Skip to main content

Nanoconductive Adhesives

  • Chapter
  • First Online:
Nanopackaging

Abstract

Electrically conductive adhesives (ECAs) are composites of polymeric matrices and electrically conductive fillers. Polymeric matrices have excellent dielectric properties and thus are electrical insulators. The conductive fillers provide the electrical properties and the polymeric matrix provides mechanical properties. Therefore, electrical and mechanical properties are provided by different components, which is different from metallic solders that provide both the electrical and mechanical properties. ECAs have been with us for some time. Metal-filled thermoset polymers were first patented as ECAs in the 1950s [1–3]. Recently, ECA materials have been identified as one of the major alternatives for lead-containing solders for microelectronic packaging applications. There are two types of conductive adhesives: isotropically conductive adhesives (ICAs) and anisotropically conductive adhesives/films (ACAs/ACFs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolfson H, Elliot G (1956) Electrically conducting cements containing epoxy resins and silver. US Patent 2,774,747

    Google Scholar 

  2. Matz KR (1958) Electrically conductive cement and brush shunt containing the same. US Patent 2,849,631

    Google Scholar 

  3. Beck DP (1958) Printed electrical resistors. US Patent 2,866,057

    Google Scholar 

  4. Jana PB, Chaudhuri S, Pal AK, De SK (1992) Electrical conductivity of short carbon fiber-reinforced carbon polychloroprene rubber and mechanism of conduction. Polymer Engineering and Science 32:448–456

    Article  CAS  Google Scholar 

  5. Malliaris A, Tumer DT (1971) Influence of particle size on the electrical resistivity of compacted mixtures of polymers and metallic powders. Journal of Applied Physics 42:614–618

    Article  CAS  Google Scholar 

  6. Ruschau GR, Yoshikawa S, Newnham RE (1992) Resistivities of conductive composites. Journal of Applied Physics 73:953–959

    Article  Google Scholar 

  7. Gilleo K (1995) Assembly with conductive adhesives. Soldering & Surface Mount Technology 19:12–17

    Article  Google Scholar 

  8. Hariss PG (1995) Conductive adhesives: a critical review of progress to date. Soldering & Surface Mount Technology 20:9–21

    Google Scholar 

  9. Li Y, Moon K, Wong CP (2005) Electronics without lead. Science 308:1419–1420

    Article  CAS  Google Scholar 

  10. Li Y, Wong CP (2006) Recent advances of conductive adhesives as a lead-free alternative in electronic packaging: materials, processing, reliability and applications. Materials Science & Engineering R: Reports 51:1–35

    Article  Google Scholar 

  11. Lau J, Wong CP, Lee NC, Lee SWR (2002) Electronics Manufacturing: with Lead-Free, Halogen-Free, and Conductive-Adhesive Materials. McGraw-Hill, New York, NY

    Google Scholar 

  12. Wu H, Wu X, Liu J, Zhang G, Wang Y, Zeng Y, Jing J (2006) Development of a novel isotropic conductive adhesive filled with silver nanowires. Journal of Composite Materials 40:1961–1968

    Article  CAS  Google Scholar 

  13. Lee HS, Chou KS, Shih ZW (2005) Effect of nano-sized silver particles on the resistivity of polymeric conductive adhesives. International Journal of Adhesion and Adhesives 25:437–441

    Article  CAS  Google Scholar 

  14. Ye L, Lai Z, Liu J, Tholen A (1999) Effect of Ag particle size on electrical conductivity of isotropically conductive adhesives. IEEE Transactions on Electronics Packaging Manufacturing 22:299–302

    Article  CAS  Google Scholar 

  15. Fan L, Su B, Qu J, Wong CP (2004) Electrical and thermal conductivities of polymer composites containing nano-sized particles. In: Proceedings of Electronic Components and Technology Conference, Las Vegas, NV, pp. 148–154

    Google Scholar 

  16. Jiang HJ, Moon K, Li Y, Wong CP (2006) Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites. Chemistry of Materials 18:2969–2973

    Article  CAS  Google Scholar 

  17. Kotthaus S, Günther BH, Haug R, Schafer H (1997) Study of isotropically conductive bondings filled with aggregates of nano-sized Ag-particles. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A 20:15–20

    Article  CAS  Google Scholar 

  18. Majima M, Koyama K, Tani Y, Toshioka H, Osoegawa M, Kashihara H, Inazawa S (2002) Development of conductive material using metal nano particles. SEI Technical Review 54:25–27

    Google Scholar 

  19. Das RN, Lauffer JM, Egitto FD (2006) Electrical conductivity and reliability of nano- and micro-filled conducting adhesives for Z-axis interconnections. In: Proceedings of Electronic Components and Technology Conference, San Diego, CA, pp. 112–118

    Google Scholar 

  20. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56

    Article  CAS  Google Scholar 

  21. Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria G, Tománek D, Fischer JE, Smalley RE (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483

    Article  CAS  Google Scholar 

  22. Berber S, Kwon YK, Tománek D (2000) Unusually high thermal conductivity of carbon nanotubes. Physical Review Letters 84:4613–4616

    Article  CAS  Google Scholar 

  23. Yu MF, Files BS, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single-wall carbon nanotubes and their mechanical properties. Physical Review Letters 84:5552–5555

    Article  CAS  Google Scholar 

  24. Gao G, Cagin T, Goddard WA III (1998) Energetics, structure, mechanical and vibrational properties of single walled carbon nanotubes (SWNT). Nanotechnology 9:184–191

    Article  CAS  Google Scholar 

  25. Li J, Lumpp JK (2006) Electrical and mechanical characterization of carbon nanotube filled conductive adhesive. In: Proceedings of Aerospace Conference, Manhattan, CA, pp. 1–6

    Google Scholar 

  26. Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Applied Physics Letters 76:2868

    Article  CAS  Google Scholar 

  27. Lin XC, Lin F (2004) Improvement on the properties of silver-containing conductive adhesives by the addition of carbon nanotube. In: Proceedings of High Density Microsystem Design and Packaging, Shanghai, China, pp. 382–384

    Google Scholar 

  28. Rutkofsky M, Banash M, Rajagopal R, Chen J (2006) Using a carbon nanotube additive to make electrically conductive commercial polymer composites. Zyvex Corporation, Application Note 9709. http://www.zyvex.com/Documents/9709.PDF, 28

  29. Kamyshny A, Ben-Moshe M, Aviezer S, Magdassi S (2005) Ink-jet printing of metallic nanoparticles and microemulsions. Macromolecular Rapid Communications 26:281–288

    Article  CAS  Google Scholar 

  30. Cibis D, Currle U (2005) Inkjet printing of conductive silver paths. In: 2nd International Workshop on Inkjet Printing of Functional Polymers and Materials, Eindhoven, The Netherlands

    Google Scholar 

  31. Kolbe J, Arp A, Calderone F, Meyer EM, Meyer W, Schaefer H, Stuve M (2005) Inkjettable conductive adhesive for use in microelectronics and microsystems technology. In: Proceedings of IEEE Polytronic 2005 Conference, Wroclaw, Poland, pp. 1–4

    Google Scholar 

  32. Moscicki A, Felba J, Sobierajski T, Kudzia J, Arp A, Meyer W (2005) Electrically conductive formulations filled nano size silver filler for ink-jet technology. In: Proceedings of IEEE Polytronic 2005 Conference, Wroclaw, Poland, pp. 40–44

    Google Scholar 

  33. Moon K, Dong H, Maric R, Pothukuchi S, Hunt A, Li Y, Wong CP (2005) Journal of Electronic Materials 34:132–139

    Article  Google Scholar 

  34. Matsuba Y (2003) Erekutoronikusu Jisso Gakkaishi 6:130–135

    Article  CAS  Google Scholar 

  35. Efremov MY, Schiettekatte F, Zhang M, Olson EA, Kwan AT, Berry RS, Allen LH (2000) Physical Review Letters 85:3560–3563

    Article  CAS  Google Scholar 

  36. Li Y, Moon K, Wong CP (2006) Enhancement of electrical properties of anisotropically conductive adhesive (ACA) joints via low temperature sintering. Journal of Applied Polymer Science 99:1665–1673

    Article  CAS  Google Scholar 

  37. Li Y, Moon K, Wong CP (2004) In: Proceedings of 54th IEEE Electronic Components and Technology Conference, Las Vegas, NV, pp. 1968–1974

    Google Scholar 

  38. Li Y, Wong CP (2005) In: Proceedings of 55th IEEE Electronic Components and Technology Conference, Lake Buena Vista, FL, pp. 1147–1154

    Google Scholar 

  39. Li Y, Moon K, Wong CP (2005) Journal of Electronic Materials 34:266–271

    Article  CAS  Google Scholar 

  40. Li Y, Moon K, Wong CP (2006) Journal of Electronic Materials 34:1573–1578

    Article  Google Scholar 

  41. Davies G, Sandstrom J (1976) Circuits Manufacturing 56–62

    Google Scholar 

  42. Harsanyi G, Ripka G (1985) Electrocomponent Science and Technology 11:281–290

    Google Scholar 

  43. Giacomo GA (1992) In: J McHardy and F (Eds) Ludwig Electrochemistry of Semiconductors and Electronics: Processes and Devices. Noyes, Park Ridge, NJ, pp. 255–295

    Google Scholar 

  44. Manepalli R, Stepniak F, Bidstrup-Allen SA, Kohl PA (1999) IEEE Transactions on Advanced Packaging 22:4–8

    Article  CAS  Google Scholar 

  45. Giacomo D (1997) Reliability of Electronic Packages and Semiconductor Devices. McGraw-Hill, New York (Chap. 9)

    Google Scholar 

  46. Wassink R (1987) Hybrid Circuits 13:9–13

    CAS  Google Scholar 

  47. Shirai Y, Komagata M, Suzuki K (2001) In: 1st International IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics, Potsdam, Germany, pp. 79–83

    Google Scholar 

  48. Marderosian D, Raytheon Co. Equipment Division, Equipment Development Laboratories, pp. 134–141

    Google Scholar 

  49. Schonhorn H, Sharpe LH (1983) Prevention of surface mass migration by a polymeric surface coating. US Patent 4,377,619

    Google Scholar 

  50. Brusic V, Frankel GS, Roldan J, Saraf R (1995) Journal of the Electrochemical Society 142:2591–2594

    Article  CAS  Google Scholar 

  51. Wang PI, Lu TM, Murarka SP, Ghoshal R (2005) US Pending Patent (No. 20050236711)

    Google Scholar 

  52. Li Y, Wong CP (2005) US Pending Patent

    Google Scholar 

  53. Li Y, Wong CP (2006) Monolayer protection for electrochemical migration control in silver nanocomposite. Applied Physics Letters 81:112

    Google Scholar 

  54. Toshioka H, Kobayashi M, Koyama K, Nakatsugi K, Kuwabara T, Yamamoto M, Kashihara H (2006) SEI Technical Review 62:58–61

    Google Scholar 

  55. Lieber CM (2001) Nanowire nanosensors for high sensitive and selective detection of biological and chemical species. Science 293:1289–1292

    Article  Google Scholar 

  56. Prinz GA (1998) Science 282:1660

    Article  CAS  Google Scholar 

  57. Martin CR, Menon VP (1995) Fabrication and evaluation of nanoelectrode ensembles. Analytical Chemistry 67:1920–1928

    Article  Google Scholar 

  58. Xu JM (2001) Fabrication of highly ordered metallic nanowire arrays by electrodeposition. Applied Physics Letters 79:1039–1041

    Article  Google Scholar 

  59. Russell TP (2000) Ultra-high density nanowire array grown in self-assembled di-block copolymer template. Science 290:2126–2129

    Article  Google Scholar 

  60. Lin R-J, Hsu Y-Y, Chen Y-C, Cheng S-Y, Uang R-H (2005) In: Proceedings of 55th IEEE Electronic Components and Technology Conference, Orlando, FL, pp. 66–70

    Google Scholar 

  61. Li Y, Moon K, Wong CP (2006) In: Proceedings of 56th IEEE Electronic Components and Technology Conference, IEEE, NJ, pp. 1239–1245

    Google Scholar 

  62. Li Y, Zhang Z, Moon K, Wong CP (2006) Ultra-fine pitch wafer level ACF (anisotropic conductive film) interconnect by in situ formation of nano fillers with high current carrying capability. US Pending Patent

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoqiang Daniel Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lu, D.D., Li, Y.G., Wong, CP. (2008). Nanoconductive Adhesives. In: Morris, J. (eds) Nanopackaging. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-47325-3_10

Download citation

Publish with us

Policies and ethics