MEMS Materials and Processes Handbook pp 755-815

Part of the MEMS Reference Shelf book series (MEMSRS, volume 1)

Doping Processes for MEMS



Doping processes are utilized to modify electrical properties of semiconductors by making mobile charge carriers available in the material. Doping processes are used in MEMS devices for creating electrically conductive layers for power distribution, heaters, transducers, and other structures. Doped layers are also widely used for controlling specialty etch processes by modification of surface electrochemistry. Typical MEMS doping applications, standard processes for doping MEMS materials, and diagnostic techniques are reviewed.


  1. 1.
    C.D. Thurmond: The standard thermodynamic function of the formation of electrons and holes in Ge, Si, GaAs and GaP, J. Electrochem. Soc. 122, 1133–1141 (1975)CrossRefGoogle Scholar
  2. 2.
    B.W. Chui, M. Asheghi, Y.S. Ju, K.E. Goodson, T.W. Kenny, H.J. Mamin: Thermal conduction from microcantilever heaters in partial vacuum, Nanoscale Microscale Thermophys. Eng. 3, 217 (1999)CrossRefGoogle Scholar
  3. 3.
    W.A. Harrison: Electronic Structure and the Properties of Solids (W.H. Freeman and Company, San Francisco, CA, 1980)Google Scholar
  4. 4.
    N.W. Ashcroft, N.D. Mermin: Solid State Physics (Saunders College, Philadelphia, PA, 1976)Google Scholar
  5. 5.
    S.M. Sze: Physics of Semiconductor Devices (Wiley, New York, NY, 1981)Google Scholar
  6. 6.
    D.A. Drabold, S.K. Estreicher: Theory of Defects in Semiconductors (Springer, New York, NY, 2007)MATHGoogle Scholar
  7. 7.
    S.M. Sze: VLSI Technology (McGraw-Hill, New York, NY, 1988)Google Scholar
  8. 8.
    M. Pawlik: Resistivity of n- and p-Type Si, Doping Dependence, Properties of Silicon, p. 83 (INSPEC, London, 1988)Google Scholar
  9. 9.
    G.L. Vick, K.M. Whittle: Solid solubility and diffusion coefficients of boron in silicon, J. Electrochem. Soc. 116, 1142–1144 (1969)CrossRefGoogle Scholar
  10. 10.
    F.A. Trumbore: Solid solubilities of impurity elements in germanium and silicon, Bell Syst. Techn. J. 39, 205–233 (1960)Google Scholar
  11. 11.
    J.S. Sandhu, J.L. Reuter: Arsenic source vapor pressure kinetics and capsule diffusion, IBM J. Res. Dev. 15, 464–471 (1971)CrossRefGoogle Scholar
  12. 12.
    M. Gad-el-Hak: The MEMS Handbook (CRC Press, Boca Raton, FL, 2002)MATHGoogle Scholar
  13. 13.
    T. Riekkinen, J. Molarius, T. Laurila, A. Nurmela, I. Suni, J.K Kivilahti: Reactive sputter deposition and properties of TaxN thin films, Microelectron. Eng. 64, 289–297 (2002)CrossRefGoogle Scholar
  14. 14.
    Y. Kanda: A graphical representation of the piezoresistance coefficients in silicon, IEEE Trans. Electron Dev. 29, 64–70 (1982)CrossRefGoogle Scholar
  15. 15.
    P.J. French, A.G.R. Evans: Piezoresistance in polysilicon and its applications to strain gauges, Solid State Electron. 32, 1–10 (1989)CrossRefGoogle Scholar
  16. 16.
    L.J. Brillson: The structure and properties of metal-semiconductor interfaces, Surf. Sci. Rep. 2, 123–326 (1982)CrossRefGoogle Scholar
  17. 17.
    L.J. Brillson: Contacts to Semiconductors: Fundamentals and Technology (Noyes Publications, Park Ridge, NJ, 1993)Google Scholar
  18. 18.
    H. Robbins, B. Schwartz: Chemical etching of silicon, J. Electrochem. Soc. 106, 505–508 (1959)CrossRefGoogle Scholar
  19. 19.
    R.M. Finne, D.L. Klein: A water-amine complexing agent for etching silicon, J. Electrochem. Soc. 114, 965–970 (1967)CrossRefGoogle Scholar
  20. 20.
    J.T.L. Thong, W.K. Choi, C.W. Chong: TMAH etching of silicon and the interaction of etching parameters, Sens. Actuators A63, 243–249 (1997)CrossRefGoogle Scholar
  21. 21.
    H. Seidel, L. Csepregi, A. Heuberger, H. Baumgartel: Anisotropic etching of crystalline silicon in alkaline solutions I, J. Electrochem. Soc. 137, 3612–3626 (1990)CrossRefGoogle Scholar
  22. 22.
    K. Petersen: Silicon as a mechanical material, Proc. IEEE 70, 420–457 (1982)CrossRefGoogle Scholar
  23. 23.
    V.A. Ukraintsev, R. McGlothlin, M.A. Gribelyuk, H. Edwards: Strong effect of dopant concentration on etching rate, J. Vac. Sci. Technol. B 16, 476–480 (1998)CrossRefGoogle Scholar
  24. 24.
    H. Robbins, B. Schwartz: Chemical etching of silicon, J. Electrochem. Soc. 107, 108–111 (1960)CrossRefGoogle Scholar
  25. 25.
    G.T.A. Kovaks, N.I. Maluf, K.E. Petersen: Bulk micromachining of silicon, Proc. IEEE 1536–1551 (1998)Google Scholar
  26. 26.
    E.D. Palik, J.W. Faust, H.F. Gray, R.F. Greene: Study of the etch-stop mechanism in silicon, J. Electrochem. Soc. 129, 2051–2059 (1982)CrossRefGoogle Scholar
  27. 27.
    E.D. Palik, O.J. Glembocki, R.E. Stahlbush: Fabrication and characterization of Si membranes, J. Electrochem. Soc. 135, 3126–3134 (1988)CrossRefGoogle Scholar
  28. 28.
    H. Seidel, L. Csepregi, A. Heuberger, H. Baumgartel: Anisotropic etching of crystalline silicon in alkaline solutions II, J. Electrochem. Soc. 137, 3626–3632 (1990)CrossRefGoogle Scholar
  29. 29.
    E. Steinsland, M. Nese, A. Hanneborg, R. Bernstein, H. Sandmo, G. Kittilsland: Boron etch-stop in TMAH solutions, Sens. Actuators A54, 728–732 (1996)CrossRefGoogle Scholar
  30. 30.
    S.D. Collins: Etch stop techniques for micromachining, J. Electrochem. Soc. 144, 2242–2262 (1997)CrossRefGoogle Scholar
  31. 31.
    T.N. Jackson, M.A. Tischler, K.D. Wise: An electrochemical p-n junction etch-stop for the formation of silicon microstructures, IEEE Electron Dev. Lett. EDL-2, 44–45 (1981)CrossRefGoogle Scholar
  32. 32.
    P.M. Sarro, A.W. Van Herwaarden: Silicon cantilever beams fabricated by electrochemically controlled etching for sensor applications, J. Electrochem. Soc. 144, 1724–1729 (1986)CrossRefGoogle Scholar
  33. 33.
    T.E. Bell, P.T.J. Gennissen, D. DeMunter, M. Kuhl: Porous silicon as a sacrificial material, J. Micromech. Microeng. 6, 361–369 (1996)CrossRefGoogle Scholar
  34. 34.
    C.J.M. Eijkel, J. Branebjerg, M. Elwenspoek, C.M. Van De Pol: A new technology for micromachining of silicon: Dopant selective HF anodic etching for the realization of low-doped monocrystalline silicon structures, IEEE Electron Dev. Lett. 11, 588–589 (1990)CrossRefGoogle Scholar
  35. 35.
    C.M.A. Ashruf, P.J. French, P.M. Sarro, P.M.M.C. Bressers, J.J. Kelly: Electrochemical etch stop engineering for bulk micromachining, Mechatronics 8, 595–612 (1998)CrossRefGoogle Scholar
  36. 36.
    D. Lapadatu, M. De Cooman, R. Puers: A double-sided capacitive miniaturized accelerometer based on photovoltaic etch-stop technique, Sens. Actuators A 53, 261–266 (1996)CrossRefGoogle Scholar
  37. 37.
    I. Zubel, M. Kramkowska: The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions, Sens. Actuators A93, 138–147 (2001)CrossRefGoogle Scholar
  38. 38.
    A. Reisman, M. Berkenblit, S.A. Chan, F. B. Kaufman, D.C. Green: The controlled etching of silicon in catalyzed ethylenediamine-pyrocatechol-water solutions, J. Electrochem. Soc. 126, 1406–1415 (1979)CrossRefGoogle Scholar
  39. 39.
    E. Bassous, E.F. Baran: The fabrication of high precision nozzles by the anisotropic etching of (100) silicon, J. Electrochem. Soc. 125, 1321–1327 (1978)CrossRefGoogle Scholar
  40. 40.
    O. Tabata, R. Asahi, H. Funabashi, S. Sugiyama: Anisotropic Etching of Silicon in (CH3)4NOH Solutions, Solid State Sensors and Actuators, 1991, Digest of Technical Papers, 1991 International Conference on Transducers, San Francisco, CA, USA, June 24–28 (IEEE, 1991)Google Scholar
  41. 41.
    G. Kovacs, N. Maluf, K. Petersen: Bulk micromachining of silicon, Proc. IEEE 86, 1536–1551 (1998)CrossRefGoogle Scholar
  42. 42.
    B. Schwartz, H. Robbins: Chemical etching of silicon, J. Electrochem. Soc. 123, 1903–1909 (1976)CrossRefGoogle Scholar
  43. 43.
    H.A. Waggener: Electrochemically controlled thinning of silicon, Bell Syst. Tech. J. 49, 473–475 (1970)Google Scholar
  44. 44.
    E. Ibok, S. Garg: A characterization of the effect of deposition temperature on polysilicon properties, J. Electrochem. Soc. 140, 2927–2937 (1993)CrossRefGoogle Scholar
  45. 45.
    A. Baudrant, M. Sacilotti: The LPCVD polysilicon phosphorus doped in-situ as an industrial process, J. Electrochem. Soc. 129, 1109–1116 (1982)CrossRefGoogle Scholar
  46. 46.
    D. Briand, M. Sarret, K. Kis-Sion, T. Mohammed-Brahim, P. Duverneuil: In-Situ doping of silicon deposited by LPCVD: pressure influence on dopant incorporation mechanisms, Semicond. Sci. Technol. 14, 173–180 (1999)CrossRefGoogle Scholar
  47. 47.
    T. Sinno, E. Dornberger, W. Von Ammon, R.A. Brown, F. Dupret: Defect engineering of Czochralski single-crystal silicon, Mater. Sci. Eng. 28, 149–198 (2000)CrossRefGoogle Scholar
  48. 48.
    W. Zulehner: Czochralski growth of silicon, J. Crystal Growth 65, 189–213 (1983)CrossRefGoogle Scholar
  49. 49.
    T.F. Ciszek: Solid-source boron doping of float-zoned silicon, J. Crystal Growth 264, 116–122 (2004)CrossRefGoogle Scholar
  50. 50.
    E.F. Schubert: Delta doping of III-V compound semiconductors: fundamentals and device applications, J. Vac. Sci. Technol. A 8, 2980–2996 (1990)CrossRefGoogle Scholar
  51. 51.
    T.L. Chu, C.H. Lee, G.A. Gruber: The preparation and properties of amorphous silicon nitride films, J. Electrochem. Soc. 114, 717–722 (1967)CrossRefGoogle Scholar
  52. 52.
    D. Mathiot, J.C. Pfister: Dopant diffusion in silicon: A consistent view involving nonequilibrium defects, J. Appl. Phys. 55, 3518–3530 (1984)CrossRefGoogle Scholar
  53. 53.
    Y. Ishikawa, Y. Sakina, H. Tanaka, S. Matsumoto, T. Niimi: The enhanced diffusion of arsenic and phosphorus in silicon by thermal oxidation, J. Electrochem. Soc. 129, 644–648 (1982)CrossRefGoogle Scholar
  54. 54.
    B. Swaminathan, K.C. Saraswat, R.W. Dutton, T.I. Kamins: Diffusion of arsenic in polycrystalline silicon, Appl. Phys. Lett. 40, 795–798 (1982)CrossRefGoogle Scholar
  55. 55.
    P.M. Fahey, P.B. Griffin, J.D. Plummer: Point defects and dopant diffusion in silicon, Rev. Mod. Phys. 61, 289–384 (1989)CrossRefGoogle Scholar
  56. 56.
    M. Abramowitz, I. Stegun: Handbook of Mathematical Functions (Dover, New York, NY, 1972)MATHGoogle Scholar
  57. 57.
    B.H. Justice, R. Aycock: Spin-On Dopant Method, U.S. Patent 4514440 (1985)Google Scholar
  58. 58.
    T. Aoyama, H. Tashiro, K. Suzuki: Diffusion of boron, phosphorus, arsenic, and antimony in thermally grown silicon dioxide, J. Electrochem. Soc. 146, 1879–1883 (1999)CrossRefGoogle Scholar
  59. 59.
    J.D. Plummer: Silicon VLSI Technology (Prentice-Hall, Englewood Cliffs, NJ, 2000)Google Scholar
  60. 60.
    Code available at at the time of this writingGoogle Scholar
  61. 61.
    J.F. Ziegler, J.P. Biersack, U. Littmark: The Stopping Range of Ions in Solids (Pergamon Press, New York, NY, 1985), SRIM software available for download at the time of this writing at Google Scholar
  62. 62.
    L.C. Northcliffe, R.F. Schilling: Range and stopping power tables for heavy ions, Nucl. Data A7, 233–463 (1970)Google Scholar
  63. 63.
    G. Hobler: Theoretical estimate of the low-energy limit to ion channeling, Nucl. Instrum. Meth. Phys. Res. B 115, 323–327 (1996)CrossRefGoogle Scholar
  64. 64.
    C. Park, K.M. Klein, A.F. Tasch: Efficient modeling parameter extraction for dual Pearson approach to simulation of implanted impurity profiles in silicon, Solid-State Electron. 33, 645–650 (1990)CrossRefGoogle Scholar
  65. 65.
    H.S. Chao, P.B. Griffin, J.D. Plummer: Influence of dislocation loops created by amorphizing implants on point defect and boron diffusion in silicon, Appl. Phys. Lett. 68, 3570–3572 (1996)CrossRefGoogle Scholar
  66. 66.
    B. Diem, P. Rey, S. Renard, S.V. Bosson, H. Bono, F. Michel, M.T. Delaye, G. Delapierre: SOI ‘Simox’: From bulk to surface micromachining, a new age for silicon sensors and actuators, Sens. Actuators A 46–47, 8–16 (1995)Google Scholar
  67. 67.
    M. Bruel, B. Aspar, A-J. Auberton-Herve: Smart-Cut: A new silicon on insulator material technology based on hydrogen implantation and wafer bonding, Jpn. J. Appl. Phys. 36, 1636–1641 (1997)CrossRefGoogle Scholar
  68. 68.
    A. Anders: Handbook of Plasma Immersion Ion Implantation and Deposition (Wiley, New York, NY, 2000)Google Scholar
  69. 69.
    P.K. Chu, S. Qin, C. Chan, N.W. Cheung, L.A. Larson: Plasma immersion ion implantation – A fledgling technique for semiconductor processing, Mater. Sci. Eng. R17, 207–280 (1996)Google Scholar
  70. 70.
    M.A. Lieberman: Model of plasma immersion ion implantation, J. Appl. Phys. 66, 2926–2929 (1989)CrossRefGoogle Scholar
  71. 71.
    C. Yu, N. Cheung: Trench doping conformality by plasma immersion ion implantation (PIII), IEEE Electron Dev. Lett. 15, 196–198 (1994)CrossRefGoogle Scholar
  72. 72.
    M.J. Goeckner, S.B. Felch, Z. Fang, D. Lenoble, J. Galvier, A. Grouillet, G.C.-F. Yeap, D. Bang, M.-R. Lin: Plasma doping for shallow junctions, J. Vac. Sci. Technol. B 17, 2290–2293 (1999)CrossRefGoogle Scholar
  73. 73.
    N.W. Cheung: Plasma immersion ion implantation for semiconductor processing, Mater. Chem. Phys. 46, 132–139 (1996)CrossRefGoogle Scholar
  74. 74.
    J. Pelletier, A. Anders: Plasma-based ion implantation and deposition: A review of physics, technology, and applications, IEEE Trans. Plasma Sci. 33, 1944–1959 (2005)CrossRefGoogle Scholar
  75. 75.
    P.K. Chu: Recent developments and applications of plasma immersion ion implantation, J. Vac. Sci. Technol. B 22, 289–296 (2004)CrossRefGoogle Scholar
  76. 76.
    R.B. Fair: Rapid Thermal Processing (Academic, Boston, MA, 1993)Google Scholar
  77. 77.
    V.E. Borishenko, P.J. Hesketh: Rapid Thermal Processing of Semiconductors (Plenum Press, New York, NY, 1997)Google Scholar
  78. 78.
    T. Gebel, M. Voelskow, W. Skorupa, G. Mannino, V. Privitera, F. Priolo, E. Napolitani, A. Carnera: Flash lamp annealing with millisecond pulses for ultra-shallow boron profiles in silicon, Nucl. Instrum. Meth. Phys. Res. B 186, 287–291 (2002)CrossRefGoogle Scholar
  79. 79.
    C.W. White, J. Narayan, R.T. Young: Laser annealing of ion-implanted semiconductors, Science 4, 461–468 (1979)CrossRefGoogle Scholar
  80. 80.
    R.F. Wood, G.E. Giles: Macroscopic theory of pulsed-laser annealing, Phys. Rev. B 23, 2923–2942 (1981)CrossRefGoogle Scholar
  81. 81.
    S. Uchikoga, N. Ibaraki: Low-temperature poly-Si TFT-LCD by excimer laser anneal, Thin Solid Films 383, 19–24 (2001)CrossRefGoogle Scholar
  82. 82.
    L. Swartzendruber: Correction Factor Tables for Four-Point Probe Resistivity Measurements on Thin, Circular Semiconductor Samples, National Bureau of Standards Technical Note 199 (1964)Google Scholar
  83. 83.
    F.M. Smits: Measurement of sheet resistivities with the four point probe, Bell Syst. Tech. J. 5, 711–718 (1958)Google Scholar
  84. 84.
    J.Z. Hu, I.L. Spain: Phases of silicon at high pressure, Solid State Commun. 51, 263–266 (1984)CrossRefGoogle Scholar
  85. 85.
    T.H. Geballe, G.W. Hull: Seebeck effect in silicon, Phys. Rev. 98, 940–947 (1955)CrossRefGoogle Scholar
  86. 86.
    S. Selberherr: Analysis and Simulation of Semiconductor Devices (Springer, New York, NY, 1984)CrossRefGoogle Scholar
  87. 87.
    L.J. van der Pauw: A method of measuring specific resistivity and hall effect of discs of arbitrary shape, Philips Res. Rep. 13, 1–9 (1958)Google Scholar
  88. 88.
    R. Subrahmanyan, H.Z. Massoud, R.B. Fair: Accurate Junction-Depth Measurements Using Chemical Staining, Semiconductor Fabrication: Technology and Metrology, pp. 126–149 (American Society for Testing and Materials, Ann Arbor, MI, 1989)CrossRefGoogle Scholar
  89. 89.
    J.L. Vossen, W. Kern: Thin Film Processes (Academic, San Diego, CA, 1978)Google Scholar
  90. 90.
    A.W. Czanderna, T.E. Madey, C.J. Powell: Beam Effects, Surface Topography, and Depth Profiling in Surface Analysis (Plenum Press, New York, NY, 1998)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.IT Collaboratory, Rochester Institute of TechnologyRochesterUSA

Personalised recommendations