complex networks. Rev. Modern Phys., 74:47–97.CrossRefGoogle Scholar
  3. Albert, R., Jeong, H., and Barabasi, A. L. (1999). Diameter of the world-wide web. Nature, 401:130–131.CrossRefGoogle Scholar
  4. Albert, R., Jeong, H., and Barabasi, A. L. (2000). Error and attack tolerance of complex networks. Nature, 406(6794):378–82.PubMedCrossRefGoogle Scholar
  5. Amaral, L.A.N., Scala, A., Barthél’emy, M., and H.E., Standley (2000). Classes of small-world networks. Proc. Natl. Acad. Sci. USA, 97:11149–11152.PubMedCrossRefGoogle Scholar
  6. Amoutzias, G. D., Robertson, D. L., Oliver, S. G., and Bornberg-Bauer, E. (2004). Convergent networks by single-gene duplications in higher eukaryotes. EMBO Rep., 5(3):274 9.PubMedCrossRefGoogle Scholar
  7. Barabasi, A.L. and Oltvai, Z.N. (2004). Network biology: Understanding the cell’s functional organization. Nat. Rev. Genet., 5(2):101–13.PubMedCrossRefGoogle Scholar
  8. Baron, M., Norman, D.G., and Campbell, I.D. (1991). Protein modules. Trends Biochem. Sci., 16(1):13–17.PubMedCrossRefGoogle Scholar
  9. Branden, C. and Tooze, J. (1999). Introduction to Protein Structure. Garland Publishing, Inc., New York.Google Scholar
  10. Davidson, I. (2003). The genetics of tbp and tbp-related factors. Trends Biochem. Sci., 28(7):391–8.PubMedCrossRefGoogle Scholar
  11. Dimova, D. K. and Dyson, N. J. (2005). The E2F transcriptional network: Old acquaintances with new faces. Oncogene, 24(17):2810–26.PubMedCrossRefGoogle Scholar
  12. Dorogovtsev, S. N. and Mendes, J. F. F. (2003). Evolution of networks: from biological nets to the internet and WWW. Oxford University Press., Oxford.Google Scholar
  13. Erdös, P. and Rényi, A. (1960). On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci., 5:17–60.Google Scholar
  14. Fernández, P. and Solé, R. V. (2005). Graphs as models of large-scale biochemical organization. In Bonchev, D. and Rouvray, D. H., editors, Complexity in chemistry, biology and ecology. Springer, New York.Google Scholar
  15. Ferrer, R. and Solé, R.V. (2001). The small world of human language. Proc. Roy. Soc. Lond. B, 268:2261–2265.CrossRefGoogle Scholar
  16. Gangloff, Y. G., Romier, C., Thuault, S., Werten, S., and Davidson, I. (2001). The histone fold is a key structural motif of transcription factor tfiid. Trends Biochem. Sci., 26(4):250–7.PubMedCrossRefGoogle Scholar
  17. Gavin, A. C., Bosche, M., and Krause, R. et al. (2002). Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 415(6868): 141–7.PubMedCrossRefGoogle Scholar
  18. Gayther, S. A., Batley, S. J., and Linger, L. et al. (2000). Mutations truncating the EP300 acetylase in human cancers. Nat. Genet., 24(3):300–3.PubMedCrossRefGoogle Scholar
  19. Giot, L., Bader, J. S., and Brouwer, C. et al. (2003). A protein interaction map of drosophila melanogaster. Science, 302(5651):1727–36.PubMedCrossRefGoogle Scholar
  20. Guelzim, N., Bottani, S., Bourgine, P., and Kepes, F. (2002). Topological and causal structure of the yeast transcriptional regulatory network. Nat. Genet., 31(1):60–3.PubMedCrossRefGoogle Scholar
  21. Han, J. D., Dupuy, D., Bertin, N., Cusick, M. E., and Vidal, M. (2005). Effect of sampling on topology predictions of protein-protein interaction networks. Nat. Biotechnol, 23(7):839–44.PubMedCrossRefGoogle Scholar
  22. Hartl, M., Bader, A.G., and Bister, K. (2003). Molecular targets of the oncogenic transcription factor jun. Curr. Cancer Drug Targets, 3(1):41–55.PubMedCrossRefGoogle Scholar
  23. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., and Sakaki, Y. (2001). A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA, 98(8):4569–74.PubMedCrossRefGoogle Scholar
  24. Jeong, H., Mason, S.P., Barabasi, A.L., and Oltvai, Z.N. (2001). Lethality and centrality in protein networks. Nature, 411(6833):41–2.PubMedCrossRefGoogle Scholar
  25. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., and Barabasi, A. L. (2000). The large-scale organization of metabolic networks. Nature, 407(6804):651–4.PubMedCrossRefGoogle Scholar
  26. Joyce, D., Albanese, C, Steer, J., Fu, M., Bouzahzah, B., and Pestell, R.G. (2001). Nf-κb and cell-cycle regulation: the cyclin connection. Cytokine Growth Factor Rev, 12(1):73–90.PubMedCrossRefGoogle Scholar
  27. Koide, R., Kobayashi, S., Shimohata, T., Ikeuchi, T., Maruyama, M., Saito, M., Yamada, M., Takahashi, H., and Tsuji, S. (1999). A neurological disease caused by an expanded cag trinucleotide repeat in the tata-binding protein gene: a new polyglutamine disease? Hum. Mol. Genet, 8(11):2047–53.PubMedCrossRefGoogle Scholar
  28. Laudet, V. (1997). Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor. J. Mol. Endocrinol, 19(3):207–26.PubMedCrossRefGoogle Scholar
  29. Ledent, V., Paquet, O., and Vervoort, M. (2002). Phylogenetic analysis of the human basic helix-loop-helix proteins. Genome Biol., 3(6):RESEARCH0030.Google Scholar
  30. Lee, T.I., Rinaldi, N.J., and Robert, F. et al. (2002). Transcriptional regulatory networks in saccharomyces cerevisiae. Science, 298(5594):799–804.PubMedCrossRefGoogle Scholar
  31. Lee, T.I. and Young, R.A. (1998). Regulation of gene expression by tbp-associated proteins. Genes Dev., 12(10):1398–408.PubMedGoogle Scholar
  32. Levine, M. and Tjian, R. (2003). Transcription regulation and animal diversity. Nature, 424(6945):147–51.PubMedCrossRefGoogle Scholar
  33. Li, S., Armstrong, C. M., Bertin, N., Ge, H., Milstein, S., Boxem, M., Vidalain, P. O., Han, J. D., Chesneau, A., Hao, T., Goldberg, D. S., Li, N., Martinez, M., Rual, J. F., Lamesch, P., Xu, L., Tewari, M., Wong, S. L., Zhang, L. V., Berriz, G. F., Jacotot, L., Vaglio, P., Reboul, J., Hirozane-Kishikawa, T., Li, Q., Gabel, H. W., Elewa, A., Baumgartner, B., Rose, D. J., Yu, H., Bosak, S., Sequerra, R., Eraser, A., Mango, S. E., Saxton, W. M., Strome, S., Van Den Heuvel, S., Piano, F., Vandenhaute, J., Sardet, C., Gerstein, M., Doucette-Stamm, L., Gunsalus, K. C., Harper, J. W., Cusick, M. E., Roth, F. P., Hill, D. E., and Vidal, M. (2004). A map of the interactome network of the metazoan c. elegans. Science, 303(5657):540–3.PubMedCrossRefGoogle Scholar
  34. Liu, H., Dibling, B., Spike, B., Dirlam, A., and Macleod, K. (2004). New roles for the rb tumor suppressor protein. Curr. Opin. Genet. Dev., 14(1):55–64.PubMedCrossRefGoogle Scholar
  35. Ma’ayan, A., Jenkins, S.L., Neves, S., Hasseldine, A., Grace, E., Dubin-Thaler, B., Eungdamrong, N.J., Weng, G., Ram, P.T., Rice, J.J., Kershenbaum, A., Stolovitzky, G.A., Blitzer, R.D., and Iyengar, R. (2005). Formation of regulatory patterns during signal propagation in a mammalian cellular network. Science, 309(5737):1078–83.PubMedCrossRefGoogle Scholar
  36. Maslov, S. and Sneppen, K. (2002). Specificity and stability in topology of protein networks. Science, 296(5569):910–3.PubMedCrossRefGoogle Scholar
  37. McCraith, S., Holtzman, T., Moss, B., and Fields, S. (2000). Genome-wide analysis of vaccinia virus protein-protein interactions. Proc. Natl. Acad. Sci. USA, 97(9):4879–84.PubMedCrossRefGoogle Scholar
  38. Milgram, S. (1967). The small-world problem. Psychol. Today, 2:60–67.Google Scholar
  39. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and Alon, U. (2002). Network motifs: Simple building blocks of complex networks. Science, 298(5594):824–7.PubMedCrossRefGoogle Scholar
  40. Morgenstern, B. and Atchley, W. R. (1999). Evolution of BHLH transcription factors: modular evolution by domain shuffling? Mol. Biol. Evol., 16(12):1654–63.PubMedGoogle Scholar
  41. Newman, M. (2002a). Random graphs as models of networks. In Bornholdt, S. and Schuster, H.G., editors, Handbook of Graphs and Networks. Wiley-VHC, Weinheim.Google Scholar
  42. Newman, M. E. (2002b). Assortative mixing in networks. Phys. Rev. Lett., 89(20):208701.PubMedCrossRefGoogle Scholar
  43. Okuno, M., Kojima, S., Matsushima-Nishiwaki, R., Tsurumi, H., Muto, Y., Friedman, S. L., and Moriwaki, H. (2004). Retinoids in cancer chemoprevention. Curr. Cancer Drug Targets, 4(3):285–98.PubMedCrossRefGoogle Scholar
  44. Ouzounis, C. A. and Karp, P. D. (2000). Global properties of the metabolic map of escherichia coli. Genome Res., 10(4):568–76.PubMedCrossRefGoogle Scholar
  45. Palla, G., Derenyi, I., Farkas, I., and Vicsek, T. (2005). Uncovering the over-lapping community structure of complex networks in nature and society. Nature, 435(7043):814–8.PubMedCrossRefGoogle Scholar
  46. Pastor-Satorras, R., Smith, E., and Solé, R.V. (2003). Evolving protein interaction networks through gene duplication. J. Theor. Biol, 222(2):199–210.PubMedCrossRefGoogle Scholar
  47. Pelengaris, S. and Khan, M. (2003). The many faces of c-myc. Arch. Biochem. Biophys., 416(2):129–36.PubMedCrossRefGoogle Scholar
  48. Ptacek, J., Devgan, G., Michaud, G., Zhu, H., Zhu, X., Fasolo, J., Guo, H., Jona, G., Breitkreutz, A., Sopko, R., McCartney, R.R., Schmidt, M.C., Rachidi, N., Lee, S.J., Mah, A.S., Meng, L., Stark, M.J., Stern, D.F., De Virgilio, C., Tyers, M., Andrews, B., Gerstein, M., Schweitzer, B., Predki, P.F., and Snyder, M. (2005). Global analysis of protein phosphorylation in yeast. Nature, 438(7068):679–84.PubMedCrossRefGoogle Scholar
  49. Quong, M. W., Romanow, W. J., and Murre, C. (2002). E protein function in lymphocyte development. Annu. Rev. Immunol., 20:301–22.PubMedCrossRefGoogle Scholar
  50. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., and Parisi, D. (2004). Defining and identifying communities in networks. Proc. Natl. Acad. Sci. USA, 101(9):2658–63.PubMedCrossRefGoogle Scholar
  51. Rain, J.C., Selig, L., De Reuse, H., Battaglia, V., Reverdy, C., Simon, S., Lenzen, G., Petel, F., Wojcik, J., Schachter, V., Chemama, Y., Labigne, A., and Legrain, P. (2001). The protein-protein interaction map of Helicobacter pylori. Nature, 409(6817):211–5.PubMedCrossRefGoogle Scholar
  52. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., and Barabasi, A.L. (2002). Hierarchical organization of modularity in metabolic networks. Science, 297(5586):1551–5.PubMedCrossRefGoogle Scholar
  53. Riechmann, J.L., Heard, J., Martin, G., Reuber, L., Jiang, C., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O.J., Samaha, R.R., Creelman, R., Pilgrim, M., Broun, P., Zhang, J.Z., Ghandehari, D., Sherman, B.K., and Yu, G. (2000). Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science, 290(5499):2105–10.PubMedCrossRefGoogle Scholar
  54. Rodriguez-Caso, C., Medina, M.A., and Solé, R.V. (2005). Topology, tinkering and evolution of the human transcription factor network. FEBS J. 272(24):6423–34.PubMedCrossRefGoogle Scholar
  55. Rual, J.F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li, N., Berriz, G.F., Gibbons, F.D., Dreze, M., Ayivi-Guedehoussou, N., Klitgord, N., Simon, C., Boxem, M., Milstein, S., Rosenberg, J., Goldberg, D.S., Zhang, L. V., Wong, S.L., Franklin, G., Li, S., Albala, J.S., Lim, J., Fraughton, C., Llamosas, E., Cevik, S., Bex, C., Lamesch, P., Sikorski, R.S., Vandenhaute, J., Zoghbi, H.Y., Smolyar, A., Bosak, S., Sequerra, R., Doucette-Stamm, L., Cusick, M.E., Hill, D.E., Roth, F.P., and Vidal, M. (2005). Towards a proteome-scale map of the human protein-protein interaction network. Nature, 437(7062):1173–8.PubMedCrossRefGoogle Scholar
  56. Salgado, H., Gama-Castro, S., Martinez-Antonio, A., Diaz-Peredo, E., Sanchez-Solano, F., Peralta-Gil, M., Garcia-Alonso, D., Jimenez-Jacinto, V., Santos-Zavaleta, A., Bonavides-Martinez, C., and Collado-Vides, J. (2004). RegulonDB (version 4.0): transcriptional regulation, operon organization and growth conditions in Escherichia coli K-12. Nucleic Acids Res., 32 (Database issue):D303-6.Google Scholar
  57. Seidman, S. B. (1983). Network structure and minimum degree. Social Networks, 5:269–287.CrossRefGoogle Scholar
  58. Sharrocks, A.D. (2001). The ETS-domain transcription factor family. Nat. Rev. Mol. Cell Biol., 2(11):827–37.PubMedCrossRefGoogle Scholar
  59. Shen-Orr, S.S., Milo, R., Mangan, S., and Alon, U. (2002). Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet., 31(1):64–8.PubMedCrossRefGoogle Scholar
  60. Solé, R.V. and Montoya, J.M. (2001). Complexity and fragility in ecological networks. Proc. Roy. Soc. Lond. B Biol. Sci., 268(1480):2039–45.CrossRefGoogle Scholar
  61. Solé, S.V. and Valverde, S. (2006). Are networks motifs the spandrels of cellular complexity? TREE, 21(8):419–422.PubMedGoogle Scholar
  62. Sonnhammer, E.L. and Kahn, D. (1994). Modular arrangement of proteins as inferred from analysis of homology. Protein Sci., 3(3):482–92.PubMedCrossRefGoogle Scholar
  63. Stelzl, U., Worm, U., Lalowski, M., Haenig, C, Brembeck, F.H., Goehler, H., Stroedicke, M., Zenkner, M., Schoenherr, A., Koeppen, S., Timm, J., Mintzlaff, S., Abraham, C., Bock, N., Kietzmann, S., Goedde, A., Toksoz, E., Droege, A., Krobitsch, S., Korn, B., Birchmeier, W., Lehrach, H., and Wanker, E.E. (2005). A human protein-protein interaction network: a resource for annotating the proteome. Cell, 122(6):957–68.PubMedCrossRefGoogle Scholar
  64. Sunters, A., Thomas, D.P., Yeudall, W.A., and Grigoriadis, A.E. (2004). Accelerated cell cycle progression in osteoblasts overexpressing the c-fos protooncogene: induction of cyclin a and enhanced cdk2 activity. J. Biol. Chem. 279(11):9882–91.PubMedCrossRefGoogle Scholar
  65. Tanaka, J. (2005). Scale-rich metabolic networks. Phys. Rev. Lett, 94:168101.PubMedCrossRefGoogle Scholar
  66. Thiel, G., Lietz, M., and Hohl, M. (2004). How mammalian transcriptional repressors work. Eur. J. Biochem., 271(14):2855–62.PubMedCrossRefGoogle Scholar
  67. Uetz, P., Giot, L., Cagney, G., Mansfield, T.A., Judson, R.S., Knight, J.R., Lockshon, D., Narayan, V., Srinivasan, M., Pochart, P., Qureshi-Emili, A., Li, Y., Godwin, B., Conover, D., Kalbfleisch, T., Vijayadamodar, G., Yang, M., Johnston, M., Fields, S., and Rothberg, J.M. (2000). A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature, 403(6770):623–7.PubMedCrossRefGoogle Scholar
  68. Uetz, P. and Hughes, R. E. (2000). Systematic and large-scale two-hybrid screens. Curr. Opin. Microbiol, 3(3):303–8.PubMedCrossRefGoogle Scholar
  69. Vázquez, A., Pastor-Satorras, R., and Vespignani, A. (2002). Large-scale topological and dynamical properties of the internet. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 65(6 Pt 2):066130.PubMedGoogle Scholar
  70. Vousden, K. H. and Prives, C. (2005). P53 and prognosis: New insights and further complexity. Cell, 120(1):7–10.PubMedGoogle Scholar
  71. Wagner, A. (2003). How the global structure of protein interaction networks evolves. Proc. Biol. Sci., 270(1514):457–66.PubMedCrossRefGoogle Scholar
  72. Wagner, A. and Fell, D. A. (2001). The small world inside large metabolic networks. Proc. Biol. Sci., 268(1478):1803–10.PubMedCrossRefGoogle Scholar
  73. Walhout, A.J., Boulton, S.J., and Vidal, M. (2000). Yeast two-hybrid systems and protein interaction mapping projects for yeast and worm. Yeast, 17(2):88–94.PubMedCrossRefGoogle Scholar
  74. Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of’ small-world’ networks. Nature, 393(6684):440–2.PubMedCrossRefGoogle Scholar
  75. Wingender, E., Chen, X., Fricke, E., Geffers, R., Hehl, R., Liebich, I., Krull, M., Matys, V., Michael, H., Ohnhauser, R., Pruss, M., Schacherer, F., Thiele, S., and Urbach, S. (2001). The TRANSFAC system on gene expression regulation. Nucleic Acids Res., 29(1):281–3.PubMedCrossRefGoogle Scholar
  76. Wyrick, J.J. and Young, R.A. (2002). Deciphering gene expression regulatory networks. Curr. Opin. Genet. Dev., 12(2):130–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Carlos Rodríguez-Caso
    • 1
  • Ricard V. Solé
    • 1
    • 2
  1. 1.ICREA-Complex Systems LabUniversitat Pompeu Fabra (GRIB)BarcelonaSpain
  2. 2.Santa Fe InstituteNew MexicoUSA

Personalised recommendations