Skip to main content

Viral Movement Proteins Induce Tubule Formation in Plant and Insect Cells

  • Chapter
Cell-Cell Channels

Abstract

Plant viruses move from cell to cell through plasmodesmata, which are complex gatable pores in the cell wall. As plasmodesmata normally allow the diffusion of only small molecules, virus movement is only achieved by the action of virus-encoded movement proteins that biochemically or structurally modify these pores to enable the passage of ‘naked’ viral genomes or virus particles. For a large number of different plant viruses, the movement protein forms a transport tubule inside the plasmodesmal pore to transport mature virus particles. In this review we describe the important factors that seem to play a role in this type of transport and provide a speculative model for this movement mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carrington JC, Kasschau KD, Mahajan SK et al. Cell-to-cell and long-distance transport of viruses in plants. Plant Cell 1996; 8:1669–1681.

    PubMed  CAS  Google Scholar 

  2. Heinlein M, Epel BL. Macromolecular transport and signaling through plasmodesmata. Int Rev Cytol 2004; 235:93–164.

    PubMed  CAS  Google Scholar 

  3. Lucas WJ, Lee JY. Plasmodesmata as a supracellular control network in plants. Nat Rev Mol Cell Biol 2004; 5:712–726.

    PubMed  CAS  Google Scholar 

  4. Roberts AG, Oparka KJ. Plasmodesmata and the control of symplastic transport. Plant Cell Environ 2003; 26:103–124.

    Google Scholar 

  5. Haywood V, Kragler F, Lucas WJ. Plasmodesmata: Pathways for protein and ribonucleoprotein signaling. Plant Cell 2002; 14:S303–S325.

    PubMed  CAS  Google Scholar 

  6. Ehlers K, Kollmann R. Primary and secondary plasmodesmata: Structure, origin, and functioning. Protoplasma 2001; 216:1–30.

    PubMed  CAS  Google Scholar 

  7. Blackman LM, Overall RL. Structure and function of plasmodesmata. Aust J Plant Physiol 2001; 28:709–727.

    CAS  Google Scholar 

  8. Zambryski P, Crawford K. Plasmodesmata: Gatekeepers for cell-to-cell transport of developmental signals in plants. Ann Rev Cell Dev Biol 2000; 16:393–421.

    CAS  Google Scholar 

  9. Kragler F, Lucas WJ, Monzer J. Plasmodesmata: Dynamics, domains and patterning. Ann Bot 1998; 81:1–10.

    Google Scholar 

  10. Escobar NM, Haupt S, Thow G et al. High-throughput viral expression of cDNA-green fluorescent protein fusions reveals novel subcellular addresses and identifies unique proteins that interact with plasmodesmata. Plant Cell 2003; 15:1507–1523.

    PubMed  CAS  Google Scholar 

  11. Waigmann E, Ueki S, Trutnyeva K et al. The ins and outs of nondestructive cell-to-cell and systemic movement of plant viruses. Crit Rev Plant Sci 2004; 23:195–250.

    CAS  Google Scholar 

  12. Oparka KJ, Roberts AG, Boevink P et al. Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. Cell 1999; 97:743–754.

    PubMed  CAS  Google Scholar 

  13. Wolf S, Deom CM, Beachy RN et al. Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 1989; 246:377–379.

    PubMed  CAS  Google Scholar 

  14. Oparka KJ, Roberts AG. Plasmodesmata: A not so open-and-shut case. Plant Physiol 2001; 125:123–126.

    PubMed  CAS  Google Scholar 

  15. Fujiwara T, Giesman-Cookmeyer D, Ding B et al. Cell-to-cell trafficking of macromolecules through plasmodesmata potentiated by the red clover necrotic mosaic virus movement protein. Plant Cell 1993; 5:1783–1794.

    PubMed  CAS  Google Scholar 

  16. Poirson A, Turner AP, Giovane C et al. Effect of the alfalfa mosaic virus movement protein expressed in transgenic plants on the permeability of plasmodesmata. J Gen Virol 1993; 74:2459–2461.

    PubMed  CAS  Google Scholar 

  17. Vaquero C, Turner AP, Demangeat C et al. The 3a protein from cucumber mosaic virus increases the gating capacity of plasmodesmata in transgenic tobacco plants. J Gen Virol 1994; 75:3193–3197.

    PubMed  CAS  Google Scholar 

  18. Melcher U. Similarities between putative transport proteins of plant viruses. J Gen Virol 1990; 71:1009–1018.

    PubMed  CAS  Google Scholar 

  19. Koonin EV, Mushegian AR, Ryabov EV et al. Diverse groups of plant RNA and DNA viruses share related movement proteins that may possess chaperone-like activity. J Gen Virol 1991; 72:2895–2904.

    PubMed  Google Scholar 

  20. Mushegian AR, Koonin EV. Cell-to-cell movement of plant viruses. Insights from amino acid sequence comparisons of movement proteins and from analogies with cellular transport systems. Arch Virol 1993; 133:239–257.

    PubMed  CAS  Google Scholar 

  21. Melcher U. The ‘30K’ superfamily of viral movement proteins. J Gen Virol 2000; 81:257–266.

    PubMed  CAS  Google Scholar 

  22. Scholthof HB. Plant virus transport: Motions of functional equivalence. Trends Plant Sci 2005; 10:376–382.

    PubMed  CAS  Google Scholar 

  23. Deom CM, Oliver MJ, Beachy RN. The 30-kilodalton gene product of tobacco mosaic virus potentiates virus movement. Science 1987; 237:389–394.

    CAS  Google Scholar 

  24. Citovsky V, Knorr D, Schuster G et al. The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell 1990; 60:637–647.

    PubMed  CAS  Google Scholar 

  25. Waigmann E, Lucas WJ, Citovsky V et al. Direct functional assay for tobacco mosaic virus cell-to-cell movement protein and identification of a domain involved in increasing plasmodesmal permeability. Proc Natl Acad Sci USA 1994; 91:1433–1437.

    PubMed  CAS  Google Scholar 

  26. Heinlein M. The spread of Tobacco mosaic virus infection: Insights into the cellular mechanism of RNA transport. Cell Mol Life Sci 2002; 59:58–82.

    PubMed  CAS  Google Scholar 

  27. Wellink J, van Kammen A. Cell-to-cell transport of cowpea mosaic virus requires both the 58K/48K proteins and the capsid proteins. J Gen Virol 1989; 70:2279–2286.

    CAS  Google Scholar 

  28. van Lent J, Wellink J, Goldbach R. Evidence for the involvement of the 58K and 48K proteins in the intercellular movement of cowpea mosaic virus. J Gen Virol 1990; 71:219–224.

    Google Scholar 

  29. van Lent J, Storms M, van der Meer F et al. Tubular structures involved in movement of cowpea mosaic virus are also formed in infected cowpea protoplasts. J Gen Virol 1991; 72:2615–2623.

    PubMed  Google Scholar 

  30. Kasteel D, Wellink J, Verver J et al. The involvement of cowpea mosaic virus M RNA-encoded proteins in tubule formation. J Gen Virol 1993; 74:1721–1724.

    PubMed  CAS  Google Scholar 

  31. Ritzenthaler C, Schmit AC, Michler P et al. Grapevine fanleaf nepovirus P38 putative movement protein is located on tubules in vivo. Mol Plant Microb Interact 1995; 8:349–387.

    Google Scholar 

  32. Ritzenthaler C, Pinck M, Pinck L. Grapevine fanleaf nepovirus P38 putative movement protein is not transiently expressed and is a stable final maturation product in vivo. J Gen Virol 1995; 76:907–915.

    PubMed  CAS  Google Scholar 

  33. Kalasjan JA, Litvak LA, Marinescu VG. Tubular structures in grapevine tissue after infection with grapevine fanleaf virus. Arch Phytopathol Pflanzensch 1979; 15:373–376.

    Google Scholar 

  34. Sanchez Navarro JA, Bol JF. Role of the Alfalfa mosaic virus movement protein and coat protein in virus transport. Mol Plant Microb Interact 2001; 14:1051–1062.

    CAS  Google Scholar 

  35. Palukaitis P, Garcia-Arenal F. Cucumoviruses. Adv Virus Res 2003; 62:241–323.

    PubMed  CAS  Google Scholar 

  36. van der Scheer C, Groenewegen J. Structure in cells of Vigna unguiculata infected with cowpea mosaic virus. Virology 1971; 46:493–497.

    PubMed  Google Scholar 

  37. Kim KS, Fulton JP. Tubules with viruslike particles in leaf cells infecte with Bean pod mottle virus. Virology 1971; 43:329–337.

    PubMed  CAS  Google Scholar 

  38. Wieczorek A, Sanfacon H. Characterization and subcellular localization of tomato ringspot nepovirus putative movement protein. Virology 1993; 194:734–742.

    PubMed  CAS  Google Scholar 

  39. Saric A, Wrischer M. Fine structure changes in different host plants induced by grapevine fanleaf virus. Phytopath Z 1975; 84:97–104.

    Google Scholar 

  40. Stussi-Garaud C, Haeberle AM, Ritzenthaler C et al. Electron microscopy of plant viruses. Biol Cell 1994; 80:147–153.

    Google Scholar 

  41. Grieco F, Castellano MA, Di Sansebastiano GP et al. Subcellular localization and in vivo identification of the putative movement protein of olive latent virus 2. J Gen Virol 1999; 80:1103–1109.

    PubMed  CAS  Google Scholar 

  42. van der Wel NN, Goldbach RW, van Lent JW. The movement protein and coat protein of alfalfa mosaic virus accumulate in structurally modified plasmodesmata. Virology 1998; 244:322–329.

    PubMed  Google Scholar 

  43. Godefroy-Colburn T, Schoumacher F, Erny C et al. The movement protein of some plant viruses. In: RSS Fraser, ed. NATO ASI Series, Vol H41 Recognition and Response in Plant-Virus Interactions. Berlin Heidelberg: Springer-Verlag, 1990:207–231.

    Google Scholar 

  44. Martelli GP, Russo M. Virus-host relationships: Symptomatological and ultrastructural aspects. In: Francki RIB, ed. The Plant Viruses Polyhedral Virions with Tripartite Genomes. New York: Plenum Press, 1985:163–205.

    Google Scholar 

  45. Francki RIB, Milne RG, Hatta T. Cucumovirus group. An Atlas of Plant Viruses, vol 2. Boca Raton: CRC Press, 1985:53–100.

    Google Scholar 

  46. Murant AF, Roberts IM, Hutcheson AM. Effect of parsnip yellow fleck virus on plant cells. J Gen Virol 1975; 26:277–285.

    Google Scholar 

  47. Kim KS, Lee KW. Geminivirus-induced macrotubules and their suggested role in cell-to-cell movement. Phytopathology 1992; 82:664–669.

    Google Scholar 

  48. Kitajima EW, Lauritis JA. Plant virions in plasmodesmata. Virology 1969; 37:681–685.

    PubMed  CAS  Google Scholar 

  49. Kitajima EW, Lauritis JA, Swift H. Fine structure of zinnia leaf tissues infected with dahlia mosaic virus. Virology 1969; 39:240.

    PubMed  CAS  Google Scholar 

  50. Linstead PJ, Hills GJ, Plaskitt KA et al. The subcellular location of the gene 1 product of cauliflower mosaic virus is consistent with a function associated with virus spread. J Gen Virol 1988; 69:1809–1818.

    CAS  Google Scholar 

  51. Cheng CP, Tzafrir I, Lockhart BE et al. Tubules containing virions are present in plant tissues infected with Commelina yellow mottle badnavirus. J Gen Virol 1998; 79:925–929.

    PubMed  CAS  Google Scholar 

  52. Kormelink R, Storms M, Van Lent J et al. Expression and subcellular location of the NSM protein of tomato spotted wilt virus (TSWV), a putative viral movement protein. Virology 1994; 200:56–65.

    PubMed  CAS  Google Scholar 

  53. Prins M, Storms MMH, Kormelink R et al. Transgenic tobacco plants expressing the putative movement protein of tomato spotted wilt tospovirus exhibit aberrations in growth and appearance. Transgenic Res 1997; 6:245–251.

    CAS  Google Scholar 

  54. Walkey D, Webb M. Tubular inclusion bodies in plants infected with viruses of the NEPO type. J Gen Virol 1970; 7:159–166.

    PubMed  CAS  Google Scholar 

  55. de Zoeten GA, Gaard G. Possibilities for inter-and intracellular translocation of some icosahedral plant viruses. J Cell Biol 1969; 40:814–823.

    PubMed  Google Scholar 

  56. Bassi M, Favali MA, Conti GG. Cell wall protrusions induced by cauliflower mosaic virus in Chinese cabbage leaves: A cytochemical and autoradiographic study. Virology 1974; 60:353.

    PubMed  CAS  Google Scholar 

  57. van der Wel N. Interaction between the Alfalfa mosaic virus movement protein and plasmodesmata. PhD Thesis. Wageningen University, 2000:119.

    Google Scholar 

  58. Storms MM, Kormelink R, Peters D et al. The nonstructural NSm protein of tomato spotted wilt virus induces tubular structures in plant and insect cells. Virology 1995; 214:485–493.

    PubMed  CAS  Google Scholar 

  59. Dawson WO, Schlegel DE. Synchronization of cowpea chlorotic mottle virus replication in cowpea leaves. Intervirology 1976; 7:284–291.

    PubMed  CAS  Google Scholar 

  60. Dawson WO, Schlegel DE. Differential temperature treatment of plants greatly enhances multiplication rates. Virology 1973; 53:476–478.

    PubMed  CAS  Google Scholar 

  61. Lucas WJ, Gilbertson RL. Plasmodesmata in relation to viral movement within leaf tissues. Annu Rev Phytopathol 1994; 32:387–411.

    CAS  Google Scholar 

  62. Laporte C, Vetter G, Loudes AM et al. Involvement of the secretory pathway and the cytoskeleton in intracellular targeting and tubule assembly of Grapevine fanleaf virus movement protein in tobacco BY-2 cells. Plant Cell 2003; 15:2058–2075.

    PubMed  CAS  Google Scholar 

  63. Ding B, Haudenshield JS, Hull RJ et al. Secondary plasmodesmata are specific sites of localization of the tobacco mosaic virus movement protein in transgenic tobacco plants. Plant Cell 1992; 4:915–928.

    PubMed  CAS  Google Scholar 

  64. Blackman LM, Boevink P, Santa Cruz S et al. The movement protein of cucumber mosaic virus traffics into sieve elements in minor veins of Nicotiana clevelandii. Plant Cell 1998; 10:525–537.

    PubMed  CAS  Google Scholar 

  65. Itaya A, Woo YM, Masuta C et al. Developmental regulation of intercellular protein trafficking through plasmodesmata in tobacco leaf epidermis. Plant Physiol 1998; 118:373–385.

    PubMed  CAS  Google Scholar 

  66. Yoshikawa N, Oogake S, Terada M et al. Apple chlorotic leaf spot virus 50 kDa protein is targeted to plasmodesmata and accumulates in sieve elements in transgenic plant leaves. Arch Virol 1999; 144:2475–2483.

    PubMed  CAS  Google Scholar 

  67. Citovsky V, Zambryski P. Transport of nucleic acids through membrane channels: Snaking through small holes. Annu Rev Microbiol 1993; 47:167–197.

    PubMed  CAS  Google Scholar 

  68. Bayer E, Thomas CL, Maule AJ. Plasmodesmata in Arabidopsis thaliana suspension cells. Protoplasma 2004; 223:93–102.

    PubMed  CAS  Google Scholar 

  69. Perbal MC, Thomas CL, Maule AJ. Cauliflower mosaic virus gene I product (P1) forms tubular structures which extend from the surface of infected protoplasts. Virology 1993; 195:281–285.

    PubMed  CAS  Google Scholar 

  70. Kasteel DT, van der Wel NN, Jansen KA et al. Tubule-forming capacity of the movement pro teins of alfalfa mosaic virus and brome mosaic virus. J Gen Virol 1997; 78:2089–2093.

    PubMed  CAS  Google Scholar 

  71. Wellink J, van Lent JW, Verver J et al. The cowpea mosaic virus M RNA-encoded 48-kilodalton protein is responsible for induction of tubular structures in protoplasts. J Virol 1993; 67:3660–3664.

    PubMed  CAS  Google Scholar 

  72. Zheng HQ, Wang GL, Zhang L. Alfalfa mosaic virus movement protein induces tubules in plant protoplasts. Mol Plant Microb Interact 1997; 10:1010–1014.

    Google Scholar 

  73. Canto T, Palukaitis P. Are tubules generated by the 3a protein necessary for cucumber mosaic virus movement? Mol Plant Microb Interact 1999; 12:985–993.

    CAS  Google Scholar 

  74. Goldbach R, Wellink J, Verver J et al. Adaptation of positive-strand RNA viruses to plants. Arch Virol Suppl 1994; 9:87–97.

    PubMed  CAS  Google Scholar 

  75. Kasteel DT, Perbal MC, Boyer JC et al. The movement proteins of cowpea mosaic virus and cauliflower mosaic virus induce tubular structures in plant and insect cells. J Gen Virol 1996; 77:2857–2864.

    PubMed  CAS  Google Scholar 

  76. Rustom A, Saffrich R, Markovic I et al. Nanotubular highways for intercellular organelle trans port. Science 2004; 303:1007–1010.

    PubMed  CAS  Google Scholar 

  77. Onfelt B, Davis DM. Can membrane nanotubes facilitate communication between immune cells? Biochem Soc Trans 2004; 32:676–678.

    PubMed  CAS  Google Scholar 

  78. Baluska F, Hlavacka A, Volkmann D et al. Getting connected: Actin-based cell-to-cell channels in plants and animals. Trends Cell Biol 2004; 14:404–408.

    PubMed  CAS  Google Scholar 

  79. Cilia ML, Jackson D. Plasmodesmata form and function. Curr Opin Cell Biol 2004; 16:500–506.

    PubMed  CAS  Google Scholar 

  80. Wijkamp I, van Lent J, Kormelink R et al. Multiplication of tomato spotted wilt virus in its insect vector, Frankliniella occidentalis. J Gen Virol 1993; 74:341–349.

    PubMed  CAS  Google Scholar 

  81. Storms MMH, Nagata T, Kormelink R et al. Expression of the movement protein of Tomato spotted wilt virus in its insect vector Frankliniella occidentalis. Arch Virol 2002; 147:825–831.

    PubMed  CAS  Google Scholar 

  82. Satoh H, Matsuda H, Kawamura T et al. Intracellular distribution, cell-to-cell trafficking and tubule-inducing activity of the 50 kDa movement protein of Apple chlorotic leaf spot virus fused to green fluorescent protein. J Gen Virol 2000; 81:2085–2093.

    PubMed  CAS  Google Scholar 

  83. Heinlein M, Padgett HS, Gens JS et al. Changing patterns of localization of the tobacco mosaic virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection. Plant Cell 1998; 10:1107–1120.

    PubMed  CAS  Google Scholar 

  84. Mas P, Beachy RN. Distribution of TMV movement protein in single living protoplasts immobilized in agarose. Plant J 1998; 15:835–842.

    CAS  Google Scholar 

  85. Heinlein M, Wood MR, Thiel T et al. Targeting and modification of prokaryotic cell-cell junctions by tobacco mosaic virus cell-to-cell movement protein. Plant J 1998; 14:345–351.

    PubMed  CAS  Google Scholar 

  86. Storms MMH, van der Schoot C, Prins M et al. A comparison of two methods of microinjection for assessing altered plasmodesmal gating in tissues expressing viral movement proteins. Plant J 1998; 13:131–140.

    CAS  Google Scholar 

  87. Lewandowski DJ, Adkins S. The tubule-forming NSm protein from Tomato spotted wilt virus complements cell-to-cell and long-distance movement of Tobacco mosaic virus hybrids. Virology 2005, (In Press).

    Google Scholar 

  88. Taliansky ME, de Jager CP, Wellink J et al. Defective cell-to-cell movement of cowpea mosaic virus mutant N123 is efficiently complemented by sunn-hemp mosaic virus. J Gen Virol 1993; 74:1895–1901.

    PubMed  CAS  Google Scholar 

  89. Carvalho CM, Pouwels J, van Lent JWM et al. The movement protein of Cowpea mosaic virus binds GTP and single-stranded nucleic acid in vitro. J Virol 2004; 78:1591–1594.

    PubMed  CAS  Google Scholar 

  90. Citovsky V, Knorr D, Zambryski P. Gene I, a potential cell-to-cell movement locus of cauliflower mosaic virus, encodes an RNA-binding protein. Proc Natl Acad Sci USA 1991; 88:2476–2480.

    PubMed  CAS  Google Scholar 

  91. Schoumacher F, Erny C, Berna A et al. Nucleic acid-binding properties of the alfalfa mosaic virus movement protein produced in yeast. Virology 1992; 188:896–899.

    PubMed  CAS  Google Scholar 

  92. Schoumacher F, Gagey MJ, Maira M et al. Binding of RNA by the alfalfa mosaic virus movement protein is biphasic. FEBS Lett 1992; 308:231–234.

    PubMed  CAS  Google Scholar 

  93. Jansen KA, Wolfs CJ, Lohuis H et al. Characterization of the brome mosaic virus movement protein expressed in E. coli. Virology 1998; 242:387–394.

    PubMed  CAS  Google Scholar 

  94. Thomas CL, Maule AJ. Identification of the cauliflower mosaic virus movement protein RNA-binding domain. Virology 1995; 206:1145–1149.

    PubMed  CAS  Google Scholar 

  95. Li QB, Palukaitis P. Comparison of the nucleic acid-and NTP-binding properties of the movement protein of cucumber mosaic cucumovirus and tobacco mosaic tobamovirus. Virology 1996; 216:71–79.

    PubMed  CAS  Google Scholar 

  96. Pouwels J, Kornet N, van Bers N et al. Identification of distinct steps during tubule formation by the movement protein of Cowpea mosaic virus. J Gen Virol 2003; 84:3485–3494.

    PubMed  CAS  Google Scholar 

  97. Ghoshroy S, Freedman K, Lartey R et al. Inhibition of plant viral systemic infection by nontoxic concentrations of cadmium. Plant J 1998; 13:591–602.

    PubMed  CAS  Google Scholar 

  98. Lekkerkerker A, Wellink J, Yuan P et al. Distinct functional domains in the cowpea mosaic virus movement protein. J Virol 1996; 70:5658–5661.

    PubMed  CAS  Google Scholar 

  99. Carvalho CM, Wellink J, Ribeiro SG et al. The C-terminal region of the movement protein of Cowpea mosaic virus is involved in binding to the large but not to the small coat protein. J Gen Virol 2003; 84:2271–2277.

    PubMed  CAS  Google Scholar 

  100. Belin C, Schmitt C, Gaire F et al. The nine C-terminal residues of the grapevine fanleaf nepovirus movement protein are critical for systemic virus spread. J Gen Virol 1999; 80:1347–1356.

    PubMed  CAS  Google Scholar 

  101. Thomas CL, Maule AJ. Identification of structural domains within the cauliflower mosaic virus movement protein by scanning deletion mutagenesis and epitope tagging. Plant Cell 1995; 7:561–572.

    PubMed  CAS  Google Scholar 

  102. Huang M, Jongejan L, Zheng HQ et al. Intracellular localization and movement phenotypes of Alfalfa mosaic virus movement protein mutants. Mol Plant Microb Interact 2001; 14:1063–1074.

    CAS  Google Scholar 

  103. Boevink P, Oparka KJ. Virus-host interactions during movement processes. Plant Physiol 2005; 138:1815–1821.

    PubMed  CAS  Google Scholar 

  104. Pouwels J, Van der Krogt GNM, Van Lent J et al. The cytoskeleton and the secretory pathway are not involved in targeting the cowpea mosaic virus movement protein to the cell periphery. Virology 2002; 297:48–56.

    PubMed  CAS  Google Scholar 

  105. Huang Z, Han Y, Howell SH. Formation of surface tubules and fluorescent foci in Arabidopsis thaliana protoplasts expressing a fusion between the green fluorescent protein and the cauliflower mosaic virus movement protein. Virology 2000; 271:58–64.

    PubMed  CAS  Google Scholar 

  106. Heinlein M, Epel BL, Padgett HS et al. Interaction of tobamovirus movement proteins with the plant cytoskeleton. Science 1995; 270:1983–1985.

    PubMed  CAS  Google Scholar 

  107. McLean BG, Zupan J, Zambryski PC. Tobacco mosaic virus movement protein associates with the cytoskeleton in tobacco cells. Plant Cell 1995; 7:2101–2114.

    PubMed  CAS  Google Scholar 

  108. Padgett HS, Epel BL, Kahn TW et al. Distribution of tobamovirus movement protein in infected cells and implications for cell-to-cell spread of infection. Plant J 1996; 10:1079–1088.

    PubMed  CAS  Google Scholar 

  109. Lazarowitz SG, Beachy RN. Viral movement proteins as probes for intracellular and intercellular trafficking in plants. Plant Cell 1999; 11:535–548.

    PubMed  CAS  Google Scholar 

  110. Mas P, Beachy RN. Replication of tobacco mosaic virus on endoplasmic reticulum and role of the cytoskeleton and virus movement protein in intracellular distribution of viral RNA. J Cell Biol 1999; 147:945–958.

    PubMed  CAS  Google Scholar 

  111. Boyko V, Ferralli J, Heinlein M. Cell-to-cell movement of TMV RNA is temperaturedependent and corresponds to the association of movement protein with microtubules. Plant J 2000; 22:315–325.

    PubMed  CAS  Google Scholar 

  112. Boyko V, van der L J, Ferralli J et al. Cellular targets of functional and dysfunctional mutants of tobacco mosaic virus movement protein fused to green fluorescent protein. J Virol 2000; 74:11339–11346.

    PubMed  CAS  Google Scholar 

  113. Boyko V, Ferralli J, Ashby J et al. Function of microtubules in intercellular transport of plant virus RNA. Nat Cell Biol 2000; 2:826–832.

    PubMed  CAS  Google Scholar 

  114. Gillespie T, Boevink P, Haupt S et al. Functional analysis of a DNA-shuffled movement protein reveals that microtubules are dispensable for the cell-to-cell movement of Tobacco mosaic virus. Plant Cell 2002; 14:1207–1222.

    PubMed  CAS  Google Scholar 

  115. Reichel C, Beachy RN. Tobacco mosaic virus infection induces severe morphological changes of the endoplasmic reticulum. Proc Natl Acad Sci USA 1998; 95:11169–11174.

    PubMed  CAS  Google Scholar 

  116. Dorokhov YL, Makinen K, Frolova OY et al. A novel function for a ubiquitous plant enzyme pectin methylesterase: The host-cell receptor for the tobacco mosaic virus movement protein. FEBS Lett 1999; 461:223–228.

    PubMed  CAS  Google Scholar 

  117. Chen MH, Sheng JS, Hind G et al. Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO J 2000; 19:913–920.

    PubMed  CAS  Google Scholar 

  118. Markovic O, Jornvall H. Pectinesterase: The primary structure of the tomato enzyme. Eur J Biochem 1986; 158:455–462.

    PubMed  CAS  Google Scholar 

  119. Matsushita Y, Deguchi M, Youda M et al. The tomato mosaic tobamovirus movement protein interacts with a putative transcriptional coactivator KELP. Mol Cells 2001; 12:57–66.

    PubMed  CAS  Google Scholar 

  120. Soellick TR, Uhrig JF, Bucher GL et al. The movement protein NSm of tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. Proc Nat Acad Sci USA 2000; 97:2373–2378.

    PubMed  CAS  Google Scholar 

  121. Kelley WL. Molecular chaperones: How J domains turn on Hsp70s. Curr Biol 1999; 9:R305–308.

    PubMed  CAS  Google Scholar 

  122. Alzhanova DV, Napuli AJ, Creamer R et al. Cell-to-cell movement and assembly of a plant closterovirus: Roles for the capsid proteins and Hsp70 homolog. EMBO J 2001; 20:6997–7007.

    PubMed  CAS  Google Scholar 

  123. von Bargen S, Salchert K, Paape M et al. Interactions between the tomato spotted wilt virus movement protein and plant proteins showing homologies to myosin, kinesin and DnaJ-like chaperones. Plant Physiol Biochem 2001; 39:1083–1093.

    Google Scholar 

  124. Huang Z, Andrianov VM, Han Y et al. Identification of Arabidopsis proteins that interact with the cauliflower mosaic virus (CaMV) movement protein. Plant Mol Biol 2001; 47:663–675.

    PubMed  CAS  Google Scholar 

  125. Oparka KJ. Getting the message across: How do plant cells exchange macromolecular complexes? Trends Plant Sci 2004; 9:33–41.

    PubMed  CAS  Google Scholar 

  126. Pouwels J, van der Velden T, Willemse J et al. Studies on the origin and structure of tubules made by the movement protein of Cowpea mosaic virus. J Gen Virol 2004; 85:3787–3796.

    PubMed  CAS  Google Scholar 

  127. Carvalho CM. The Cowpea mosaic virus movement protein: Analysis of its interactions with viral and host proteins. PhD Thesis. The Netherlands: Wageningen University, 2003:88.

    Google Scholar 

  128. Baluska F, Cvrckova F, Kendrick Jones J et al. Sink plasmodesmata as gateways for phloem unloading. Myosin VIII and calreticulin as molecular determinants of sink strength? Plant Physiol 2001; 126:39–46.

    PubMed  CAS  Google Scholar 

  129. Baluska F, Samaj J, Napier R et al. Maize calreticulin localizes preferentially to plasmodesmata in root apex. Plant J 1999; 19:481–488.

    PubMed  CAS  Google Scholar 

  130. Torres E, Gonzalez-Melendi P, Stoger E et al. Native and artificial reticuloplasmins coaccumulate in distinct domains of the endoplasmic reticulum and in post-endoplasmic reticulum compartments. Plant Physiol 2001; 127:1212–1223.

    PubMed  CAS  Google Scholar 

  131. Chen MH, Tian GW, Gafni Y et al. Effects of calreticulin on viral cell-to-cell movement. Plant Physiol 2005; 138:1866–1876.

    PubMed  CAS  Google Scholar 

  132. Carette JE, Stuiver M, Van Lent J et al. Cowpea mosaic virus infection induces a massive proliferation of endoplasmic reticulum but not Golgi membranes and is dependent on de novo mem brane synthesis. J Virol 2000; 74:6556–6563.

    PubMed  CAS  Google Scholar 

  133. Ritzenthaler C, Laporte C, Gaire F et al. Grapevine fanleaf virus replication occurs on endoplasmic reticulum-derived membranes. J Virol 2002; 76:8808–8819.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan W. M. van Lent .

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

van Lent, J.W.M., Schmitt-Keichinger, C. (2006). Viral Movement Proteins Induce Tubule Formation in Plant and Insect Cells. In: Cell-Cell Channels. Springer, New York, NY. https://doi.org/10.1007/978-0-387-46957-7_11

Download citation

Publish with us

Policies and ethics